JPS6223847B2 - - Google Patents

Info

Publication number
JPS6223847B2
JPS6223847B2 JP6710580A JP6710580A JPS6223847B2 JP S6223847 B2 JPS6223847 B2 JP S6223847B2 JP 6710580 A JP6710580 A JP 6710580A JP 6710580 A JP6710580 A JP 6710580A JP S6223847 B2 JPS6223847 B2 JP S6223847B2
Authority
JP
Japan
Prior art keywords
waveguide
branch
optical
waveguides
branch waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6710580A
Other languages
Japanese (ja)
Other versions
JPS56164313A (en
Inventor
Juichi Noda
Tadashi Saku
Seiji Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6710580A priority Critical patent/JPS56164313A/en
Publication of JPS56164313A publication Critical patent/JPS56164313A/en
Publication of JPS6223847B2 publication Critical patent/JPS6223847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は変調電圧の低減と光伝ぱん損失の低減
を図りうる導波路形光変調器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveguide optical modulator that can reduce modulation voltage and optical propagation loss.

第1図、第2図はそれぞれ従来の分岐路形光変
調器を例示する説明図で、第1図は斜視図、第2
図は断面図である。これらの図において1は基板
で、例えばLiNbO3結晶やガラスから成つてお
り、2は光導波路、3は分岐点、4は分流点、
5,6はそれぞれ分岐導波路、7は電極、8は信
号源である。これらの光変調器の動作は以下のよ
うにおこなわれる。まず光導波路2より入射した
光は、分岐点3でE1,E2なる光電界を持つ光と
して分岐され、合流点4で再び合流される。そし
て第1図に示す光変調器の場合には分岐導波路
5,6をはさむ電極7に電圧が印加されると、ま
た第2図に示す光変調器の場合には、バツフア層
9を介して分岐導波路5,6上に設置された電極
7に電圧が印加されると、出力光Iは次式に従つ
て変化する。
1 and 2 are explanatory diagrams illustrating conventional branching path type optical modulators, respectively; FIG. 1 is a perspective view, and FIG.
The figure is a sectional view. In these figures, 1 is a substrate made of, for example, LiNbO 3 crystal or glass, 2 is an optical waveguide, 3 is a branch point, 4 is a branch point,
5 and 6 are branch waveguides, 7 is an electrode, and 8 is a signal source. These optical modulators operate as follows. First, light incident from the optical waveguide 2 is branched at a branching point 3 as light having optical electric fields E 1 and E 2 , and then merged again at a merging point 4 . In the case of the optical modulator shown in FIG. 1, when a voltage is applied to the electrodes 7 sandwiching the branch waveguides 5 and 6, and in the case of the optical modulator shown in FIG. When a voltage is applied to the electrodes 7 placed on the branch waveguides 5 and 6, the output light I changes according to the following equation.

I=E +E +2E1E2cos {kL(Δn(O)−Δn(E))} …(1) ここでkは光の波数(=2π/λ、λ:光の波
長)、Δn(O)は変調電圧が零の時、分岐導波
路5,6間に存在するE1とE2の位相差、Δn(E)
は印加電圧によつて分岐導波路5,6間に生じる
E1とE2の位相差、Lは電極長である。分岐点3
で入射光が3dB分岐されたと仮定すれば、E1=E2
となる。また分岐導波路5,6の両者がほぼ同形
状でるれとすれば、Δn(O)=0となり変調電
圧Vは次式で与えられる。
I=E 2 1 + E 2 2 + 2E 1 E 2 cos {kL (Δn(O) − Δn(E))} …(1) Here, k is the wave number of light (=2π/λ, λ: wavelength of light) , Δn(O) is the phase difference between E 1 and E 2 that exists between branch waveguides 5 and 6 when the modulation voltage is zero, Δn(E)
occurs between the branch waveguides 5 and 6 due to the applied voltage.
The phase difference between E 1 and E 2 and L is the electrode length. Branching point 3
Assuming that the incident light is split by 3 dB, E 1 = E 2
becomes. Further, if both the branch waveguides 5 and 6 have substantially the same shape, Δn(O)=0 and the modulation voltage V is given by the following equation.

V=λG/2nrLΓ …(2) ここでGは電極間隔、rは電気光学係数、nは
結晶の屈折率、Γは電界補正係数である。そして
変調電圧Vを低減するにはn、r、λ、Γはほと
んど一定であるから、G/Lを小さくすればよ
い。ところで電極長Lは結晶基板の大きさによつ
て制約される。また電極長Lを大きくすることは
光導波路が長くなることになるから光伝ぱん損失
が大きくなる原因となる。従つて電極間隔Gを小
さくして変調電圧を小さくする方が良いと考えら
れる。
V=λG/2n 3 rLΓ (2) where G is the electrode spacing, r is the electro-optic coefficient, n is the refractive index of the crystal, and Γ is the electric field correction coefficient. In order to reduce the modulation voltage V, since n, r, λ, and Γ are almost constant, G/L can be reduced. Incidentally, the electrode length L is limited by the size of the crystal substrate. Furthermore, increasing the electrode length L increases the length of the optical waveguide, which causes an increase in optical propagation loss. Therefore, it is considered better to reduce the modulation voltage by reducing the electrode spacing G.

しかし第1図に示す光変調器にあつては、電極
7が分岐導波路5,6をはさむため、分岐導波路
5,6間に電極を設置しなければならない。この
場合、分岐導波路5,6の間隔が大きくなり、こ
れに従つて分岐点3および合流点4の分離角も大
きくなる。このことは分岐点3および合流点4に
おいて、光が円滑に分岐せず光散乱が大きくなる
原因となる。
However, in the optical modulator shown in FIG. 1, since the electrode 7 sandwiches the branch waveguides 5 and 6, the electrode must be installed between the branch waveguides 5 and 6. In this case, the distance between the branching waveguides 5 and 6 becomes larger, and the separation angle between the branching point 3 and the merging point 4 also becomes larger accordingly. This causes the light to not branch smoothly at the branch point 3 and the confluence point 4, resulting in increased light scattering.

一方第2図に示す光変調器にあつては、電界方
向として基板1と垂直な方向を利用するので、電
極7が分岐導波路5,6上に形成されている。こ
の構造のように分岐導波路5,6間に溝10を作
れば、この分岐導波路5,6間の光結合を生じさ
せないので、電極間隔を十分に小さくできる。し
かしこの場合、溝10はイオンミリングや化学エ
ツチングによつて製作されるため、数μm幅に作
ることが技術的に難しい。従つて電極間隔を数μ
mにすることは非常に困難となり、結局、大幅な
変調電圧の低減を実現させ難い。
On the other hand, in the optical modulator shown in FIG. 2, the direction perpendicular to the substrate 1 is used as the electric field direction, so the electrodes 7 are formed on the branch waveguides 5 and 6. If the groove 10 is formed between the branch waveguides 5 and 6 as in this structure, optical coupling between the branch waveguides 5 and 6 will not occur, so that the electrode spacing can be made sufficiently small. However, in this case, since the groove 10 is manufactured by ion milling or chemical etching, it is technically difficult to make it several μm wide. Therefore, the electrode spacing should be several microns.
It becomes very difficult to make the modulation voltage m, and in the end, it is difficult to achieve a significant reduction in the modulation voltage.

本発明は上記した従来技術における実情に鑑み
てなされたもので、その目的は、分岐導波路間の
光結合を防止し、変調電圧の低減と光伝ぱん損失
の低減を図ることのできる導波路形光変調器を提
供することにある。
The present invention has been made in view of the actual situation in the prior art described above, and its purpose is to provide a waveguide that can prevent optical coupling between branch waveguides and reduce modulation voltage and optical propagation loss. An object of the present invention is to provide a shaped light modulator.

この目的を達成するために本発明は、2本の分
岐導波路の一方の上に、または分岐導波路の双方
の上にかつ交互に、光導波路形成に用いた拡散物
質と同種または異種の拡散物質を拡散してなる2
重拡散部を具備する構成にしてある。
To achieve this objective, the present invention provides a method for dispersing the same or different type of diffusion material as the diffusion material used to form the optical waveguide on one of the two branch waveguides or on both of the branch waveguides and alternately. Diffusion of substances 2
It is configured to include a heavy diffusion section.

以下、本発明の導波路形光変調器を図に基づい
て説明する。第3図、第4図はそれぞれ本発明を
構成する光導波路を例示する斜視図、第5図は本
発明の一実施例を示す断面図である。これらの図
において第1,2図に示した符号と同じ符号は同
一の部材を示す。これらの第3図ないし第5図に
おいて11は2重拡散部である。今、形状と屈折
率が全く同じ2本の光導波路が平行に接近してい
る場合、すなわちこれを分岐導波路5,6と考え
ると、2本の光導波路間の光結合を表わす式は、 η=10log1−p/p(dB) …(4) となる。
Hereinafter, the waveguide type optical modulator of the present invention will be explained based on the drawings. FIGS. 3 and 4 are perspective views illustrating optical waveguides constituting the present invention, and FIG. 5 is a sectional view illustrating an embodiment of the present invention. In these figures, the same reference numerals as those shown in FIGS. 1 and 2 indicate the same members. In these FIGS. 3 to 5, 11 is a double diffusion section. Now, if two optical waveguides with exactly the same shape and refractive index are close to each other in parallel, that is, if we consider these as branch waveguides 5 and 6, then the equation expressing the optical coupling between the two optical waveguides is as follows. η=10log1-p/p(dB)...(4)

ここでpは入力側の光導波路より結合導波路へ
結合した光出力、δoは分岐導波路間の屈折率
差、ηはクロストークである。上記δoは2重拡
散によつて生じた分岐導波路間の屈折率差であ
る。今、L/λ=10000、δo=0.001とすれば、
クロストーク20dB以上は得られる。このδoの値
は2重拡散によつて容易に得られる。従つて第3
図に示すように、2本の分岐導波路のいずれか一
方の上に、または第4図に示すように分岐導波路
の双方の上にかつ交互に、2重拡散部11を形成
することによつて2本の分岐導波路間の光の結合
をほぼ完全に分離できる。
Here, p is the optical output coupled from the input side optical waveguide to the coupling waveguide, δ o is the refractive index difference between the branch waveguides, and η is the crosstalk. The above δ o is the refractive index difference between the branch waveguides caused by double diffusion. Now, if L/λ=10000 and δ o =0.001,
Crosstalk of 20dB or more can be obtained. This value of δ o can be easily obtained by double diffusion. Therefore, the third
As shown in the figure, double diffusion portions 11 are formed on either one of the two branch waveguides, or alternately on both of the branch waveguides as shown in FIG. Therefore, the coupling of light between the two branch waveguides can be almost completely separated.

2重拡散部11の形成は、分岐導波路の拡散源
パターンの寸法に合せて2重拡散用のパターンを
リフトオフ法等のホトエツチングに形成し、第一
層、第二層の拡散物質を同時に拡散するか、ある
いは分岐形導波路を形成後、第二層目の拡散物質
を導波路上に形成し、これを拡散させる方法でお
こなわれる。その際、第一層の拡散物質と第二層
の拡散物質は同種でも異種でもかまわない。そし
て光変調器は例えば第5図に示すように、2重拡
散部11によつて光結合部が分離された分岐導波
路5,6上に、バツフア層9を介してプラナ形電
極が形成された構造となる。
The double diffusion part 11 is formed by forming a pattern for double diffusion by photo-etching, such as a lift-off method, in accordance with the dimensions of the diffusion source pattern of the branch waveguide, and diffusing the first and second layer diffusion substances simultaneously. Alternatively, after forming a branched waveguide, a second layer of diffusing material is formed on the waveguide and then diffused. In this case, the first layer diffusion material and the second layer diffusion material may be of the same type or different types. In the optical modulator, for example, as shown in FIG. 5, a planar electrode is formed via a buffer layer 9 on branch waveguides 5 and 6 whose optical coupling portions are separated by a double diffusion portion 11. The structure is as follows.

以上説明したように本発明の導波路形光変調器
によれば、分岐導波路上に2重拡散部を具備して
いることから、近接する分岐導波路間の光結合を
分離でき、これにより分岐導波路の分岐点ならび
に合流点の分離角を小さくでき、分岐点および合
流点における光散乱を小さくできる効果がある。
また分岐導波路間を近接できるので、これに伴つ
て電極間隔を小さくでき、変調電圧を低減できる
効果もある。
As explained above, according to the waveguide type optical modulator of the present invention, since the double diffusion section is provided on the branch waveguide, it is possible to separate optical coupling between adjacent branch waveguides. This has the effect of making it possible to reduce the separation angle at the branching point and the merging point of the branching waveguide, thereby reducing light scattering at the branching point and the merging point.
Furthermore, since the branch waveguides can be placed close to each other, the electrode spacing can be reduced, which has the effect of reducing modulation voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ従来の分岐路形変調
器を例示する説明図で、第1図は斜視図、第2図
は断面図、第3図および第4図はそれぞれ本発明
の導波路形光変調器を構成する光導波路を例示す
る斜視図、第5図は本発明の導波路形光変調器の
一実施例を示す断面図である。 2……光導波路、3……分岐点、4……合流
点、5,6……分岐導波路、7……電極、11…
…2重拡散部。
1 and 2 are explanatory diagrams illustrating conventional branch path modulators, respectively. FIG. 1 is a perspective view, FIG. 2 is a sectional view, and FIGS. 3 and 4 are illustrations of a conventional branch type modulator, respectively. FIG. 5 is a perspective view illustrating an example of an optical waveguide constituting a waveguide type optical modulator, and FIG. 5 is a sectional view showing an embodiment of the waveguide type optical modulator of the present invention. 2... Optical waveguide, 3... Branch point, 4... Merging point, 5, 6... Branch waveguide, 7... Electrode, 11...
...Double diffusion section.

Claims (1)

【特許請求の範囲】 1 分岐点と2本の分岐導波路と合流点からなる
光導波路を備えた導波路形光変調器において、上
記分岐導波路の一方の上に、または上記分岐導波
路の双方の上にかつ交互に、上記光導波路の形成
に用いた拡散物質と同種のまたは異種の拡散物質
を拡散してなる2重拡散部を具備することを特徴
とする導波路形光変調器。 2 分岐点と2本の分岐導波路と合流点からなる
光導波路を備え、分岐導波路の一方の上に、また
は分岐導波路の双方の上にかつ交互に、光導波路
の形成に用いた拡散物質と同種のまたは異種の拡
散物質を拡散してなる2重拡散部を具備する導波
路形光変調器において、上記分岐導波路上にプラ
ナ形電極を設けたことを特徴とする導波路形光変
調器。
[Claims] 1. In a waveguide-type optical modulator equipped with an optical waveguide consisting of a branch point, two branch waveguides, and a confluence point, a waveguide-type optical modulator including a branch point, two branch waveguides, and a confluence point, wherein A waveguide-type optical modulator characterized in that a double diffusion section is provided on both sides and alternately with a diffusion material of the same kind or different kind as the diffusion material used to form the optical waveguide. 2.Equipped with an optical waveguide consisting of a branch point, two branch waveguides, and a confluence point, and on one of the branch waveguides or on both of the branch waveguides and alternately, the diffusion used for forming the optical waveguide is provided. A waveguide-type optical modulator comprising a double diffusion section formed by diffusing a diffusion substance of the same type or a different type as the substance, characterized in that a planar-type electrode is provided on the branch waveguide. modulator.
JP6710580A 1980-05-22 1980-05-22 Waveguide type light modulator Granted JPS56164313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6710580A JPS56164313A (en) 1980-05-22 1980-05-22 Waveguide type light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6710580A JPS56164313A (en) 1980-05-22 1980-05-22 Waveguide type light modulator

Publications (2)

Publication Number Publication Date
JPS56164313A JPS56164313A (en) 1981-12-17
JPS6223847B2 true JPS6223847B2 (en) 1987-05-26

Family

ID=13335273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6710580A Granted JPS56164313A (en) 1980-05-22 1980-05-22 Waveguide type light modulator

Country Status (1)

Country Link
JP (1) JPS56164313A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068321A (en) * 1983-09-26 1985-04-18 Nippon Telegr & Teleph Corp <Ntt> Optical switch
CN101221296A (en) * 2003-08-21 2008-07-16 日本碍子株式会社 Optical waveguide devices and traveling wave type optical modulators
JP5063001B2 (en) * 2003-08-21 2012-10-31 日本碍子株式会社 Traveling waveform light modulator
WO2005045512A1 (en) * 2003-11-10 2005-05-19 Matsushita Electric Industrial Co., Ltd. Optical modulator and communication system
JP2007114222A (en) * 2005-03-31 2007-05-10 Sumitomo Osaka Cement Co Ltd Light control element
JP2007025369A (en) * 2005-07-19 2007-02-01 Anritsu Corp Optical modulator

Also Published As

Publication number Publication date
JPS56164313A (en) 1981-12-17

Similar Documents

Publication Publication Date Title
US7088875B2 (en) Optical modulator
US5566257A (en) Electro-optic modulator
US7099524B2 (en) Optical modulator
EP0241967A1 (en) Electro-optically induced optical waveguide, and active devices comprising such a waveguide
US4983006A (en) Polarization-independent optical waveguide switch
JPH06300994A (en) Waveguide type optical device
US20220404652A1 (en) Velocity matched electro-optic devices
JP3200629B2 (en) Optical modulator using photonic bandgap structure and optical modulation method
EP0153312B1 (en) Electro-optical filter device
US3990775A (en) Thin-film optical waveguide
JPS6223847B2 (en)
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JPH09304746A (en) Waveguide device
EP0478226A1 (en) Waveguide-type optical switch
Izutsu et al. Broad‐band guided‐wave light intensity modulator
JPH05173099A (en) Optical control element
US20100260461A1 (en) Waveguide type optical device
EP0417295B1 (en) Optical circuit element of waveguide type
JPH05303022A (en) Single mode optical device
JPH10142567A (en) Waveguide type optical device
US4969701A (en) Integrated electro-optical modulator/commutator with pass-band response
JPH0886990A (en) Waveguide type optical controlling element
JPH04204524A (en) Light modulator
JPH0588123A (en) Variable wavelength filter
WO2021200335A1 (en) Optical modulator