JPS6068321A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS6068321A
JPS6068321A JP17649283A JP17649283A JPS6068321A JP S6068321 A JPS6068321 A JP S6068321A JP 17649283 A JP17649283 A JP 17649283A JP 17649283 A JP17649283 A JP 17649283A JP S6068321 A JPS6068321 A JP S6068321A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
light
arms
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17649283A
Other languages
Japanese (ja)
Inventor
Hitoshi Kawaguchi
仁司 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17649283A priority Critical patent/JPS6068321A/en
Publication of JPS6068321A publication Critical patent/JPS6068321A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain an optical switch which performs switching operation stably at an extremely high speed by forming a optical waveguide in a specific shape. CONSTITUTION:This optical switch consists of a single-mode optical waveguide 11 for input, single mode optical waveguide 12 for output, two arms 13 and 14 made of single-mode optical waveguide, two optical waveguides 17 and 18 for control, etc. The arms 13 and 14 have the same linear refractive index depending upon light intensity. One-side terminals of both arms 13 and 14 are connected to one terminal of the optical waveguide 11 in common through a Y- shaped branching part 15, and the other-side terminals are connected to one terminal of the optical waveguide 12 through a Y-shaped optical coupling part 16 so that light beams having the same power are incident to the arms 13 and 14. The two optical waveguides 17 and 18 are connected to halfway points of the arms 13 and 14 so that light propagates to the other terminal. An electrode 19 for applying an electric field is provided in the arm 13.

Description

【発明の詳細な説明】 [技術分!′?1 本発明は、超小型であり、微小な光制御信号により、大
きな光パワーを制御することができる超高速の光スィッ
チに関する。
[Detailed description of the invention] [Technical part! ′? 1. The present invention relates to an ultra-compact, ultra-high speed optical switch that can control large optical power using a minute optical control signal.

[従来技術] 従来、この種の光増幅特性をもった光スイッチングを得
る手段として、第1図に示すような光スィッチが提案さ
れている。第1図に示すように、光強度に依存して屈折
率の変化する媒質lをファブリ拳ペロ共振器2内に入れ
る。そして、被制御光としての信号光3をファブリ會ペ
ロ共振器2内にその中で共振するように入射すると、そ
の光入出力(iin −Iout)特性は第2図に示す
ような、ある強度の光入力■。において急に光出力が増
大する、いわゆる°°微微分利得時特性示す。
[Prior Art] Conventionally, an optical switch as shown in FIG. 1 has been proposed as a means for obtaining optical switching having this type of optical amplification characteristic. As shown in FIG. 1, a medium l whose refractive index changes depending on the light intensity is introduced into a Fabry-Fist-Perot resonator 2. When the signal light 3 as the controlled light is input into the Fabry-Perot resonator 2 so as to resonate therein, its optical input/output (iin - Iout) characteristics will have a certain intensity as shown in Figure 2. ■ Optical input. This shows the so-called °° differential gain characteristic in which the optical output suddenly increases at .

このような強度roに入射光の強度を設定しておき、別
の制御光4をファブリ・ペロ共振器2に入射すると、第
3図に示すように、制御光4の微小な強度変化により信
号光3の大きな光強度変化が得られる。このようなこと
から、電子におけるトランジスタとほぼ等価的な#8き
が光領域において行われることが期待され、そのような
構造は°°光トリオードパと呼ばれている。
When the intensity of the incident light is set to such an intensity ro and another control light 4 is input into the Fabry-Perot resonator 2, as shown in FIG. A large change in light intensity of light 3 can be obtained. For this reason, it is expected that a #8 transistor, which is almost equivalent to a transistor in electrons, will be performed in the optical domain, and such a structure is called an optical triode.

しかしながら、この稲光スイッチにおいては、信号光の
波長をファプリ・ペロ共振器の共振特性に厳密に一致さ
せなければならず、しかも被制御光の入力パワーを非常
に安定させなければならない。また、共振器を用いてい
るので、実効的な光路長が長くなり、l0pS以下の高
速応答は不可能である。
However, in this lightning switch, the wavelength of the signal light must closely match the resonance characteristics of the Fabry-Perot resonator, and the input power of the controlled light must be extremely stable. Furthermore, since a resonator is used, the effective optical path length becomes long, and a high-speed response of 10 pS or less is impossible.

[目 的] そこで本発明の目的は、以上のような欠点を解消し、超
高速で、しかも安定してヌイッチングすることかできる
光スィッチを提供することにある。
[Objective] Therefore, an object of the present invention is to provide an optical switch that eliminates the above-mentioned drawbacks and allows for ultra-high speed and stable Nuwitching.

[発明の構成] かかる目的を達成するために、本発明は、入力用光導波
路路と、出力用光導波路と、光強度に依存する非線形屈
折率を持つ2本の単一モード光導波路と、制御用光導波
路とを有し、2木の弔−モード光導波路の各々に同一パ
ワーの光が入射されるように、2木の単一モード光導波
路の各一端を、入力用先導波路の一端に接続し、2本の
単一モード光導波路の各他端を、出力用光導波路の一端
に接続し、および制御用光導波路を、2木のアームのい
ずれか一方に、その屈折率を制御するための制御光を入
射するように、一方のアームの途中に接続するように構
成する。
[Structure of the Invention] In order to achieve the above object, the present invention includes an input optical waveguide, an output optical waveguide, two single mode optical waveguides having a nonlinear refractive index that depends on the optical intensity, One end of each of the two single mode optical waveguides is connected to one end of the input leading waveguide so that light of the same power is incident on each of the two mourning mode optical waveguides. The other ends of the two single mode optical waveguides are connected to one end of the output optical waveguide, and the control optical waveguide is connected to one of the two arms to control its refractive index. The structure is such that it is connected to the middle of one arm so that control light for the purpose of control is input.

[実 施 例] 以下に図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第4図は本発明にかかる光スィッチの一実施例を示す構
成図であって、ここに11は単一モードの入力用光導波
路路、12は単一モードの出力用光導波路、13および
14は単一モードの先導波路からなる2木のアームであ
る。2本のアーム13および14には、光強度に依存す
る同一の非線形屈折率を持たせる。
FIG. 4 is a block diagram showing an embodiment of the optical switch according to the present invention, in which 11 is a single mode input optical waveguide, 12 is a single mode output optical waveguide, 13 and 14. is a two-tree arm consisting of a single mode leading waveguide. The two arms 13 and 14 have the same nonlinear refractive index depending on the light intensity.

2木のアーム13および14の各々に同一パワーの光が
入射されるように、両アーム13および14の各一端を
、入力用光導波路11の一端にY形分岐部15を介して
共通に接続し、両アーム13および14の各他端を、出
力用光導波路12の一端に、Y形の光結合部16を介し
て接続する。さらにまた、2木のアーム13および14
の各々の途中に、両アーム13および14の他端に光が
伝搬するように、2木の制御用光導波路17および18
の各々を接続する。19は一方のアーム13中に電界を
印加するための電極である。
One end of each of the two arms 13 and 14 is commonly connected to one end of the input optical waveguide 11 via a Y-shaped branch 15 so that light of the same power is incident on each of the two arms 13 and 14. The other ends of both arms 13 and 14 are connected to one end of the output optical waveguide 12 via a Y-shaped optical coupling section 16. Furthermore, two wooden arms 13 and 14
In the middle of each, two control optical waveguides 17 and 18 are provided so that the light propagates to the other ends of both arms 13 and 14.
Connect each of them. 19 is an electrode for applying an electric field to one arm 13;

上述した全ての光導波路は、コアおよびコアを被覆する
クラッドを有する単一モード導波路の形態とするのが好
適であり、伝搬する光の強度によってその屈折率が変化
する材料により構成する。ここで、光導波路の構成部分
であるコアまたはクラッドの少なくとも一方が、非線形
屈折率をもてばよいことは勿論である。
All the optical waveguides described above are preferably in the form of single mode waveguides having a core and a cladding covering the core, and are constructed of a material whose refractive index changes depending on the intensity of the propagating light. Here, it goes without saying that at least one of the core and the cladding, which are the constituent parts of the optical waveguide, should have a nonlinear refractive index.

以上のような構成において、入力用光導波路の他端に光
強度Tinの信号光を入射し、一方の制御用先導波路1
7の他端に光強度21cの制御光を入射すると、出力用
単一モード光導波路12から出射される出力光の光強度
1outは分岐部15において光パワーが1/2ずつに
分離され、2木のアーム13および14からの光が結合
部16において完全に結合される場合には、 c となる。ここで、n2は光導波路内における光の強度に
対応した屈折率変化である。なお、光導波路中の光強度
をIcとし、光の入射強度に依存しない屈折率を n、
)として、光導波路路の屈折率nは、 n=n□+n21 により表わされる。また、見はアーム13における制御
光入射部20から結合部16までの長さ、a= 2π/
εoCnλ0は定数であり、ε。は真空の誘伝率、Cは
真空中の光速、入。は光の真空中での波長である。δは
屈折率の非線形性が生じないような弱い光入力に対する
2つのアーム13および14内を伝搬してきた光のY形
の結合部18における位相差である。この位相差δは、
作成時にアーム13および14の長さを適切に選ぶこと
、あるいは電極19に電圧を印加したり、電流を流した
りしてアーム13の屈折率を変化することにより適当な
値、例えば180度に選ぶことができる。なお、電極1
8は単に2つのアーム13および14の位相差を調節す
るためのものであり1本発明光スイッチは全光型である
と言える。
In the above configuration, a signal light having an optical intensity of Tin is input to the other end of the input optical waveguide, and one of the control leading waveguides 1
When the control light with the optical intensity 21c is input to the other end of 7, the optical power 1out of the output light emitted from the output single mode optical waveguide 12 is divided into 1/2 at the branching part 15, and 2 If the light from the tree arms 13 and 14 is perfectly combined at the joint 16, then c. Here, n2 is a change in refractive index corresponding to the intensity of light within the optical waveguide. Note that the light intensity in the optical waveguide is Ic, and the refractive index that does not depend on the incident light intensity is n,
), the refractive index n of the optical waveguide is expressed as n=n□+n21. In addition, the length from the control light incidence part 20 to the coupling part 16 in the arm 13, a = 2π/
εoCnλ0 is a constant and ε. is the permittivity of vacuum, and C is the speed of light in vacuum. is the wavelength of light in a vacuum. δ is the phase difference at the Y-shaped coupling portion 18 of the light propagating within the two arms 13 and 14 for a weak optical input that does not cause nonlinearity of the refractive index. This phase difference δ is
By appropriately selecting the lengths of arms 13 and 14 during production, or by changing the refractive index of arm 13 by applying a voltage or flowing current to electrode 19, an appropriate value, for example 180 degrees, is selected. be able to. In addition, electrode 1
8 is merely for adjusting the phase difference between the two arms 13 and 14, and 1 the optical switch of the present invention can be said to be of an all-optical type.

δ=180度とし、Y形の結合部1Bにおける2木のア
ーム13および14内を伝搬してきた2つの光の位相差
を180度変化させるのに必要な制御光の強度Tcの値
とそのときの信号光の強度Iinの伯とが0.5 + 
10の比をもつときの、Ic−Iout特性を第5図に
示す。ただし、Iinは一定とする。したがって、本発
明光スィッチへの信号光の入力パワー(Iin)と、制
御光のパワー(2rc)とは、2Ic :Iin =1
 :10となる。
Assuming δ=180 degrees, the value and timing of the intensity Tc of the control light necessary to change the phase difference of the two lights propagating within the two tree arms 13 and 14 in the Y-shaped coupling portion 1B by 180 degrees. The ratio of the signal light intensity Iin is 0.5 +
FIG. 5 shows the Ic-Iout characteristics when the ratio is 10. However, Iin is assumed to be constant. Therefore, the input power (Iin) of the signal light to the optical switch of the present invention and the power (2rc) of the control light are 2Ic :Iin = 1
:10.

次に制御光をパルスとした場合について述べる。まず、
上記の動作条件(21c: Iin = l : 10
)での制御光のパルス波形とそれに対する信号光出力(
Iout)の応答特性とを、第6図に示す。なお、制御
光の強さIcは第4図中の矢印Aで示す大きさ、すなわ
ち、0.5に選ばれている。したがって、第6図に示す
ように、制御光のパワー(2Ic)に対して、10倍の
゛°光増幅度°′を持つ信号光出力(Iout)が得ら
れ、Ic/2のもれ光(第6図中Bで示す)が出力光に
生ずる。
Next, we will discuss the case where the control light is pulsed. first,
The above operating conditions (21c: Iin = l: 10
) and the corresponding signal light output (
The response characteristics of Iout) are shown in FIG. The intensity Ic of the control light is selected to be the magnitude shown by arrow A in FIG. 4, that is, 0.5. Therefore, as shown in Fig. 6, a signal light output (Iout) with an optical amplification degree of 10 times the control light power (2Ic) is obtained, and a leakage light of Ic/2 is obtained. (indicated by B in FIG. 6) occurs in the output light.

以上に述べた動作原理に基づく、本発明スイッチを構成
する材料としては、光非線形屈折率n2をもついかなる
物質をも用いることができる。−例として、非線形屈折
率をもつ代表的な半″導体材料について、吸収線に非共
鳴なれ2およびnoの値を第1表に示す。
Any material having an optically nonlinear refractive index n2 can be used as the material constituting the switch of the present invention based on the operating principle described above. - As an example, Table 1 shows the values of non-resonant deviation 2 and no for absorption lines for typical semiconductor materials with non-linear refractive index.

第1表 なお、吸収線に非共鳴なn2のfinに対する応答時間
は、psオーダ以下であることが知られている。
Table 1 Note that it is known that the response time for the n2 fin, which is non-resonant with the absorption line, is on the order of ps or less.

GaAsを構成材料として用い、光が十分に閉じ込めら
れるような光導波路幅0.08pmを持つ光スィッチを
試作したところ、一方のアーム13における制御光入射
部から結合部までの長さ文が3001Lmの場合、77
0mWの入力光パワーによりこの光スィッチをスイッチ
ングすることができた。
When we prototyped an optical switch using GaAs as a constituent material and having an optical waveguide width of 0.08 pm to sufficiently confine light, we found that the length from the control light input part to the coupling part in one arm 13 was 3001 Lm. case, 77
This optical switch could be switched with an input optical power of 0 mW.

なお、この光スィッチは、素子長L(第4図参照)が4
00 p−mとなっており、実効的なスイッチング速度
は4.2 psであった。もちろんさらに大きな光入力
、例えば?、?Wを用いれば、上述した光スィッチのス
イッチング速度は、0.42pSとなり、サブピコ秒の
スイッチングが可能となる。
Note that this optical switch has an element length L (see Figure 4) of 4.
00 p-m, and the effective switching speed was 4.2 ps. Of course even greater light input, for example? ,? If W is used, the switching speed of the optical switch described above will be 0.42 pS, making sub-picosecond switching possible.

第1表に示した半導体以外の半導体や強誘電体等も光導
波路の構成材料として用いることができる。さらにまた
、プロス(Bloss)氏らの文献(Applied 
Physics Letters 紙 41巻 100
0頁(1982年))に示されているように、GaAs
超格子 GaAs超格子は、GaAgよりもさらに大き
なn2を持ち、より低い制御光パワーで高速スイッチン
グが可能な材料として用いることができる。
Semiconductors, ferroelectric materials, etc. other than the semiconductors shown in Table 1 can also be used as constituent materials of the optical waveguide. Furthermore, the literature by Bloss et al. (Applied
Physics Letters Paper 41 volumes 100
0 (1982)), GaAs
Superlattice GaAs superlattice has an even larger n2 than GaAg, and can be used as a material capable of high-speed switching with lower control optical power.

[効 果] 以上説明したように、本発明によれば室温で安定に動作
し、大きな光増幅度をもち、その動作速度がpS程度と
非常に高速であることから、光信号処理、論理演算等の
基本素子として広く用いることができる光スィッチを提
供することができる。
[Effects] As explained above, according to the present invention, it operates stably at room temperature, has a large optical amplification degree, and has a very high operating speed of about pS, which makes it suitable for optical signal processing and logical operations. It is possible to provide an optical switch that can be widely used as a basic element such as.

さらに、本発明光スィッチは次のような利点を有する。Furthermore, the optical switch of the present invention has the following advantages.

(+)信号光による光導波路の屈折率変化は、2木のア
ームで互いに打ち消し合うので、信号光の強度変動はス
イッチ動作に影響を与えない。
Changes in the refractive index of the optical waveguide caused by the (+) signal light cancel each other out in the two arms, so fluctuations in the intensity of the signal light do not affect the switch operation.

(2)信号光の波長に敏感でなく、従って、多軸モード
レーザ等も光源として用いることができる。
(2) It is not sensitive to the wavelength of the signal light, so a multi-axis mode laser or the like can also be used as a light source.

(3)多重反射を用いないので、高速応答が得られる。(3) Since multiple reflections are not used, high-speed response can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光スィッチの概略構成図、第2図は同ス
イッチの光入出力特性を示す図、 第3図は、同スイッチにおける制御光と信号光1 との関係を示す図、 第4図は本発明にかかる光スィッチの一実施例を示す構
成図、 第5図は同スイッチにおける制御光と出方光との関係の
一例を示す図、 第6図は同スイッチにおける制御光に対する出力光の応
答特性の一例を示す図である。 l・・・非線形屈折率を持つ媒質。 2・・・ファブリ・ペロ共振器、 3・・・信号光、 4・・・制御光、 11・・・入力用単一モード光導波路路、12・・・出
力用単一モード光導波路路、13 、14・・・アーム
、 15・・・分岐部、 16・・・結合部、 17.18・・・制御用光導波路路、 19・・・電極、 20・・・制御光入射部。 2 − − へ 綜 綜 区 Oフ 綜
Figure 1 is a schematic configuration diagram of a conventional optical switch, Figure 2 is a diagram showing the optical input/output characteristics of the switch, Figure 3 is a diagram showing the relationship between control light and signal light 1 in the switch, Fig. 4 is a configuration diagram showing an embodiment of the optical switch according to the present invention, Fig. 5 is a diagram showing an example of the relationship between control light and output light in the switch, and Fig. 6 is a diagram showing an example of the relationship between control light and output light in the switch. FIG. 3 is a diagram showing an example of response characteristics of output light. l...Medium with nonlinear refractive index. 2... Fabry-Perot resonator, 3... Signal light, 4... Control light, 11... Single mode optical waveguide for input, 12... Single mode optical waveguide for output, DESCRIPTION OF SYMBOLS 13, 14... Arm, 15... Branch part, 16... Coupling part, 17.18... Control optical waveguide, 19... Electrode, 20... Control light incidence part. 2 - - to Ofu

Claims (1)

【特許請求の範囲】 入力用光導波路と、 出力用光導波路と、 光強度に依存する非線形屈折率を持つ2木の巾−モード
先導波路と、 制御用光導波路とを省し、 前記2木の単−モード光導波路の各々に同一パワーの光
が入射されるように、前記2木の単−モード先導波路の
各一端を、前記入力用光導波路の一端に接続し、前記2
木の単一モード光導波路の各他端を、前記出力用光導波
路の一端に接続し、および前記制御用光導波路を、前記
2本のアームのいずれか一方に、その屈折率を制御する
ための制御光を入射するように、前記一方のアームの途
中に接続したことを特徴とする光スィッチ。
[Scope of Claims] The input optical waveguide, the output optical waveguide, the two-tree width mode guide waveguide having a nonlinear refractive index dependent on light intensity, and the control optical waveguide are omitted; One end of each of the two single-mode leading waveguides is connected to one end of the input optical waveguide so that light of the same power is incident on each of the two single-mode optical waveguides;
Connecting each other end of the wooden single mode optical waveguide to one end of the output optical waveguide, and attaching the control optical waveguide to one of the two arms to control its refractive index. An optical switch, characterized in that the optical switch is connected in the middle of the one arm so as to input the control light.
JP17649283A 1983-09-26 1983-09-26 Optical switch Pending JPS6068321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17649283A JPS6068321A (en) 1983-09-26 1983-09-26 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17649283A JPS6068321A (en) 1983-09-26 1983-09-26 Optical switch

Publications (1)

Publication Number Publication Date
JPS6068321A true JPS6068321A (en) 1985-04-18

Family

ID=16014611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17649283A Pending JPS6068321A (en) 1983-09-26 1983-09-26 Optical switch

Country Status (1)

Country Link
JP (1) JPS6068321A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194219A (en) * 1986-02-21 1987-08-26 Fujitsu Ltd Programmable optical ic
JPS63500057A (en) * 1985-06-19 1988-01-07 ブリティシュ・テレコミュニケ−ションズ・パブリック・リミテッド・カンパニ optical coupling assembly
JPH01500064A (en) * 1986-05-28 1989-01-12 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ optically controlled selector
JPH01129237A (en) * 1987-11-16 1989-05-22 Nippon Telegr & Teleph Corp <Ntt> Optical logical circuit
JPH01172934A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Non-linear optical element
JPH01177519A (en) * 1988-01-07 1989-07-13 Nec Corp Wavelength transducer
JPH01201627A (en) * 1988-02-08 1989-08-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch
JPH01201626A (en) * 1988-02-08 1989-08-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch
JPH025030A (en) * 1988-06-24 1990-01-09 Nec Corp Method and element for optical control
JPH02193126A (en) * 1989-01-23 1990-07-30 Nippon Telegr & Teleph Corp <Ntt> Optical kerr switch
JP2010197532A (en) * 2009-02-24 2010-09-09 National Institute Of Advanced Industrial Science & Technology All optical signal processing device
JP2010250350A (en) * 2004-09-01 2010-11-04 Fujitsu Ltd Optical switch and optical waveform monitoring device utilizing optical switch
JP2013200575A (en) * 2013-06-05 2013-10-03 National Institute Of Advanced Industrial & Technology All optical signal processing device
JP2015022242A (en) * 2013-07-23 2015-02-02 日本電信電話株式会社 Optical switch and optical switch system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164313A (en) * 1980-05-22 1981-12-17 Nippon Telegr & Teleph Corp <Ntt> Waveguide type light modulator
JPS589122A (en) * 1981-04-09 1983-01-19 インタ−ナシヨナル・スタンダ−ド・エレクトリツク・コ−ポレ−シヨン Light wave guide type interference apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164313A (en) * 1980-05-22 1981-12-17 Nippon Telegr & Teleph Corp <Ntt> Waveguide type light modulator
JPS589122A (en) * 1981-04-09 1983-01-19 インタ−ナシヨナル・スタンダ−ド・エレクトリツク・コ−ポレ−シヨン Light wave guide type interference apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500057A (en) * 1985-06-19 1988-01-07 ブリティシュ・テレコミュニケ−ションズ・パブリック・リミテッド・カンパニ optical coupling assembly
JPS62194219A (en) * 1986-02-21 1987-08-26 Fujitsu Ltd Programmable optical ic
JPH01500064A (en) * 1986-05-28 1989-01-12 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ optically controlled selector
JPH01129237A (en) * 1987-11-16 1989-05-22 Nippon Telegr & Teleph Corp <Ntt> Optical logical circuit
JPH01172934A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Non-linear optical element
JPH01177519A (en) * 1988-01-07 1989-07-13 Nec Corp Wavelength transducer
JPH01201627A (en) * 1988-02-08 1989-08-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch
JPH01201626A (en) * 1988-02-08 1989-08-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch
JPH025030A (en) * 1988-06-24 1990-01-09 Nec Corp Method and element for optical control
JPH02193126A (en) * 1989-01-23 1990-07-30 Nippon Telegr & Teleph Corp <Ntt> Optical kerr switch
JP2010250350A (en) * 2004-09-01 2010-11-04 Fujitsu Ltd Optical switch and optical waveform monitoring device utilizing optical switch
JP2010197532A (en) * 2009-02-24 2010-09-09 National Institute Of Advanced Industrial Science & Technology All optical signal processing device
JP2013200575A (en) * 2013-06-05 2013-10-03 National Institute Of Advanced Industrial & Technology All optical signal processing device
JP2015022242A (en) * 2013-07-23 2015-02-02 日本電信電話株式会社 Optical switch and optical switch system

Similar Documents

Publication Publication Date Title
US4070094A (en) Optical waveguide interferometer modulator-switch
JPS6068321A (en) Optical switch
JPH02276285A (en) Phototransistor
CN113655674B (en) XOR and XNOR logic gate based on ring resonator optical system
KR100524580B1 (en) Integrated Optical Isolator using Multi-Mode Interference structure
JPH04264531A (en) Polarized beam splitter for guided light
JPH04212108A (en) Waveguide type light branching element
JP2000221345A (en) Multimode interference optical element
Jin et al. Parabolic MMI coupler for 2× 2 silicon optical switch with robustly high extinction ratio for four paths
JPH08234149A (en) Optical filter using electron - optical material
Zang et al. Crystalline organic semiconductor optical directional couplers and switches using an index-matching layer
US3957340A (en) Electrooptical amplitude modulator
KR100400756B1 (en) Tunable optic power splitter and manufacturing method for using same
Mikami et al. Modified balanced‐bridge switch with two straight waveguides
JPH05273260A (en) Voltage sensor
JPS6068330A (en) Optical logical circuit element
Wu et al. 2× 2 SOI optical switch with robust high extinction ratio on all paths enabled by parabolic MMI coupler
JPH0553157A (en) Optical control device
JPH09281350A (en) Waveguide type optical branching element
JP2792306B2 (en) Polarization separation element
Krähenbühl et al. Enhanced crosstalk suppression for Ti: LiNbO3 digital optical switches
JP3418391B2 (en) Method for manufacturing waveguide type optical device
Makihara et al. Design and characteristics of reflectivity tunable mirror with MZI and loop waveguide on SOI
JPS5891425A (en) Waveguide polarization regulator
JPS60113214A (en) Fiber type optical switch