JPH01500064A - optically controlled selector - Google Patents

optically controlled selector

Info

Publication number
JPH01500064A
JPH01500064A JP62503252A JP50325287A JPH01500064A JP H01500064 A JPH01500064 A JP H01500064A JP 62503252 A JP62503252 A JP 62503252A JP 50325287 A JP50325287 A JP 50325287A JP H01500064 A JPH01500064 A JP H01500064A
Authority
JP
Japan
Prior art keywords
optical
resonator
selector
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62503252A
Other languages
Japanese (ja)
Inventor
ウェブ ロデリック・ピータ
Original Assignee
ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ filed Critical ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ
Publication of JPH01500064A publication Critical patent/JPH01500064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3517All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5045Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement having a frequency filtering function

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

An optically controlled selector comprises an optical coupler (1) having a first input (2) for an optical input signal, a second input (3) for an optical control signal and an output (4) for a combined signal, and a resonant cavity (5) downstream of the output of the coupler (1) and arranged to receive the combined signal. The resonant cavity (5) contains an optically non-linear material so that changes in the power of the optical control signal result in changes in the resonant frequency of the cavity (5). In use, the power of the optical control signal controls the transmission or suppression of the optical input signal through the optical cavity. Such a selector acts as a simple switch or to select one from a number of optical signals of different wavelength. Preferably the optical material is active and the optical cavity (5) formed by a semiconductor laser amplifier.

Description

【発明の詳細な説明】 光学的に制御される選択器 〔背景技術〕 光伝送装置が広く用いられるようになり、遠距離通信装置をすべて光学的に動作 させる制御論理を可能とするため、光信号により直接に制御できる素子を提供す ることの必要性が増大している。[Detailed description of the invention] optically controlled selector [Background technology] Optical transmission equipment became widely used, and all telecommunications equipment operated optically. In order to enable control logic for There is an increasing need to

本明細書において「光」とは、電磁スペクトラムの可視領域だけでなく、可視領 域の両側の、光ファイバのような誘電体光導波路により伝送可能な赤外および紫 外領域を含む。In this specification, "light" refers not only to the visible region of the electromagnetic spectrum, but also to the visible region of the electromagnetic spectrum. Infrared and ultraviolet light that can be transmitted by dielectric optical waveguides such as optical fibers on both sides of the spectrum. Including outer areas.

〔発明の開示〕[Disclosure of the invention]

本発明によると、光学的に制御される選択器は、光入力信号が入力される第一の 入力ポート、光制御信号が入力される第二の入力ポートおよび結合した信号を出 力する出力ポートを含む光結合器と、この結合器の出力に接続されて上記結合し た信号を受光する共振器とを備え、この共振器は、光制御信号のパワーが変化す るとこの共振器の共振周波数を変化させる光学的非線形材料を含む。使用時には 、光制御信号のパワーによって、光共振器内で、光入力信号の送出または抑止を 制御する。 According to the invention, the optically controlled selector selects the first an input port, a second input port into which the optical control signal is input, and a second input port which outputs the combined signal. an optical coupler containing an output port to connect the This resonator is equipped with a resonator that receives the optical control signal. and includes an optically nonlinear material that changes the resonant frequency of this resonator. When using , depending on the power of the optical control signal, the optical input signal is transmitted or suppressed within the optical cavity. Control.

このような選択器は単純なスイッチとして動作することができ、その場合には、 通常は入力信号として単色光を用いる。光共振器が入力信号の周波数で共振する ように制御信号を同調させると、光共振器は入力光信号を送出し、スイッチが「 オン」となる。これに対し、人力信号の周波数と異なる光共振器の周波数に制御 信号を同調すると、入力信号が光共振器を通過できなくなり、スイッチが「オフ 」となる。Such a selector can act as a simple switch, in which case Usually, monochromatic light is used as the input signal. Optical resonator resonates at the frequency of the input signal When the control signal is tuned so that the optical resonator sends out the input optical signal and the switch "On". In contrast, the frequency of the optical resonator is controlled to be different from the frequency of the human signal. Tuning the signal prevents the input signal from passing through the optical resonator and turns the switch "off." ”.

また、この選択器を使用して、周波数が異なる複数の入力信号のひとつを選択す ることもできる。この例として、それぞれ波長の異なる二辺上の別個の信号を含 む周波数または波長多重信号の場合がある。この場合には、制御信号を使用して 、光共振器の共振周波数を複数の入力信号の特定のひとつに一致するように設定 し、これにより、この特定のひとつの信号を光共振器を経由して送出し、残りの 光信号については抑止する。このように本発明の選択器は、周波数または波長分 割で多重化された光信号に対して、光学的に制御されるデマルチプレクサの基本 となる。You can also use this selector to select one of multiple input signals with different frequencies. You can also An example of this would be to include separate signals on two sides, each with a different wavelength. It may be a frequency or wavelength multiplexed signal. In this case, use the control signal to , set the resonant frequency of the optical resonator to match a specific one of multiple input signals. This sends this one particular signal through the optical resonator and transmits the rest. Optical signals will be suppressed. In this way, the selector of the present invention can be used for frequency or wavelength separation. Basics of an optically controlled demultiplexer for optical signals multiplexed becomes.

共振器としてはファブリペロ−共振器が望ましく、完全に非線形材料で満たされ ていることが望ましい。セレン化亜鉛またはガリウム・ヒ素その他の受動非線形 材料を使用することができる。しかし、共振器内の光学材料が活性光学材料であ ることが非常に望ましく、これにより光共振器が増幅器として動作し、共振器の 共振周波数に対応する周波数の光信号に対して大きな正の利得が得られる。活性 非線形光学材料を使用することにより、選択器の選択性が増大し、光共振器から 送出される信号と抑止される信号との弁別比が改善される。通信装置に使用する 場合には、光共振器は、典型的には半導体レーザ増幅器により形成される。この ような増幅器としては、ファブリペロ−型または分布帰還型が用いられる。The preferred resonator is a Fabry-Perot resonator, which is completely filled with nonlinear material. It is desirable that Zinc selenide or gallium arsenide or other passive nonlinear material can be used. However, the optical material inside the resonator is an active optical material. It is highly desirable for the optical resonator to operate as an amplifier and to A large positive gain can be obtained for an optical signal with a frequency corresponding to the resonant frequency. activity The use of nonlinear optical materials increases the selectivity of the selector, allowing The discrimination ratio between the transmitted signal and the suppressed signal is improved. used for communication equipment In some cases, the optical resonator is typically formed by a semiconductor laser amplifier. this As such an amplifier, a Fabry-Perot type or a distributed feedback type is used.

使用時にレーザ増幅器に印加されるバイアス電流は、増幅器をレーザ発振しきい 値以下のレベルにバイアスする。光入力信号と光鮮魚信号との双方が増幅器に供 給されると、増幅器を通過する光のパワーが増加して屈折率の変化が生じ、増幅 器を異なる共振周波数に同調する。光制御信号によりレーザ増幅器を同調させ、 入力信号の特定のひとつ、または選択されたひとつの周波数と同じ周波数で発振 させると、その入力信号が増幅され、他の入力信号は抑止される。The bias current applied to a laser amplifier in use will push the amplifier to the lasing threshold. Bias towards levels below the value. Both the optical input signal and the optical fresh fish signal are provided to the amplifier. When supplied, the power of the light passing through the amplifier increases, causing a change in the refractive index and increasing the amplification. tune the instrument to different resonant frequencies. Tuning the laser amplifier with an optical control signal, Oscillates at the same frequency as a specific or selected frequency of the input signal When a signal is input, that input signal is amplified and other input signals are suppressed.

選択器は、バイアス手段、例えばレーザ発振しきい値よりわずかに低いレベルに なるようにレーザ発振器にバイアス電流を供給するだめの定電流源を含むことも できる。The selector is biased to a level slightly below the lasing threshold, e.g. It may also include a constant current source to supply bias current to the laser oscillator. can.

モノクロメータその他の濾波手段を光共振器の出力側に配置し、入力信号または 選択されたひとつの入力信号から制御信号を分離することができるが、光共振器 の後段で出力信号を受け取る装置が、その入力信号または選択されたひとつの入 力信号の光だけに応答するか、また制御信号により影響を受けない場合には、濾 波手段は必ずしも必要ではない。濾波手段はまた、光共振器をレーザにより構成 した場合に発生する自然放出を除去することもできる。A monochromator or other filtering means is placed on the output side of the optical resonator to filter the input signal or The control signal can be separated from one selected input signal, but the optical resonator A subsequent device that receives an output signal receives that input signal or one selected input. If it responds only to the light of the force signal and is unaffected by the control signal, the filter Wave means are not necessarily required. The filtering means also consists of an optical resonator formed by a laser. It is also possible to eliminate spontaneous emissions that occur when

本発明による選択器およびその動作の実験例について添付図面を参照して説明す る。A selector according to the present invention and an experimental example of its operation will be explained with reference to the attached drawings. Ru.

〔図面の簡単な説明〕[Brief explanation of the drawing]

$1図は選択器および実験装置の構成図。 Figure $1 is a configuration diagram of the selector and experimental equipment.

第2図は二つの異なるパワーの光に対する選択器の利得対波長特性を示すグラフ 。Figure 2 is a graph showing the gain versus wavelength characteristics of the selector for two different powers of light. .

第3図は三つの異なる波長帯の入力信号における制御信号パワーに対する増幅器 共振波長の変化を示すグラフ。Figure 3 shows the amplifier for control signal power for input signals in three different wavelength bands. Graph showing changes in resonance wavelength.

〔発明を実施するための最良の形態〕 本発明による選択器は、光入力信号が入力される第一の入力ポート2、光制御信 号が入力される第二の入力ポート3および結合した信号を出力する出力ポート4 を含む光フアイバ結合器1と、レーザ増幅器5とを備える。レーザ増幅器5はフ ァブリペロ−型であり、例えばネルソン、ウォング、レグシールド、ホップス、 マーレルおよびウォーリングによる、エレクトロニクスレターズ第21巻第11 号(1985年5月23日)第493頁ないし第494頁、「ハイ・パフォーマ ンス・DC−PBHレーザズ・アト1.52マイクロメータズ・パイ・ア・ハイ ブリッド・MO−″PE/LPEプロセス」と題された論文(Electro旧 csLetters 23 May1985. Vol、21. No、]1.  I’ages 493−494. ”旧gh Per−formance n C−PBl(La5ers at 1.52 micrometres by  a HybridMOVPE/LPB Process”、 by Ne1so n A W、 long S、 Regnault J C。[Best mode for carrying out the invention] The selector according to the present invention has a first input port 2 into which an optical input signal is input, an optical control signal a second input port 3 into which the signal is input and an output port 4 which outputs the combined signal; The optical fiber coupler 1 includes: an optical fiber coupler 1 including a laser amplifier 5; The laser amplifier 5 Fabry-Perot type, such as Nelson, Wong, Legshield, Hops, Murrell and Walling, Electronics Letters Volume 21, No. 11 Issue (May 23, 1985), pp. 493-494, “High Performance DC-PBH Lasers At 1.52 Micrometers Pi A High The paper entitled BRID MO-“PE/LPE Process” (formerly known as Electro) csLetters 23 May1985. Vol, 21. No,]1. I’ages 493-494. "Old GH Performance" C-PBl (La5ers at 1.52 micrometres by a Hybrid MOVPE/LPB Process”, by Ne1so n A W, long S, Regnault J C.

Hobbs RE、 Murrel D L、 and llalling R H)に示されたような、ダブル・チャネル・プレーナ埋め込みへテロ構造レーザ として構成される。レーザの端面反射率は、反射防止被膜を設けることにより、 3%ないし4%に削減されている。このレーザをしきい電流の93%にバイアス する。光フアイバ結合器1は方向性結合器であり、出力ファイバ4は先細りの形 状に終端され、レンズ51を経由してレーザ増幅器5に結合する。Hobbs RE, Murrell D L, and llalling R Double channel planar buried heterostructure laser as shown in H) Constructed as. The laser end face reflectance can be reduced by providing an anti-reflection coating. It has been reduced to 3% to 4%. Bias this laser to 93% of the threshold current do. The optical fiber coupler 1 is a directional coupler, and the output fiber 4 has a tapered shape. The laser beam is terminated in a shape and coupled to the laser amplifier 5 via a lens 51.

選択器を動作させる実験のため、第二の入力ポートに供給された光入力信号を監 視できるように、光フアイバ結合器lから第二の出力ポートロを取り出す。第二 の出力ポートロから放出された光をホトダイオード7で受光する。光信号入力は 、例えば、ワイアットおよびデブリンによる、エレクトロニクスレターズ第19 巻第3号(1983年2月3日)、第110頁ないし第112頁、r 10k) Izラインウィドス・1.5マイクロメータInGaAsPエクスターナル・キ ャビティ・レーザ・ウィズ55nmチューニング・レンジ」と題する論文(El ectro−nics Letters 3 Feb 1983. Vol、1 9. No、3. PagesllO−112,rlokHzLinewidt h 1.5 micrometre InGaAsP External Ca vity La5er with55nm Tunig Range”、 By  Wyatt Rand Devlin w J’tに説明された外部共振器レ ーザを含む同調可能な光源8により発生する。このレーザの外部共振器は回転可 能な回折格子により定義され、ステッピングモータを用いて回折格子を回転させ ることによりレーザを同調させることができる。同調可能な光源8はまた、バイ アス電流を制御してレーザの出力を3マイクロワツトに維持する光帰還ループを 含む。この出力は、チョッパ・ホイール9を経由して、結合器1の第一の入力ポ ート2に供給される。増幅器5の出力10は、レンズ52を経由してモノクロメ ータ11に供給される。モノクロメータ11は同調可能な光源8に連結されてお り、常に、同調可能な光源8により放出されたと同じ波長の光を放出する。第二 のホトダイオード12がモノクロメータ11の出力側に配置され、このモロクロ メータ11を通過する光を監視する。For experiments to operate the selector, monitor the optical input signal supplied to the second input port. The second output port is taken out from the fiber optic coupler l so that it can be seen. second The photodiode 7 receives the light emitted from the output port. Optical signal input , e.g., Wyatt and Devlin, Electronics Letters No. 19 Volume No. 3 (February 3, 1983), pages 110 to 112, r 10k) Iz line width 1.5 micrometer InGaAsP external key The paper entitled “Cavity Laser with 55nm Tuning Range” (El electro-nics Letters 3 Feb 1983. Vol.1 9. No, 3. PagesllO-112, rlokHzLinewidt h1.5 micrometre InGaAsP External Ca vity La5er with55nm Tunig Range", By The external resonator level described in Wyatt Rand Devlin w J’t. generated by a tunable light source 8 including a laser. The external cavity of this laser can be rotated A stepper motor is used to rotate the diffraction grating. This allows the laser to be tuned. The tunable light source 8 is also An optical feedback loop that controls the ass current and maintains the laser output at 3 microwatts. include. This output is routed via chopper wheel 9 to the first input port of combiner 1. is supplied to port 2. The output 10 of the amplifier 5 is sent to a monochrome camera via a lens 52. is supplied to the data processor 11. The monochromator 11 is connected to a tunable light source 8. always emits light of the same wavelength as that emitted by the tunable light source 8. second A photodiode 12 is placed on the output side of the monochromator 11. The light passing through the meter 11 is monitored.

制御信号は、1526.5n−で動作する分布帰還レーザ13により、結合器1 の第二の入力ポート3に供給される。分布帰還レーザ13の出力した光は、減衰 器14を経由して結合器1の第二の入力ポート3に結合する。The control signal is transmitted to the coupler 1 by a distributed feedback laser 13 operating at 1526.5n-. is supplied to the second input port 3 of. The light output from the distributed feedback laser 13 is attenuated. 14 to the second input port 3 of the coupler 1.

この選択器の有効性を確認するために、同調可能な光源8とモノクロメータ11 とを調整し、ホトダイオード7.12で断続的な信号を検出して記録することに より、波長に対する利得を測定した。このようにして、異なるレベルの制御信号 と、異なる中心波長とについて測定を繰り返した。二つの測定結果を第2図に示 す。この一連の測定から、制御信号パワーに対する共振波長の変化を第3図にプ ロットした。To confirm the effectiveness of this selector, a tunable light source 8 and a monochromator 11 were used. to detect and record the intermittent signal with photodiode 7.12. We measured the gain versus wavelength. In this way, different levels of control signals The measurements were repeated for different center wavelengths. The two measurement results are shown in Figure 2. vinegar. From this series of measurements, the change in resonance wavelength with respect to control signal power is plotted in Figure 3. I made a lot.

この増幅器は、パワーが半分となる帯域幅が0.llnm (14GHz)、フ ァイバからファイバへのピーク利得が10dBの能動フィルタとして動作した。This amplifier has a bandwidth of 0.0. llnm (14GHz), It operated as an active filter with a fiber-to-fiber peak gain of 10 dB.

帯域幅はバイアス電流および端面反射率に依存し、必要に応じて増加または減少 させることができる。制御信号パワーを増加させると誘導放出の割合が増加し、 このためキャリア密度が減少し、増幅器の屈折率が増加する。1.4マイクロワ ツトから25マイクロワツトに増加させたところ、増幅器の共振波長が0.ll nm変化した。Bandwidth depends on bias current and edge reflectance, increasing or decreasing as needed can be done. Increasing the control signal power increases the rate of stimulated emission, This reduces the carrier density and increases the refractive index of the amplifier. 1.4 microwa When the power was increased from 0 to 25 microwatts, the resonant wavelength of the amplifier became 0. ll It changed by nm.

第3図は、制御信号パワーが増加すると、同調効果が減少することを示す。これ は、増幅器の共振波長が固定された制御信号波長からずれ、増幅率および制御信 号の効果が減少するためである。わずかに長い波長で、より大パワーの制御信号 を用いれば、より大きな同調範囲が得られる。FIG. 3 shows that as the control signal power increases, the tuning effect decreases. this When the resonant wavelength of the amplifier deviates from the fixed control signal wavelength, the amplification factor and control signal This is because the effect of the issue decreases. Higher power control signal with slightly longer wavelength A larger tuning range can be obtained by using

国際調査報告 ANNEX To THE INTERNATIONAL 5EARCHREP ORT 0NINTERNATIONAL A!’PLICATrON No、  PCT/GB 87100359 (Sk 17159)international search report ANNEX To THE INTERNATIONAL 5EARCHREP ORT 0N INTERNATIONAL A! 'PLICATrON No, PCT/GB 87100359 (Sk 17159)

Claims (8)

【特許請求の範囲】[Claims] 1.光入力信号が入力される第一の入力ボート、光制御信号が入力される第二の 入力ポートおよび結合した信号を出力する出力ポートを含む光結合器と、 この結合器の出力に接続されて上記結合した信号を受光する共振器と を備え、 この共振器は、光制御信号のパワーが変化するとこの共振器の共振周波数を変化 させる光学的非線形材料を含み、使用時には、光制御信号のパワーによって、光 共振器内で光入力信号の送出または抑止を制御する構成である 光学的に制御される選択器。1. The first input port receives the optical input signal, and the second input port receives the optical control signal. an optical coupler including an input port and an output port for outputting the combined signal; a resonator connected to the output of the coupler and receiving the combined signal; Equipped with This resonator changes the resonant frequency of this resonator when the power of the optical control signal changes. When used, the power of the optical control signal causes the optical It is a configuration that controls the transmission or suppression of optical input signals within the resonator. Optically controlled selector. 2.共振器は光学的非線形材料により完全に満たされたファブリペロー共振器で ある請求項1に記載の選択器。2. The cavity is a Fabry-Perot cavity completely filled with optically nonlinear material. A selector according to claim 1. 3.共振器内の光学的非線形材料は活性光学材料であり、共振器は、増幅器とし て動作し、共振器の共振周波数に対応する周波数の光信号に対して大きな正の利 得を発生する構成である請求項1または請求項2に記載の選択器。3. The optically nonlinear material within the resonator is an active optical material, and the resonator can be used as an amplifier. It operates with a large positive gain for optical signals with a frequency corresponding to the resonant frequency of the resonator. 3. The selector according to claim 1, wherein the selector is configured to generate a gain. 4.共振器は半導体レーザ増幅器により形成された光共振器である請求項3に記 載の選択器。4. Claim 3, wherein the resonator is an optical resonator formed by a semiconductor laser amplifier. Selector included. 5.増幅器はファブリペロー型増幅器または分布帰還型増幅器である請求項4に 記載の選択器。5. Claim 4, wherein the amplifier is a Fabry-Perot type amplifier or a distributed feedback type amplifier. Selector as described. 6.共振器の出力側には、入力信号または選択されたひとつの入力信号から制御 信号を分離する濾波手段が設けられた請求項1に記載の選択器。6. The output side of the resonator is controlled by the input signal or one selected input signal. 2. A selector as claimed in claim 1, further comprising filtering means for separating the signals. 7.濾波手段はモノクロメータにより形成された請求項6に記載の選択器。7. 7. A selector according to claim 6, wherein the filtering means is formed by a monochromator. 8.請求項1、請求項6または請求項7に記載の選択器を含むスイッチまたはデ マルチプレクサを備えた光通信システム。8. A switch or a device including the selector according to claim 1, claim 6 or claim 7. Optical communication system with multiplexer.
JP62503252A 1986-05-28 1987-05-26 optically controlled selector Pending JPH01500064A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8612955 1986-05-28
GB868612955A GB8612955D0 (en) 1986-05-28 1986-05-28 Optically controlled selector

Publications (1)

Publication Number Publication Date
JPH01500064A true JPH01500064A (en) 1989-01-12

Family

ID=10598557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62503252A Pending JPH01500064A (en) 1986-05-28 1987-05-26 optically controlled selector

Country Status (9)

Country Link
US (1) US4863230A (en)
EP (1) EP0251486B1 (en)
JP (1) JPH01500064A (en)
AT (1) ATE88817T1 (en)
CA (1) CA1279100C (en)
DE (1) DE3785610T2 (en)
ES (1) ES2040748T3 (en)
GB (1) GB8612955D0 (en)
WO (1) WO1987007396A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058060A (en) * 1988-12-05 1991-10-15 Gte Laboratories Incorporated Optical memory cell
IT1231379B (en) * 1989-07-21 1991-12-02 Pirelli Cavi Spa FIBER OPTIC TELECOMMUNICATIONS LINE INCORPORATING TRANSMITTED SIGNAL AMPLIFIERS AND AMPLIFIERS FOR THAT LINE
US5046806A (en) * 1990-02-22 1991-09-10 Cst Coldswitch Holdings Inc. Single fibre control switches
GB9010242D0 (en) * 1990-05-08 1990-06-27 British Telecomm Optical signal regenerator and optical communications system incorporating same
DE4104268A1 (en) * 1991-02-13 1992-08-20 Standard Elektrik Lorenz Ag FIBER OPTICAL AMPLIFIER
US5703975A (en) * 1995-06-09 1997-12-30 Corning Incorporated Interferometric switch
WO1997043806A2 (en) 1996-05-17 1997-11-20 Uab Research Foundation Semiconductor laser with a superbroadband or multiline spectral output
US7277636B1 (en) * 2001-01-26 2007-10-02 Gazdzinski Robert F Optical communication apparatus and methods using pulses having modified propagation speeds
KR100640006B1 (en) * 2005-10-14 2006-11-01 한국전자통신연구원 Method and apparatus for optical clock signal extraction
US10429580B2 (en) 2015-08-27 2019-10-01 Bar-Ilan University Multi optically-coupled channels module and related methods of computation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068321A (en) * 1983-09-26 1985-04-18 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199698A (en) * 1978-12-08 1980-04-22 Bell Telephone Laboratories, Incorporated 2-Methyl-4-nitro-aniline nonlinear optical devices
US4405869A (en) * 1982-08-27 1983-09-20 May George A Optical parametrons
US4558923A (en) * 1983-12-22 1985-12-17 The United States Of America As Represented By The Secretary Of The Navy Picosecond bistable optical switch using two-photon transitions
US4573767A (en) * 1984-05-31 1986-03-04 The United States Of America As Represented By The Secretary Of The Air Force Optical flip-flop system
US4585301A (en) * 1985-04-23 1986-04-29 Utah State Universtiy Foundation Optically actuated optical switch apparatus and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068321A (en) * 1983-09-26 1985-04-18 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Also Published As

Publication number Publication date
WO1987007396A1 (en) 1987-12-03
ATE88817T1 (en) 1993-05-15
EP0251486B1 (en) 1993-04-28
DE3785610T2 (en) 1993-08-26
ES2040748T3 (en) 1993-11-01
GB8612955D0 (en) 1986-07-02
EP0251486A1 (en) 1988-01-07
US4863230A (en) 1989-09-05
DE3785610D1 (en) 1993-06-03
CA1279100C (en) 1991-01-15

Similar Documents

Publication Publication Date Title
US6185230B1 (en) Resonant pumped short cavity fiber laser
US6762869B2 (en) Atomic clock based on an opto-electronic oscillator
US7050212B2 (en) Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators
JP3262331B2 (en) Terminal for frequency division optical communication system
US11804694B2 (en) Laser device and method of transforming laser spectrum
JPH0831653B2 (en) Semiconductor laser
US9966724B2 (en) Laser and method of controlling laser
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
JPH01500064A (en) optically controlled selector
US6697394B2 (en) Directly modulatable laser
JP2708467B2 (en) Tunable semiconductor laser
JP3647656B2 (en) Optical functional element and optical communication device
Eisenstein et al. Gain measurements of InGaAsP 1.5-μm optical amplifiers
RU2710002C1 (en) Compact device with lasers with multiple longitudinal modes, stabilized high-quality micro-resonators with generation of optical frequency combs
JP2003529224A (en) Stabilized radiation source
TWI236193B (en) Fast wavelength-tunable laser system using Fabry-Perot laser diode
US20040160994A1 (en) Multiple wavelength laser system
JP3246703B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
US6795472B2 (en) Laser with a resonant optical reflector
Liou et al. A 24-channel wavelength-selectable Er-fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry-Perot filter
JP3287443B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JP3072123B2 (en) Optically integrated tunable semiconductor laser device
JP3072124B2 (en) Optically integrated semiconductor laser device
Alferness et al. Electrically tunable Ti: UNbO3 InGaAsP composite-cavity laser
Pereira et al. Multi-wavelength optical source based on amplified spontaneous emission of erbium doped fiber