JP2708467B2 - Tunable semiconductor laser - Google Patents
Tunable semiconductor laserInfo
- Publication number
- JP2708467B2 JP2708467B2 JP63123835A JP12383588A JP2708467B2 JP 2708467 B2 JP2708467 B2 JP 2708467B2 JP 63123835 A JP63123835 A JP 63123835A JP 12383588 A JP12383588 A JP 12383588A JP 2708467 B2 JP2708467 B2 JP 2708467B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- diffraction grating
- layer
- stripe
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06209—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06233—Controlling other output parameters than intensity or frequency
- H01S5/06243—Controlling other output parameters than intensity or frequency controlling the position or direction of the emitted beam
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、狭スペクトル線幅を有し、広い波長にわた
り波長可変とでき、コヒーレント通信用半導体レーザと
して用いて好適な半導体レーザに関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser having a narrow spectral line width, capable of tunable over a wide wavelength range, and suitable for use as a semiconductor laser for coherent communication.
これまでに発表されている波長可変半導体レーザに関
する総論がオー・エフ・シー・テクニカルダイジエス
ト、テイー・エイチ・ケー・1,176頁(1988年)(OFC′
88Techinical Digest,THKI,P.176,1988)において論じ
られている。A review of the tunable semiconductor lasers published so far is provided by OCFC Technical Digest, TAHK, p. 1,176 (1988) (OFC '
88 Technical Digest, THKI, P. 176, 1988).
上記前記文献に紹介されて波長可変半導体レーザは、
大きく分けて2つのタイプに分けられている。The wavelength tunable semiconductor laser introduced in the above-mentioned document is
It is roughly divided into two types.
まず、第1のタイプは、DFB(分布帰還形)あるいはD
BR(分布反射形)半導体レーザにおいて、回折格子領域
に電流を注入することによりその領域の屈折率を変化さ
せ、その結果、ブラツグ反射波長を可変としているもの
である。一般的にブラツグ反射波長λDはλD=2Λn
(Λ:回折格子の周期,n:レーザ光が伝搬する領域の等
価屈折率)で表わされるが、このタイプでの可変波長幅
は、たかだか4nm程度である。また、波長を変化させる
ために回折格子領域に電流を注入すると、キヤリア密度
のゆらぎあるいは自然放出光の寄与によりスペクトル線
幅が著しく増大する点が問題であつた。First, the first type is DFB (distributed feedback) or D
In a BR (distributed reflection) semiconductor laser, a current is injected into a diffraction grating region to change the refractive index of the region, and as a result, the Bragg reflection wavelength is made variable. Generally, the Bragg reflection wavelength λ D is λ D = 2Λn
(Λ: period of diffraction grating, n: equivalent refractive index of a region where laser light propagates), the variable wavelength width of this type is at most about 4 nm. Another problem is that when a current is injected into the diffraction grating region to change the wavelength, the spectral line width is significantly increased due to the fluctuation of the carrier density or the contribution of spontaneous emission light.
第2のタイプは、半導体レーザの外部に回折格子を設
けた外部共振器形構成である。すなわち、空間あるいは
光フアイバー内をレーザ光を伝送して外部の回折格子と
結合させ、その回折格子の角度あるいは周期を機械的に
変えることにより、ブラツグ反射波長を変化させるもの
である。このタイプでは、装置そのものが大がかり(数
cm〜数十cm)になり、かつ、光軸合わせに厳しい精度を
要求されるという問題があつた。The second type is an external resonator type configuration in which a diffraction grating is provided outside a semiconductor laser. That is, a laser beam is transmitted through space or inside an optical fiber and coupled to an external diffraction grating, and the angle or period of the diffraction grating is mechanically changed to change the Bragg reflection wavelength. In this type, the device itself is large (number
cm to several tens of cm) and strict accuracy is required for optical axis alignment.
以上のように従来のタイプの波長可変半導体レーザで
は、前記文献でも指摘しているように、「波長が変化し
ても、狭くかつ一定のスペクトル線幅を維持することが
問題である」との問題点が残つている。As described above, in the conventional type of wavelength tunable semiconductor laser, as pointed out in the above-mentioned document, "it is problematic to maintain a narrow and constant spectral line width even when the wavelength changes." The problem remains.
本発明の目的は、上述の如き従来技術の問題点を一掃
した波長可変半導体レーザを提供することにある。An object of the present invention is to provide a wavelength tunable semiconductor laser which has eliminated the problems of the conventional technology as described above.
本発明者らは、長年の半導体レーザ研究の経験を生か
し、従来にない全く新しい構成の波長可変半導体レーザ
を実現した。すなわち、半導体基板上に、活性領域の後
方からのレーザ光の出射角度が可変とできるレーザ光発
生部と、回折格子を形成した光導波路部を設け、その両
領域の間を光導波路層を用いて接続した。さらに後方か
らのレーザ光が各々の出射角度において結合する回折格
子の周期を変化させた。The present inventors have realized a wavelength tunable semiconductor laser having a completely new configuration that has never existed, by making use of many years of experience in semiconductor laser research. That is, on a semiconductor substrate, a laser light generating portion capable of changing the emission angle of laser light from behind the active region and an optical waveguide portion having a diffraction grating are provided, and an optical waveguide layer is used between the two regions. Connected. Further, the period of the diffraction grating to which the laser light from the rear is combined at each emission angle was changed.
第1図を用いて動作原理を詳しく説明する。ストライ
プ状の活性層2から発生した光は、出射ビーム角度可変
制御領域により後方からの出射角度が制御される。出射
した光は光導波路層4を伝搬し、回折格子5領域に達す
るとブラツグ反射波長の光のみが選択的に分布帰還を受
け、反射されるこの回折格子の周期は、各々の出射角度
に対応する領域において変化させている。従つてレーザ
の出射角度を変化させることにより、ブラツグ反射波長
を変化させることができる(第1図(a)中のλ1,λ
2に対応する)。The principle of operation will be described in detail with reference to FIG. The light emitted from the stripe-shaped active layer 2 has its output angle from the rear controlled by the output beam angle variable control region. The emitted light propagates through the optical waveguide layer 4, and when it reaches the area of the diffraction grating 5, only the light of the Bragg reflection wavelength is selectively subjected to distributed feedback, and the period of the reflected diffraction grating corresponds to each emission angle. In the region where Accordingly, the Bragg reflection wavelength can be changed by changing the emission angle of the laser (λ 1 , λ in FIG. 1A).
2 ).
レーザ発振は前端面のへき開面10での反射と回折格子
のブラツグ反射の帰還ループにより生じる。すなわち、
後方からの出射角度を変化させることにより、レーザ発
振波長を可変にできる。Laser oscillation is caused by a feedback loop of reflection at the cleavage plane 10 at the front end face and Bragg reflection of the diffraction grating. That is,
By changing the emission angle from behind, the laser oscillation wavelength can be varied.
第1図においては出射ビームの角度を変化させる手段
として出射ビーム可変用電極7を用いた例を示してい
る。この例での出射ビームの角度変化の原理を第1図
(a)と(c)を用いて説明する。今、電極7aへの電流
注入量が7bよりも多いと活性層2内でのキヤリア密度は
7a側(同図(c)で右側)の方が大きくなる。屈折率は
キヤリア密度が大きいほど、小さくなるので、ストライ
プの左側(同図(c)において)の屈折率が大きくな
る。するとレーザ光は左側に片よる。つまり、電流が小
さい方の電極の方に片より、その結果、出射角度もその
方向に引つぱられる。この現象を用いて、電極7a,7bへ
の電流注入量を調節することにより出射角度を変化でき
る。FIG. 1 shows an example in which the output beam varying electrode 7 is used as a means for changing the angle of the output beam. The principle of the change in the angle of the output beam in this example will be described with reference to FIGS. 1 (a) and 1 (c). Now, if the current injection amount into the electrode 7a is larger than 7b, the carrier density in the active layer 2 becomes
7a side (right side in FIG. 3C) is larger. Since the refractive index decreases as the carrier density increases, the refractive index on the left side of the stripe (in FIG. 3C) increases. Then, the laser beam splits to the left. In other words, the emission angle is also pulled in that direction due to the smaller current flowing from the electrode toward the smaller electrode. By using this phenomenon, the emission angle can be changed by adjusting the amount of current injected into the electrodes 7a and 7b.
また、スペクトル線幅に関しては、へき開面と回折格
子の共振器長を長く設定できるので、従来のレーザに比
べて狭帯化が可能となつた(スペクトル線幅は共振器長
に反比例する)。また、回折格子に第1図の如く曲線を
設け、その焦点を活性領域と光導波路領域の境界に設定
すると、レンズ効果により回折格子で反射された光は活
性層ストライプ内に自動的に帰還されるので結合が向上
する。Further, regarding the spectral line width, the resonator length of the cleavage plane and the diffraction grating can be set longer, so that the band can be narrowed as compared with the conventional laser (the spectral line width is inversely proportional to the resonator length). When a curve is provided on the diffraction grating as shown in FIG. 1 and its focal point is set at the boundary between the active region and the optical waveguide region, the light reflected by the diffraction grating by the lens effect is automatically fed back into the active layer stripe. Therefore, the coupling is improved.
また、本発明によると、半導体上にモノリシツク、あ
るいはハイブリツドに形成できるので、従来技術のタイ
プ2の如く厳しい光軸合わせは不要で、かつ、小型化で
きる。Further, according to the present invention, since it can be formed on a semiconductor in a monolithic or hybrid manner, strict optical axis alignment unlike the prior art type 2 is unnecessary and the size can be reduced.
また、波長を連続的に変えるには、出射角度を連続的
に変化すればよいが、その際、回折格子から分布帰還さ
れる光の位相が微妙に変化し、縦モードのモードホツプ
が生じる例があつた。これを抑圧するためには、光導波
路4領域あるいは活性領域に位相調整機能を持たせれば
よいことも判明した。In order to continuously change the wavelength, it is only necessary to change the emission angle continuously. At that time, the phase of the light distributed and returned from the diffraction grating is slightly changed, and a mode hop of a longitudinal mode occurs. Atsuta. In order to suppress this, it has also been found that the optical waveguide 4 region or the active region may have a phase adjustment function.
以下、本発明の実施例を第1図〜第5図を用いて説明
する。Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
実施例1 第1図は本発明による一実施例のレーザ装置である。
n−InP基板1上にInGaAsP活性層2,p−InPクラッド層3
を形成後、ストライプ状に(幅0.5〜3μm)活性層を
形成後、p−InP層11,n−InP層12で埋めこむ(同図
(d))。その後、光導波路領域の成長層を全て除去
後、その領域にInGaAsP光導波路層(活性層2よりも禁
制帯幅が大きい)4を成長する。次に活性領域から約50
0μm離れた光導波路上に曲率を持つた(曲率半径〜250
μm)回折格子5を形成した。回折格子の周期はストラ
イプ軸線上領域で238.5nm、ストライプ軸線から+10
°,−10°ずれたところでは各々237nm,240nmとし、そ
の間の周期の変化はゆるやかに直線的に変化させた。回
折格子の本数は約2000本とした。Embodiment 1 FIG. 1 shows a laser device according to an embodiment of the present invention.
InGaAsP active layer 2 and p-InP cladding layer 3 on n-InP substrate 1
Is formed, an active layer is formed in a stripe shape (width: 0.5 to 3 μm), and then buried with a p-InP layer 11 and an n-InP layer 12 (FIG. 4D). Then, after removing all the growth layers in the optical waveguide region, an InGaAsP optical waveguide layer (having a larger band gap than the active layer 2) 4 is grown in that region. Then about 50 from the active area
It has a curvature on the optical waveguide separated by 0 μm (curvature radius ~ 250
μm) A diffraction grating 5 was formed. The period of the diffraction grating is 238.5 nm in the region on the stripe axis and +10 from the stripe axis
At positions shifted by ° and -10 °, they were set to 237 nm and 240 nm, respectively, and the change of the period between them was gradually and linearly changed. The number of diffraction gratings was about 2,000.
次に出射ビーム可変領域のストライプの中央部に第1
図(c)の如く、プロトンあるいはボロンのイオン注入
により絶縁領域13を設けた後、各電極6,7a,7b,8を図示
の如く形成した。活性領域の長さは200〜500μmとし、
出射ビーム可変用電極7a,7bの長さ(軸方向)は活性領
域長の1/10〜2/3程度とした。Next, the first part is located at the center of the stripe in the output beam variable region.
As shown in FIG. 3C, after the insulating region 13 was provided by ion implantation of protons or boron, the electrodes 6, 7a, 7b, 8 were formed as shown in the figure. The length of the active region is 200-500 μm,
The length (axial direction) of the output beam variable electrodes 7a and 7b was set to about 1/10 to 2/3 of the active area length.
試作したレーザは電流注入主電極6に10〜20mA注入す
るとレーザ発振した。さて、電極7aへの注入電流をIa,
電極7bへの注入電流をIbとし、その比率を変えた時の出
射角度と発振波長の変化を第2図に示す。Ia+Ibは約3
〜20mAである。Ia/(Ia+Ib)の値を0〜1と変えるこ
とにより、出射角度は−10°〜+10°の間を連続的に変
化した。その結果、ブラツグ反射波長も変化し、発振波
長は1.557〜1.539μmの間を連続的に変化した。可変波
長範囲は約18nmであり、この間にわたり、安定な単一縦
モード(サイドモード押圧比〜40dB)で、かつ、スペク
トル線幅は5mW光出力時で約1MHzと狭い値が得られた。The prototype laser oscillated when 10-20 mA was injected into the current injection main electrode 6. Now, the injection current into the electrode 7a is Ia,
FIG. 2 shows a change in the emission angle and the oscillation wavelength when the injection current to the electrode 7b is Ib and the ratio is changed. Ia + Ib is about 3
~ 20mA. By changing the value of Ia / (Ia + Ib) from 0 to 1, the emission angle was continuously changed between -10 ° and + 10 °. As a result, the Bragg reflection wavelength also changed, and the oscillation wavelength continuously changed between 1.557 and 1.539 μm. The tunable wavelength range was about 18 nm, and over this period, a stable single longitudinal mode (side mode pressing ratio 〜40 dB) and a spectral line width of about 1 MHz were obtained at a light output of 5 mW.
実施例2 本発明による別の実施例を第3図を用いて説明する。Embodiment 2 Another embodiment of the present invention will be described with reference to FIG.
本実施例では、実施例1の活性領域が全て第1図
(c)の構造になつているものである。つまり、活性領
域全体が出射ビーム角度変化領域となつている。電極7
a,7bへの電流注入量を20mA程度にするとレーザ発振し
た。また、実施例1と同様に電極7a,7bへの電流注入量
の比率を変更することにより出射角度が変化し、発振波
長が可変となつた。その特性は実施例1とほぼ同様であ
つた。In this embodiment, all the active regions of the first embodiment have the structure shown in FIG. 1 (c). That is, the entire active region is an emission beam angle changing region. Electrode 7
Laser oscillation occurred when the current injection amount to a and 7b was about 20 mA. Further, as in the first embodiment, the emission angle was changed by changing the ratio of the amount of current injected to the electrodes 7a and 7b, and the oscillation wavelength became variable. Its characteristics were almost the same as in Example 1.
以上の実施例において、電流注入量の比率を変えて発
振波長を変化する時に、ある素子において縦モードのホ
ツピングが生じ、連続的に変わらない場合があつた。こ
れは回折格子のブラツグ反射とへき開面との共振におい
てレーザ光の位相がずれることにより、生じることが判
明した。In the above embodiment, when the oscillation wavelength is changed by changing the ratio of the current injection amount, hopping in a longitudinal mode occurs in a certain element, and there is a case where the hopping does not change continuously. It has been found that this is caused by a shift in the phase of the laser light in the resonance between the Bragg reflection of the diffraction grating and the cleavage plane.
実施例3 本実施例は前記ホツピングの問題を解決した一例であ
る。Embodiment 3 This embodiment is an example in which the problem of the hopping is solved.
第4図にレーザ光の位相調整機構を有した実施例を示
す。実施例1と基本構造は同一であるが、異なる点は光
導波路上にP−InP電流注入層14,位相調整用電極15を設
けた点である。この領域の軸方向の長さは20〜50μm程
度が適切である。この領域に電流を注入することにより
屈折率を調整できるので、この領域の伝搬定数を調整で
きる。従つてここへの電流注入量を調整することにより
レーザ光の位相を調節できた。本実施例でのレーザ特性
は実施例1とほぼ同様で、波長可変範囲も第2図とほぼ
同様であつた。また、波長を変化させるために出射ビー
ム角度可変用電極の電流注入量の比率を変化させた時
に、位相調整用電極15への電流注入量を適時、調整する
ことにより(0〜50mA程度)、縦モードのホツピングを
抑制することができた。FIG. 4 shows an embodiment having a laser light phase adjusting mechanism. The basic structure is the same as that of the first embodiment, except that a P-InP current injection layer 14 and a phase adjusting electrode 15 are provided on the optical waveguide. It is appropriate that the axial length of this region is about 20 to 50 μm. Since the refractive index can be adjusted by injecting a current into this region, the propagation constant in this region can be adjusted. Accordingly, the phase of the laser beam could be adjusted by adjusting the amount of current injection. The laser characteristics in this embodiment were almost the same as those in the first embodiment, and the wavelength variable range was almost the same as in FIG. Further, when the ratio of the current injection amount of the output beam angle varying electrode is changed to change the wavelength, the current injection amount to the phase adjustment electrode 15 is appropriately adjusted (about 0 to 50 mA), Vertical mode hopping could be suppressed.
実施例4 本発明による半導体レーザをコヒーレント光通信シス
テムのヘテロダイン検波の局発用光源として用いた実施
例を第5図を用いて説明する。Embodiment 4 An embodiment in which a semiconductor laser according to the present invention is used as a local light source for heterodyne detection in a coherent optical communication system will be described with reference to FIG.
検波システムはいわゆるヘテロダイン検波で、光フア
イバ16から入射した信号光は光カプラー17で局発光源の
波長可変レーザ25の光と合成され、レンズ18を通してホ
トダイオード19で電気信号に変換される。その中間周波
数を増幅器20で増幅して、識別回路21で復号化される。
また、中間周波数弁別器22と増幅器23を通して帰還され
た電気信号により、周波数安定器24により、波長可変半
導体レーザ25の発振波長を安定化させる。本検波システ
ムにより、波長間隔1Å,150チヤンネルの1Gbit/SFSK変
調光を検波することに成功した。The detection system is so-called heterodyne detection, in which signal light incident from an optical fiber 16 is combined with light from a wavelength tunable laser 25 serving as a local light source by an optical coupler 17, and converted into an electric signal by a photodiode 19 through a lens 18. The intermediate frequency is amplified by the amplifier 20 and decoded by the identification circuit 21.
Further, the oscillation wavelength of the tunable semiconductor laser 25 is stabilized by the frequency stabilizer 24 by the electric signal fed back through the intermediate frequency discriminator 22 and the amplifier 23. This detection system succeeded in detecting 1Gbit / SFSK modulated light with a wavelength interval of 1Å and 150 channels.
以上の実施例では、InGaAsP系半導体レーザの例を示
したが、本発明による波長可変半導体レーザは、GaAs
系、InGaP系等の室温連続発振の可能な他の材料系に適
用できることは言うまでもない。In the above embodiment, the example of the InGaAsP-based semiconductor laser has been described.
It is needless to say that the present invention can be applied to other material systems capable of continuous oscillation at room temperature, such as a system and an InGaP system.
本発明によれば、狭スペクトル線幅で、かつ、縦単一
モードの可変波長幅の大きい波長可変半導体レーザを提
供できるので、コヒーレント光通信のヘテロダイン検波
用局発用光源として驚異的な効果がある。According to the present invention, it is possible to provide a wavelength tunable semiconductor laser having a narrow spectral line width and a large tunable wavelength width in a longitudinal single mode, so that a phenomenal effect as a local light source for heterodyne detection in coherent optical communication can be provided. is there.
第1図(a)は本発明の実施例の半導体レーザの上面
図、(b)はその側断面図、同図(c),(d)はそれ
ぞれ(b)のA−A′,B−B′線縦断面図、第2図は本
発明の実施例のレーザの波長可変特性、第3図は本発明
による別の実施例の半導体レーザの上面図、第4図は本
発明の別の実施例の半導体レーザの側断面図、第5図は
本発明のレーザを組みこんだ光通信システムの実施例の
ブロツク図である。 2…活性層、4…光導波路層、5…回折格子、7…出射
ビーム可変用電極、9…後方出射レーザ光、10…へき開
面、13…絶縁領域、15…位相調整用電極、17…光カプラ
ー、19…ホトダイオード、24…周波数安定器、25…波長
可変半導体レーザ。1 (a) is a top view of a semiconductor laser according to an embodiment of the present invention, FIG. 1 (b) is a side sectional view thereof, and FIGS. 1 (c) and 1 (d) are AA 'and B- of FIG. FIG. 2 is a vertical sectional view of the line B ', FIG. 2 is a wavelength tunable characteristic of the laser of the embodiment of the present invention, FIG. 3 is a top view of a semiconductor laser of another embodiment of the present invention, and FIG. FIG. 5 is a side sectional view of a semiconductor laser according to an embodiment, and FIG. 5 is a block diagram of an embodiment of an optical communication system incorporating the laser of the present invention. Reference numeral 2 denotes an active layer, 4 denotes an optical waveguide layer, 5 denotes a diffraction grating, 7 denotes an output beam variable electrode, 9 denotes a backward output laser beam, 10 denotes a cleavage plane, 13 denotes an insulating region, 15 denotes a phase adjustment electrode, and 17 denotes a phase adjustment electrode. Optical couplers, 19 photodiodes, 24 frequency stabilizers, 25 tunable semiconductor lasers.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 茅根 直樹 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭61−198792(JP,A) 特開 昭58−48981(JP,A) 特開 昭58−92289(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Naoki Kaine 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. (56) References JP-A-61-198792 (JP, A) JP-A-58 -48981 (JP, A) JP-A-58-92289 (JP, A)
Claims (1)
イプ状の活性層並びにクラッド層を積層してなり且つ一
方にレーザ光の出射端面となるへき開面を有する第1領
域と、該半導体基板上部に該活性層より禁制帯幅の大き
い光導波路層を活性層の該へき開面に対向する第1側面
で接するように形成してなる第2領域とを含めて構成さ
れ、 上記クラッド層は少なくとも上記第1側面側から上記ス
トライプ方向に該クラッド層の上面を絶縁するように形
成された絶縁領域と該絶縁領域で分離された夫々のクラ
ッド層上面に離間して形成された一対の電極を有し、 上記第2領域は上記光導波路層上に該第1側面を中心に
上記活性層のストライプ軸線に対して曲率を持って回折
格子を形成した回折格子部と該第1側面と該回折格子部
との間の該光導波路層上に電流注入層と位相調整用電極
とを積層してなる位相調整部を有し、 該回折格子部を構成する回折格子の周期は該ストライプ
軸線に対して一方の側から他方の側に向けて直線的に変
化していることを特徴とする波長可変半導体レーザ。1. A semiconductor substrate, a first region in which a stripe-shaped active layer and a cladding layer are laminated on the semiconductor substrate, and a first region having a cleavage surface on one side serving as an emission end face of a laser beam; And a second region formed by contacting an optical waveguide layer having a larger forbidden band width than the active layer on a first side surface of the active layer opposite to the cleavage plane. An insulating region formed to insulate the upper surface of the cladding layer in the stripe direction from the first side surface, and a pair of electrodes formed separately on the upper surface of each cladding layer separated by the insulating region. The second region includes a diffraction grating portion formed on the optical waveguide layer with a curvature with respect to a stripe axis of the active layer around the first side surface, the first side surface and the diffraction grating portion. The light between A phase adjusting portion formed by laminating a current injection layer and a phase adjusting electrode on the waveguide layer, wherein the period of the diffraction grating forming the diffraction grating portion is from one side to the other side with respect to the stripe axis; A wavelength tunable semiconductor laser characterized by linearly changing toward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63123835A JP2708467B2 (en) | 1988-05-23 | 1988-05-23 | Tunable semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63123835A JP2708467B2 (en) | 1988-05-23 | 1988-05-23 | Tunable semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01293683A JPH01293683A (en) | 1989-11-27 |
JP2708467B2 true JP2708467B2 (en) | 1998-02-04 |
Family
ID=14870555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63123835A Expired - Fee Related JP2708467B2 (en) | 1988-05-23 | 1988-05-23 | Tunable semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2708467B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04146681A (en) * | 1990-10-08 | 1992-05-20 | Mitsubishi Electric Corp | Semiconductor laser device |
JP2817769B2 (en) * | 1994-12-28 | 1998-10-30 | 日本電気株式会社 | Optical amplifying device, semiconductor laser device using the same, and driving method thereof |
JP2947142B2 (en) * | 1995-09-21 | 1999-09-13 | 日本電気株式会社 | Tunable semiconductor laser |
JP5121150B2 (en) * | 2006-02-28 | 2013-01-16 | サンテック株式会社 | Tunable laser light source |
JP4912719B2 (en) * | 2006-03-30 | 2012-04-11 | アンリツ株式会社 | Semiconductor optical device, optical switching system, and wavelength tunable laser |
JP2008047730A (en) * | 2006-08-17 | 2008-02-28 | Fujifilm Corp | Wavelength-variable light source and optical fault imaging device |
JP5644524B2 (en) * | 2011-01-14 | 2014-12-24 | 富士通株式会社 | Semiconductor laser |
JP5426583B2 (en) * | 2011-01-21 | 2014-02-26 | 日本電信電話株式会社 | Tunable laser light source |
JP6417276B2 (en) * | 2015-05-22 | 2018-11-07 | 日本電信電話株式会社 | Optical semiconductor device |
US20230361524A1 (en) * | 2020-11-24 | 2023-11-09 | Mitsubishi Electric Corporation | Optical semiconductor device |
CN116387974B (en) * | 2023-06-05 | 2023-12-29 | 福建慧芯激光科技有限公司 | Preparation method of edge-emitting laser based on butt-joint growth process |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848981A (en) * | 1981-09-18 | 1983-03-23 | Agency Of Ind Science & Technol | Semiconductor laser device |
JPS61198792A (en) * | 1985-02-28 | 1986-09-03 | Tokyo Inst Of Technol | Active optical integrated circuit |
-
1988
- 1988-05-23 JP JP63123835A patent/JP2708467B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01293683A (en) | 1989-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37051E1 (en) | Semiconductor gain medium with multimode and single mode regions | |
US5003550A (en) | Integrated laser-amplifier with steerable beam | |
JP3323725B2 (en) | Polarization modulation laser, driving method thereof, and optical communication system using the same | |
US7738527B2 (en) | Wavelength switchable semiconductor laser using half-wave coupled active double-ring resonator | |
EP0314490B1 (en) | Semiconductor laser | |
KR970007117B1 (en) | Semiconductor laser | |
JP2007158057A (en) | Integrated laser device | |
US6690688B2 (en) | Variable wavelength semiconductor laser and optical module | |
JP3198338B2 (en) | Semiconductor light emitting device | |
JP2708467B2 (en) | Tunable semiconductor laser | |
JP2003046190A (en) | Semiconductor laser | |
JPH06103778B2 (en) | Optical device including semiconductor distributed feedback laser and method of driving the same | |
JP2003289169A (en) | Semiconductor laser | |
JP5001239B2 (en) | Semiconductor tunable laser | |
JP6245656B2 (en) | Semiconductor laser element | |
WO2004008595A1 (en) | Distribution bragg reflection semiconductor laser, integrated semiconductor laser, semiconductor laser module, optical network system | |
JP3433044B2 (en) | Frequency stabilized light source | |
JPS6362917B2 (en) | ||
US6795472B2 (en) | Laser with a resonant optical reflector | |
JP3072123B2 (en) | Optically integrated tunable semiconductor laser device | |
JP3072124B2 (en) | Optically integrated semiconductor laser device | |
JP3104801B2 (en) | Integrated optical coupler | |
JP2692577B2 (en) | Tunable semiconductor laser | |
JP2547270B2 (en) | Wavelength stabilized laser device | |
JPS6178190A (en) | Integrated type semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |