JPH01177519A - Wavelength transducer - Google Patents

Wavelength transducer

Info

Publication number
JPH01177519A
JPH01177519A JP63002204A JP220488A JPH01177519A JP H01177519 A JPH01177519 A JP H01177519A JP 63002204 A JP63002204 A JP 63002204A JP 220488 A JP220488 A JP 220488A JP H01177519 A JPH01177519 A JP H01177519A
Authority
JP
Japan
Prior art keywords
wavelength
optical
light
signal
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63002204A
Other languages
Japanese (ja)
Other versions
JPH07104535B2 (en
Inventor
Masahiko Fujiwara
雅彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63002204A priority Critical patent/JPH07104535B2/en
Publication of JPH01177519A publication Critical patent/JPH01177519A/en
Publication of JPH07104535B2 publication Critical patent/JPH07104535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/509Wavelength converting amplifier, e.g. signal gating with a second beam using gain saturation

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain a wavelength transducer whose optical power is low, whose modulation degree of a signal is large, and also, whose optical loss is small by using a light source for executing an oscillation in a single longitudinal mode, and a resonance type optical amplifier having a gain peak in wavelength in the vicinity of oscillation wavelength of this light source. CONSTITUTION:Oscillation wavelength of a semiconductor laser LD 10 which goes to a light source is set in advance in the vicinity of a gain peak wavelength of a resonance type LD optical amplifier 13. In such a state, when a signal light 14 whose wavelength is different from oscillation wavelength of the LD 10 is made incident, a gain spectrum of the resonance type LD optical amplifier 13 is shifted in accordance with the signal light 14. Accordingly, an oscillation light 11a of the LD 10 is taken out from one terminal 15b of a coupler 15 as an optical signal 11b which is modulated in the resonance type LD optical amplifier 13. In such a way, a wavelength transducer whose optical power is low, whose modulation degree of a signal is large, and also, whose optical loss is small is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は波長分割光交換機等に用いる波長変換器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wavelength converter used in a wavelength division optical exchange or the like.

(従来の技術) 将来の広帯域通信システムの実現のためには帯域の広い
伝送、交換方式が不可決である。光交換方式は、光の本
来持つ広帯域性、無誘導性等に加え光フアイバ伝送方式
との整合性が高く、広帯域交換方式の実現手段として有
力と考えられる。光交換には大別して空間分割(SD)
、時間分割(TD)、波長分割(WD)の3つの方式が
考えられる。このうち波長分割(WD)光交換方式は最
も大規模化に適する方式として期待されている。WD光
交換方式については電子通信学会技術報告5E86−1
17 (1986年)に掲載の論文「波長分割広帯域光
通信網の一検討ヨに於て詳しく述べられている。
(Prior Art) In order to realize future broadband communication systems, a transmission and switching system with a wide band is essential. Optical switching systems are highly compatible with optical fiber transmission systems in addition to the inherent broadband properties and non-inductive nature of light, and are considered to be a promising means for realizing broadband switching systems. Light exchange can be roughly divided into spatial division (SD)
Three methods can be considered: , time division (TD), and wavelength division (WD). Among these, the wavelength division (WD) optical switching method is expected to be the method most suitable for large scale. Regarding the WD optical switching system, the Institute of Electronics and Communication Engineers Technical Report 5E86-1
17 (1986), ``A Study of Wavelength Division Wideband Optical Communication Networks.''

WD光交換システムの基本要素となる波長変換スイッチ
(入スイッチ)では、光キャリアにより伝送される光信
号はそのままに、キャリアである光の波長を変換する波
長変換器が必要となる。このような波長変換器の実現方
法として次のような方式が提案きれている。
A wavelength conversion switch (on switch), which is a basic element of a WD optical switching system, requires a wavelength converter that converts the wavelength of the carrier light while leaving the optical signal transmitted by the optical carrier unchanged. The following methods have been proposed as methods for realizing such a wavelength converter.

第3図は従来提案きれている波長変換素子の構成を示す
図である。波長変換器れるべき波長λiの入射光31は
入射ボート32より非線形光学素子33に入射する。−
実変換された後の波長λ。の光を出射する光源34から
の直流光35も非線形光学素子33に入射する。ここで
非線形光学素子33は入射光量に対しその透過率が非線
形なるもので、多重量子井戸(MQW)構造を用いた論
理エタロンが利用できる(雑誌1ジヤーナル・才ブ・オ
プティカル・ソサエティ・オブ・アメリカ・ビー(Jo
urnalof optical 5ociety o
f America B ) J第2巻。
FIG. 3 is a diagram showing the configuration of a conventionally proposed wavelength conversion element. Incident light 31 having a wavelength λi to be input to the wavelength converter is input from an input boat 32 to a nonlinear optical element 33 . −
Wavelength λ after actual conversion. DC light 35 from a light source 34 that emits light also enters the nonlinear optical element 33 . Here, the nonlinear optical element 33 has a nonlinear transmittance with respect to the amount of incident light, and a logic etalon using a multiple quantum well (MQW) structure can be used.・Bee (Jo)
urnalof optical 5ociety o
f America B ) J Volume 2.

第7号、 1985年1215〜1227頁)。No. 7, 1985, pp. 1215-1227).

入射光31の強度が変化すればそれに応じて非線形光学
素子33の光透過率が変化するから、直流光35が変調
され出力ポート36に波長入iの入射光31により伝送
きれていた信号が波長入。に変換きれ出射光37として
出力される。このプロセスにより伝送すべき信号はその
ままに光キャリアの波長が入iからλ。へ変換きれる。
If the intensity of the incident light 31 changes, the light transmittance of the nonlinear optical element 33 changes accordingly, so the DC light 35 is modulated and the signal that was previously transmitted by the incident light 31 of wavelength i to the output port 36 changes to the wavelength i. Enter. It is output as output light 37. Through this process, the signal to be transmitted remains unchanged and the wavelength of the optical carrier is changed from i to λ. It can be converted to .

(発明が解決しようとする課題) このような従来の波長変換器では、受動型の非線形光学
素子を用いるから、■動作に必要な光パワーが大きい、
■信号の変調度が充分でない、■光損失が大きい等の問
題点があった。
(Problems to be Solved by the Invention) Since such conventional wavelength converters use passive nonlinear optical elements, the optical power required for operation is large;
There were problems such as: (1) the degree of modulation of the signal was not sufficient; (2) the optical loss was large;

本発明の目的は、上述のような問題点を除き、低光パワ
ーで信号の変調度が大きくかつ光損失も小さい波長変換
器を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems and provide a wavelength converter with low optical power, high signal modulation degree, and low optical loss.

(課題を解決するための手段) 本発明によれば、単一縦モードで発振する光源と、前記
光源の発振波長の近傍の波長に利得ピークを持つ共振型
光増幅器と、前記光源の出射光を前記共振型光増幅器へ
結合する手段と、前記共振型光増幅器の出力光のうちか
ら前記光源の出射光の増幅光をとり出す手段と、前記光
源の波長とは異なる波長の信号光を前記共振型光増幅器
へ入射する手段とからなることを特徴とする波長変換器
が得られる。
(Means for Solving the Problems) According to the present invention, there is provided a light source that oscillates in a single longitudinal mode, a resonant optical amplifier having a gain peak at a wavelength near the oscillation wavelength of the light source, and an emitted light of the light source. means for coupling the amplified light of the light emitted from the light source from the output light of the resonant optical amplifier; A wavelength converter is obtained, which is characterized by comprising means for inputting light into a resonant optical amplifier.

(作用) 本発明による波長変換器は、半導体レーザ(LD)型光
増幅器の利得スペクトラムが入射光強度により変化する
ことを利用したものである。LD及びLD光増幅器では
利得スペクトルのピーク付近に於ても屈折率が励起キル
リヤ密度に強く依存する。従って、共振型LD光増幅暮
では、入射光強度が大きくなると利得の飽和と共に屈折
率変化に伴う共振周波数のシフトが起き名。第4図はこ
のような入射光強度の変化による利得スペクトラムの変
化を示したものである(「レーザと電気光学に関する会
議(’Confe’rence on La5ers 
andElectro−Optics : CLEO)
 J 、 1986年−j−’クニカル・ダイジェスト
、論文番号F H3、354−35i5頁)。
(Function) The wavelength converter according to the present invention utilizes the fact that the gain spectrum of a semiconductor laser (LD) type optical amplifier changes depending on the intensity of incident light. In LDs and LD optical amplifiers, the refractive index strongly depends on the excitation Kirlya density even near the peak of the gain spectrum. Therefore, in a resonant LD optical amplification device, when the incident light intensity increases, the gain saturates and the resonant frequency shifts due to the change in the refractive index. Figure 4 shows changes in the gain spectrum due to changes in the intensity of the incident light ('Conference on Lasers and Electro-Optics).
andElectro-Optics: CLEO)
J, 1986-j-' Clinical Digest, Paper No. F H3, pp. 354-35i5).

これによれば25ff程度の入力光パワーの変化により
長波長側へ14GHzの利得ピークシフトが生じること
がわかる。利得スペクトルのピーク付近の波長の直流光
をこのj□うな共振型Ln光mm器に導いておき、これ
に加重て強度変調きれ原信号光を同じ<LD光増幅器に
入射させれば、信号光の強度変化に応じてLD%増i器
の利qMスより沫ルがシフトするので光信号による光信
号のミーが可能となる。変調されるべき直流光の波長を
第4図−λ、に設定すれば信号光の反転、入、に設定す
れば同相の信号が得られる。信号光と直流光の波長を異
ならせておくことによりこの時同時に波長変換が実現さ
れることになる。つまり信号の波形はそのままあるいは
反転した形で保存しながら波長変換が行なわれる。
According to this, it can be seen that a change in the input optical power of about 25 ff causes a gain peak shift of 14 GHz toward the longer wavelength side. Direct current light with a wavelength near the peak of the gain spectrum is guided to this j Since the droplet shifts from the power of the LD% multiplier in accordance with the change in the intensity of the optical signal, it becomes possible to measure the optical signal by the optical signal. If the wavelength of the DC light to be modulated is set to λ in FIG. 4, signals of the same phase can be obtained by setting the signal light to inversion or input. By making the wavelengths of the signal light and the DC light different, wavelength conversion can be realized at the same time. In other words, wavelength conversion is performed while preserving the signal waveform as it is or in an inverted form.

この原理による波長変換器は第4r5!Jに示したよう
に利得を有しており、損失の問題は考えなくてよい。ま
た図でもわかるように動作の消光比は非常に高く、数1
0Pという非常に低い光パワーで動作が可使である。
The wavelength converter based on this principle is the 4th r5! As shown in J, there is a gain, so there is no need to consider the problem of loss. Also, as you can see in the figure, the extinction ratio of the operation is very high, and is expressed by the number 1
Operation is possible with extremely low optical power of 0P.

(実施例) 第1図に本発明による波長変換器の一実施例の構成を水
子。
(Embodiment) FIG. 1 shows the configuration of an embodiment of a wavelength converter according to the present invention.

まず第1図に示す実施例の構成について説明する。直流
電源(図では省略)により駆動される単−縦モード発振
LDIOの出射光11aは光学系12により共振型LD
光増幅器13に結合される。−実信号光14は光フアイ
バ融着型カブラ15の一つの入力端15aを介して共振
型LD光増幅器13に反射側の端面から結合される。
First, the configuration of the embodiment shown in FIG. 1 will be explained. The output light 11a of the single-longitudinal mode oscillation LDIO driven by a DC power supply (omitted in the figure) is converted into a resonant LD by the optical system 12.
The optical amplifier 13 is coupled to the optical amplifier 13 . - The actual signal light 14 is coupled to the resonant LD optical amplifier 13 from the end face on the reflection side via one input end 15a of the optical fiber fused coupler 15.

予め光源となるLDIOの発振波長を共振型LD光増幅
器13の利得ピーク波長近傍に設定しておく。その状態
でLDIOの発振波長と異なる波長の信号光14を入射
きせると、信号光14に応じて共振型LD光増幅器13
の利得スペクトラムがシフトする。従ってLDIOの発
振光11aが共振型LD光増幅器13において変調され
た光信号11bとしてカブラ15の一つの端子15bか
ら取り吊器れる。光信号11bは、信号光14が増幅さ
れ又は反転増幅され、かつ波長変換器れた光の信号であ
る。
The oscillation wavelength of the LDIO serving as the light source is set in advance near the gain peak wavelength of the resonant LD optical amplifier 13. In this state, when a signal light 14 having a wavelength different from the oscillation wavelength of the LDIO is made incident, the resonant LD optical amplifier 13 responds to the signal light 14.
The gain spectrum of is shifted. Therefore, the LDIO oscillation light 11a is modulated by the resonant LD optical amplifier 13, and is output as an optical signal 11b from one terminal 15b of the coupler 15. The optical signal 11b is an optical signal obtained by amplifying or inverting the signal light 14 and converting the wavelength.

次に本発明に用いる共振型LD光増幅器13について説
明する。LD増幅器は大別して進行波型と共振器型の2
つに分けられ、共振型は更にファブリ・ペロー(F−P
)型と分布帰還(DFB)。
Next, the resonant LD optical amplifier 13 used in the present invention will be explained. LD amplifiers can be roughly divided into two types: traveling wave type and resonator type.
The resonant type is further divided into Fabry-Perot (F-P
) type and distributed feedback (DFB).

分布ブラッグ反射(DBR)型に分類できる。これらの
うち本発明に利用可能なのは利得スペクトラムに鋭いピ
ークを持つ共振型である。共振型のうちF−P型はファ
ブリ・ペロー共振にともなう利得ピークが周期的に生じ
る。これに対しDFB 。
It can be classified as distributed Bragg reflection (DBR) type. Among these, the resonance type that can be used in the present invention has a sharp peak in the gain spectrum. Among the resonance types, in the FP type, gain peaks occur periodically due to Fabry-Perot resonance. In contrast, DFB.

DBR型は、ブラッグ反射条件を満足する特定の波長だ
けに対し利得を持つから、波長選択性に優れている。中
でも分布帰還のため回折格子の途中に位相シフト部を持
つ位相シフトDFB型LD光増幅器は原理的にブラッグ
条件を満足する唯一の波長に於七利得ピークを持つ。従
って他の波長の雑音光の抑圧特性に優れているから、本
発明に用いるのに最も適している。この位相シフトDF
B型LD光増幅器は位相シフ1−DFB−’LDをその
まま用いることにより実現できる。この位相シフトDF
B−LDについては、雑誌1アイ・イー・イー・イー・
シル−ナル・才ブ・カンタム・エレクトロニクス(IE
EE Journal of QuantumElec
tronics ) J第QE−22巻、 1986年
、1042〜1051頁、あるいは「光フアイバ通信会
議(0pticalFiber Communicat
ion Conference ) 1987年テクニ
カル・ダイジェスト(Technical Diges
t ) J 51頁。
Since the DBR type has gain only for a specific wavelength that satisfies the Bragg reflection condition, it has excellent wavelength selectivity. Among them, a phase shift DFB type LD optical amplifier which has a phase shift section in the middle of a diffraction grating for distributed feedback has a gain peak of 7 in principle at the only wavelength that satisfies the Bragg condition. Therefore, it is most suitable for use in the present invention because it has excellent suppression characteristics of noise light of other wavelengths. This phase shift DF
A B-type LD optical amplifier can be realized by using the phase shift 1-DFB-'LD as is. This phase shift DF
Regarding B-LD, please refer to Magazine 1 I.E.E.E.
Sil-Nal Quantum Electronics (IE)
EE Journal of QuantumElec
tronics) J Vol. QE-22, 1986, pp. 1042-1051, or “Optical Fiber Communications Conference.
ion Conference) 1987 Technical Digest
t) J page 51.

論文番号TuC4、1987年に詳しく述べられている
It is described in detail in paper number TuC4, 1987.

第2図は入/4位相シフトDFB型LD光増幅器の利得
スペクトラムの注入電流による変化を示している。注入
電流を数mA変化きせることによりピーク波長は3〜4
人程度制御することができ、利得帯域幅も1Å以下と狭
い。
FIG. 2 shows the change in the gain spectrum of the input/fourth phase shift DFB type LD optical amplifier due to the injection current. By varying the injection current by several mA, the peak wavelength can be adjusted to 3 to 4.
It can be controlled on the order of a person's level, and the gain bandwidth is as narrow as 1 Å or less.

次に単一縦モード発振しDloについて説明する。この
LDには、直流動作をさせるから、条件さえ選べばファ
ブリ・ペロー型LDも用いることができるが、波長選択
性に優れたDFB−LDの利用が望ましい。特に共振型
LD光増幅器13とLDIOを同じ位相シフトDFB−
LDで構成するのが波長のマツチング、波長の単一性等
の点で最も望ましい。また、第1図には示していないが
、反射光の問題を除くために、LDIOと共振型LD光
増幅器13との間に光アイソレータを挿入することも場
合により必要である。
Next, single longitudinal mode oscillation and Dlo will be explained. Since this LD operates with direct current, a Fabry-Perot type LD can be used as long as conditions are selected, but it is preferable to use a DFB-LD, which has excellent wavelength selectivity. In particular, the resonant LD optical amplifier 13 and the LDIO have the same phase shift DFB-
It is most desirable to use an LD in terms of wavelength matching and wavelength unity. Although not shown in FIG. 1, it may be necessary to insert an optical isolator between the LDIO and the resonant LD optical amplifier 13 in order to eliminate the problem of reflected light.

以上のような構成により、LDIOの発振波長を1.5
537pm、共振型LD光増幅器13への注入電流を4
5mAに設定し、1.553−の信号光14を入射させ
たところ、10膚の光パワーにより光信号11bの変調
度として〜10dBが得られた。
With the above configuration, the oscillation wavelength of the LDIO can be set to 1.5.
537 pm, the injection current to the resonant LD optical amplifier 13 is 4
When it was set to 5 mA and the signal light 14 of 1.553 was made incident, a modulation degree of ~10 dB was obtained for the optical signal 11b with an optical power of 10 dB.

第1図の実施例では信号光14の入射と光信号−8= 11bの取り出しにファイバ・カブラ15を用いたが、
信号光14とLDIC+の発振波長の違いを利用すれば
、アッパ・ツエンダ型等の多重分波素子を用いることも
できる。また第1図に示した構成は、DFB−LDを基
本としているから、モノリシック集積化に適しており、
全体を半導体基板上に集積化することも可能である。
In the embodiment shown in FIG. 1, a fiber coupler 15 is used to input the signal light 14 and take out the optical signal -8=11b.
By utilizing the difference in the oscillation wavelengths of the signal light 14 and the LDIC+, it is also possible to use an upper-Zender type multiplexing and demultiplexing element. Furthermore, since the configuration shown in FIG. 1 is based on DFB-LD, it is suitable for monolithic integration.
It is also possible to integrate the entire device on a semiconductor substrate.

(発明の効果) 以上に詳しく説明したように、本発明によれば、低光パ
ワーで信号の変調度が大きくかつ光損失も小さい波長変
換器が得られる。
(Effects of the Invention) As described in detail above, according to the present invention, a wavelength converter with low optical power, high signal modulation degree, and low optical loss can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による波長変換器の一実施例の構成を示
す図、第2図は本発明に用いる共振型LD光増幅器の利
得スペクトラムを示す図、第3図は従来の波長変換素子
の構成を示す図、第4図は共振型LD光増幅器における
入射光強度の変化による利得スペクトラムの変化を示す
特性図である。 図に於て、lla 、 llb 、 14.31.35
.37はレーザ光、10はLD、13は共振型LD光増
幅器、15はカブラ、15a 、 15bは端子、12
は光学系、33は非線型光学素子、34は光源、32.
36は入出力ポートである。
FIG. 1 is a diagram showing the configuration of an embodiment of a wavelength converter according to the present invention, FIG. 2 is a diagram showing a gain spectrum of a resonant LD optical amplifier used in the present invention, and FIG. 3 is a diagram showing a gain spectrum of a conventional wavelength converter. FIG. 4, which is a diagram showing the configuration, is a characteristic diagram showing changes in the gain spectrum due to changes in the intensity of incident light in the resonant LD optical amplifier. In the figure, lla, llb, 14.31.35
.. 37 is a laser beam, 10 is an LD, 13 is a resonant LD optical amplifier, 15 is a coupler, 15a and 15b are terminals, 12
33 is an optical system; 33 is a nonlinear optical element; 34 is a light source; 32.
36 is an input/output port.

Claims (1)

【特許請求の範囲】[Claims] 単一縦モードで発振する光源と、前記光源の発振波長の
近傍の波長に利得ピークを持つ共振型光増幅器と、前記
光源の出射光を前記共振型光増幅器へ結合する手段と、
前記共振型光増幅器の出力光のうちから前記光源の出射
光の増幅光をとり出す手段と、前記光源の波長とは異な
る波長の信号光を前記共振型光増幅器へ入射する手段と
からなることを特徴とする波長変換器。
a light source that oscillates in a single longitudinal mode; a resonant optical amplifier having a gain peak at a wavelength near the oscillation wavelength of the light source; and means for coupling light emitted from the light source to the resonant optical amplifier;
comprising means for extracting amplified light emitted from the light source from among the output light of the resonant optical amplifier; and means for inputting signal light having a wavelength different from the wavelength of the light source into the resonant optical amplifier. A wavelength converter featuring:
JP63002204A 1988-01-07 1988-01-07 Wavelength converter Expired - Fee Related JPH07104535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002204A JPH07104535B2 (en) 1988-01-07 1988-01-07 Wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002204A JPH07104535B2 (en) 1988-01-07 1988-01-07 Wavelength converter

Publications (2)

Publication Number Publication Date
JPH01177519A true JPH01177519A (en) 1989-07-13
JPH07104535B2 JPH07104535B2 (en) 1995-11-13

Family

ID=11522827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002204A Expired - Fee Related JPH07104535B2 (en) 1988-01-07 1988-01-07 Wavelength converter

Country Status (1)

Country Link
JP (1) JPH07104535B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068321A (en) * 1983-09-26 1985-04-18 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068321A (en) * 1983-09-26 1985-04-18 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Also Published As

Publication number Publication date
JPH07104535B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US6847662B2 (en) Wavelength-selectable laser capable of high-speed frequency control
JP2830485B2 (en) Optical fiber dispersion compensator
Yamamoto Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers
JP2957116B2 (en) Tunable laser device
JP2017098362A (en) Optical integrated device and optical communication device
CA1282831C (en) Optical signal regenerator
Giles et al. Simultaneous wavelength-stabilization of 980-nm pump lasers
US10312663B2 (en) Tunable laser device
US5812712A (en) Fiber bragg grating-circulator systems having reduced ASE
US5760949A (en) Light amplifier
US6137932A (en) Apparatus for controlling gain of an optical fiber amplifier and method thereof
IE911555A1 (en) Optical signal regenerator and optical communications system incorporating same
CN112332198B (en) Photoelectric oscillator
KR100398997B1 (en) Optical Q-switching for generating short pulses in diode lasers
US6901085B2 (en) Multi-wavelength ring laser source
US7099072B2 (en) Direct optical modulation type wavelength converter
US5561546A (en) Method and apparatus for improving the sensitivity of optical modulators
US7027471B2 (en) Fast wavelength-tunable laser system using Fabry-Perot laser diode
JPH01500064A (en) optically controlled selector
JPH01177519A (en) Wavelength transducer
EP1669800B1 (en) Wavelength converter for generating wavelength tunable laser optical source in itself
SATO et al. Semiconductor Optical Amplifier and Gain Chip Used in Wavelength Tunable Lasers
CN117374734B (en) Self-injection locking narrow linewidth multi-wavelength laser based on optical resonator
Liou et al. A 24-channel wavelength-selectable Er-fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry-Perot filter
WO2023236662A1 (en) Chip integration of external cavity semiconductor laser and reflective semiconductor optical amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees