JPH0425524B2 - - Google Patents

Info

Publication number
JPH0425524B2
JPH0425524B2 JP57030318A JP3031882A JPH0425524B2 JP H0425524 B2 JPH0425524 B2 JP H0425524B2 JP 57030318 A JP57030318 A JP 57030318A JP 3031882 A JP3031882 A JP 3031882A JP H0425524 B2 JPH0425524 B2 JP H0425524B2
Authority
JP
Japan
Prior art keywords
optical
waveguide
control
light
light control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57030318A
Other languages
Japanese (ja)
Other versions
JPS58147710A (en
Inventor
Mitsukazu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3031882A priority Critical patent/JPS58147710A/en
Publication of JPS58147710A publication Critical patent/JPS58147710A/en
Publication of JPH0425524B2 publication Critical patent/JPH0425524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は基板上に設置した光導波路を用いて光
波の変調、スイツチ等の光制御を行なう導波形光
制御デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveguide type optical control device that modulates light waves and controls light such as switches using an optical waveguide installed on a substrate.

光通信システムや光センサ、光情報処理システ
ム等の光応用システムの開発が進められており、
これらのシステムでは情報量や伝送速度、システ
ム機能の拡大が図られつつある。そこで、光信号
を変調する光変調器や、光信号の光路を任意に切
換える光スイツチ等の光制御デバイスの必要性が
高まつている。上記デバイスに対しては、高効
率、高速、小形、単一モードフアイバとの結合が
必要な条件であるが、この他に、機能拡大という
目的に対しては、多機能デバイスを集積化できる
ことが重要な条件となる。上記要求を全て満足す
べく開発が進められているのが導波形光制御デバ
イスであり、これは、基板上に設置した光導波炉
を用いて構成される。導波形光制御デバイスを一
枚の基板上に多数個集積し、上述の多機能集積化
デバイスを得ようとする試みも行なわれている。
The development of optical application systems such as optical communication systems, optical sensors, and optical information processing systems is progressing.
In these systems, efforts are being made to expand the amount of information, transmission speed, and system functionality. Therefore, there is an increasing need for optical control devices such as optical modulators that modulate optical signals and optical switches that arbitrarily switch the optical path of optical signals. For the above devices, high efficiency, high speed, small size, and coupling with single mode fiber are necessary conditions, but in addition to these, for the purpose of expanding functionality, it is necessary to be able to integrate multifunctional devices. This is an important condition. Waveguide type optical control devices are being developed to satisfy all of the above requirements, and are constructed using an optical waveguide furnace installed on a substrate. Attempts have also been made to integrate a large number of waveguide optical control devices on a single substrate to obtain the above-mentioned multifunctional integrated device.

導波形光制御デバイスで高効率、高速性を得る
場合には通常、ニオブ酸リチウム(LiNbO3)結
晶やタンタル酸リチウム(LiTaO3)結晶等の強
誘電体が基板としてよく用いられる。上記結晶は
大きい電気光学効果を有し、かつ、金属の拡散に
より比較的容易に光導波路を製作できるからであ
る。光制御デバイスとしては方向性結合形構成や
全反射形構成が通常よく用いられる。方向性結合
形構成では幅数μm〜数+μmの光導波路2本を
数μmの間隔で互いに近接させ光導波路近傍に設
けた制御電極に電圧を印加することにより上記2
本の光導波路間の結合度を制御するものである。
一方、全反射形構成では、2本の光導波路を数度
の角度で交差させ、その交差部に制御電極を設置
して交差部における光波の反射率を制御する。
To obtain high efficiency and high speed in waveguide optical control devices, ferroelectric materials such as lithium niobate (LiNbO 3 ) crystals and lithium tantalate (LiTaO 3 ) crystals are often used as substrates. This is because the above-mentioned crystal has a large electro-optic effect, and an optical waveguide can be manufactured relatively easily by metal diffusion. A directional coupling type configuration or a total internal reflection type configuration is commonly used as a light control device. In the directional coupling type configuration, two optical waveguides each having a width of several μm to several + μm are brought close to each other at an interval of several μm, and a voltage is applied to a control electrode provided near the optical waveguides.
This controls the degree of coupling between the optical waveguides.
On the other hand, in the total reflection type configuration, two optical waveguides are crossed at an angle of several degrees, and a control electrode is installed at the intersection to control the reflectance of light waves at the intersection.

上記のような方向性結合形あるいは全反射形の
光制御デバイスを1光制御エレメントとしてそれ
らを複数個単一の基板上に集積することにより、
マトリツクス状の光スイツチや光スイツチ列、光
変調器列等の複合機能をもつた光制御デバイスを
得ることができる。しかし、この場合、各エレメ
ントを近接させて設置するとある1つの制御電極
に印加した電界が隣接するエレメントにもれてし
まうという問題が生ずる。一方、各エレメント間
隔を広げて光制御エレメントを集積すること、光
導波路を大きい角度で曲げたり、小さい曲率で曲
げたりする必要が生ずるため光伝搬損失が大きく
なる。上述のもれ電界は隣接エレメントの状態を
乱し、例えば光スイツチではクロストークを増大
させる等の悪影響を招く。そこで従来は伝搬損失
を小さくし、かつもれ電界を防ぐために集積可能
なエレメント数は制限されていた。
By integrating a plurality of the above-mentioned directional coupling type or total reflection type light control devices as one light control element on a single substrate,
It is possible to obtain an optical control device having multiple functions such as a matrix of optical switches, an optical switch array, an optical modulator array, and the like. However, in this case, if the elements are placed close to each other, a problem arises in that the electric field applied to one control electrode leaks to the adjacent element. On the other hand, since it becomes necessary to increase the distance between each element and integrate the light control elements, and to bend the optical waveguide at a large angle or a small curvature, the optical propagation loss becomes large. The above-mentioned leakage electric field disturbs the state of adjacent elements, causing adverse effects such as increased crosstalk in optical switches, for example. Therefore, in the past, the number of elements that could be integrated was limited in order to reduce propagation loss and prevent leakage electric fields.

本発明の目的は各エレメントを近接した場合に
上述のような電界もれによる影響を低減し、多数
のエレメントが集積可能な導波形光制御デバイス
を提供することにある。
An object of the present invention is to provide a waveguide optical control device in which a large number of elements can be integrated by reducing the influence of electric field leakage as described above when the elements are placed close to each other.

本発明の導波形光制御デバイスは、電気光学効
果を有する誘電体基板、例えばニオブ酸リチウム
結晶基板上に光導波路と該光導路に近接して設け
た制御電極からなる光制御エレメントを複数個配
置し、上記光制御エレメント間に溝を設置するこ
とにより構成される。
In the waveguide type light control device of the present invention, a plurality of light control elements each consisting of an optical waveguide and a control electrode provided close to the optical waveguide are arranged on a dielectric substrate having an electro-optic effect, such as a lithium niobate crystal substrate. However, it is constructed by installing a groove between the light control elements.

本発明の光制御デバイスは各光制御エレメント
を近接させて配置しても電界もれによる影響を非
常に小さくできるので多数エレメントが集積可能
である。
In the light control device of the present invention, even if the light control elements are arranged close to each other, the influence of electric field leakage can be minimized, so that a large number of elements can be integrated.

以下図面を参照し、本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は従来の導波形光制御デバイスの一例を
示す図であり、方向性結合形の光制御エレメント
を3個用いた2×4導波形光スイツチの平面図で
ある。第1図において、Z板のLiNbO3結晶基板
1上に光導波路2,3,4,5,6,7が通常の
チタン拡散法によつて形成されている。チタン拡
散法とは、光導波路2,3,4,5,6,7のパ
ターンを数百Åのチタン薄膜で作成し、1000℃程
度で数時間熱拡散を行なつて光導波路を得る方法
である。ここで光導波路2,3,4,5,6,7
の幅は全て数μm〜十数μmである。光導波路2
と3,4と5及び6と7はそれぞれ互いに数μm
程度まで近接して方向性結合器11,12,13
を形成している。光導波路2と5,3と6はそれ
ぞれ接続されている。方向性結合器11,12,
13の結合量は、それを構成する2つの光導波路
間の位相速度差によつて大きく変化するので、通
常、光スイツチでは光導波路近傍に設置した制御
電極に電圧を印加して、光導波路中に生ずる電界
と電気光学効果によつて光導波路の位相速度を変
化させてスイツチング制御を行なつている。本光
スイツチではZ板基板を用いているので方向性結
合器11,12,13のそれぞれに対する制御電
極14と15,16と17,18と19は光導波
路上に光吸収を防ぐためのSiO2膜20をはさん
で設置されている。また本光スイツチでは方向性
結合器11,12,13は制御電極に電圧を印加
しない状態で互いに100%結合となり、制御用電
極に電圧Vを印加したときに結合が0となるよう
に製作されている。すなわち、制御電極への印加
電圧が全て0のとき、光導波路2への入射光21
は方向性結合器11で光導波路3へ結合し、方向
性結合器13で光導波路7へ結合して出射光23
となる。同様に光導波路3への入射光22は光導
波路4に結合して出射光24となる。ここで制御
電極18にのみ電圧Vを印加すると、方向性結合
器13の結合が0となるので入射光21は光導波
路6からの出射光25となる。通常、本光スイツ
チのように複数の方向性結合器形光制御エレメン
トを接続する場合には、小さい角度θで光導波路
を折り曲げて接続される。但し、折れ曲り部で光
損失が小さくなるようにθの値は非常に小さい値
が用いられる。例えば光損失を1dB以下とするた
めにはθは数mrad以下とする必要がある。この
とき、折れ曲り部の長さを数mmとすると方向性
結合器12と13の間隔Sは非常に狭くなつてし
まう。例えばθ=4mrad、=2.5mmとするとS
=20μm程度となる。計算によると制御電極18
に電圧Vを印加して、制御電極16,17,19
を電圧0としたとき光導波路4及び5の中にも電
界が生じ光導波路4と5の間には、光導波路6と
7の間に生ずる位相速度差の8%に相当する位相
速度差が生じ、光導波路4からの出射光24の
1.6%(−18dB)程度に相当する光が光導波路5
にもれてしまう。
FIG. 1 is a diagram showing an example of a conventional waveguide type optical control device, and is a plan view of a 2×4 waveguide type optical switch using three directionally coupled type optical control elements. In FIG. 1, optical waveguides 2, 3, 4, 5, 6, and 7 are formed on a Z-plate LiNbO 3 crystal substrate 1 by the usual titanium diffusion method. The titanium diffusion method is a method in which the patterns of optical waveguides 2, 3, 4, 5, 6, and 7 are created using a titanium thin film with a thickness of several hundred Å, and the optical waveguides are obtained by performing thermal diffusion at approximately 1000°C for several hours. be. Here, optical waveguides 2, 3, 4, 5, 6, 7
The widths of all of them are from several μm to more than ten μm. Optical waveguide 2
and 3, 4 and 5, and 6 and 7 are each several μm apart from each other.
Directional couplers 11, 12, 13 in close proximity to
is formed. Optical waveguides 2 and 5, and 3 and 6 are connected, respectively. Directional couplers 11, 12,
Since the amount of coupling of 13 varies greatly depending on the phase velocity difference between the two optical waveguides that make up the waveguide, normally, in an optical switch, a voltage is applied to a control electrode installed near the optical waveguide. Switching control is performed by changing the phase velocity of the optical waveguide using the electric field generated in the optical waveguide and the electro-optic effect. Since this optical switch uses a Z plate substrate, the control electrodes 14 and 15, 16 and 17, 18 and 19 for each of the directional couplers 11, 12, and 13 are SiO 2 on the optical waveguide to prevent light absorption. They are installed with a membrane 20 in between. In addition, in this optical switch, the directional couplers 11, 12, and 13 are manufactured so that they are 100% coupled to each other when no voltage is applied to the control electrode, and the coupling becomes 0 when a voltage V is applied to the control electrode. ing. That is, when all voltages applied to the control electrodes are 0, the incident light 21 to the optical waveguide 2
is coupled to the optical waveguide 3 by the directional coupler 11, coupled to the optical waveguide 7 by the directional coupler 13, and output light 23
becomes. Similarly, incident light 22 to the optical waveguide 3 is coupled to the optical waveguide 4 and becomes output light 24. If the voltage V is applied only to the control electrode 18 here, the coupling of the directional coupler 13 becomes 0, so the incident light 21 becomes the output light 25 from the optical waveguide 6. Normally, when connecting a plurality of directional coupler type optical control elements like this optical switch, the optical waveguides are bent at a small angle θ to connect them. However, a very small value for θ is used so that the optical loss at the bend is small. For example, in order to reduce the optical loss to 1 dB or less, θ needs to be several mrad or less. At this time, if the length of the bent portion is several mm, the distance S between the directional couplers 12 and 13 will become extremely narrow. For example, if θ = 4mrad, = 2.5mm, S
= approximately 20 μm. According to calculations, control electrode 18
By applying a voltage V to the control electrodes 16, 17, 19
When the voltage is 0, an electric field is generated in the optical waveguides 4 and 5, and there is a phase velocity difference between the optical waveguides 4 and 5 that is equivalent to 8% of the phase velocity difference that occurs between the optical waveguides 6 and 7. of the output light 24 from the optical waveguide 4.
The light corresponding to about 1.6% (-18dB) reaches the optical waveguide 5.
It leaks.

上記の電界のもれにより生ずるクロストークは
通常許容されるクロストーク−20〜−24dBより
も大きくなつてしまう。一方、間隔Sを電界もれ
がないように大きくしようとすると折れ曲り部の
長さが非常に長くなつてしまい、多くの光制御
エレメントを小さな基板に集積することはできな
い。
The crosstalk caused by the above-mentioned electric field leakage becomes larger than the normally allowable crosstalk of -20 to -24 dB. On the other hand, if the distance S is increased to prevent electric field leakage, the length of the bent portion becomes extremely long, making it impossible to integrate many light control elements on a small substrate.

本発明では光制御エレメントの制御電極間に溝
を設置することにより上記の欠点を除くことがで
きる。
In the present invention, the above-mentioned drawbacks can be eliminated by providing grooves between the control electrodes of the light control element.

第2図は本発明による導波形光制御デバイスの
実施例を示す断面図である。本実施例は第1図の
従来の導波形光制御デバイスと光導波路、制御電
極の形状は全て同じであるが、第1図の方向性結
合器12と13の間の破線で囲んだ領域に溝30
を設置したことが異なつている。第2図は上記溝
30と方向性結合器12,13を含む断面を示
す。本実施例では制御電極18に電圧Vを印加
し、制御電極16,17,19を電圧0としたと
きでも光導波路4,5への電界のもれを小さくで
きるので、光導波路4と5の間に生ずるクロスト
ークは−20dB以下となる。ここで溝30の深さ
は、電界分布の深さ(通常3〜10μm)と同程度
であれば本発明の効果が得られる。また本実施例
では方向性結合器12と13の間隔をらに接近さ
せることが可能となり、折れ曲り部の長さをさら
に短くできるので多くの光制御エレメントを小さ
な基板に集積することができる。
FIG. 2 is a sectional view showing an embodiment of the waveguide type optical control device according to the present invention. In this embodiment, the shapes of the optical waveguide and control electrode are all the same as those of the conventional waveguide type optical control device shown in FIG. Groove 30
The difference is that the . FIG. 2 shows a cross section including the groove 30 and the directional couplers 12 and 13. In this embodiment, even when the voltage V is applied to the control electrode 18 and the voltage of the control electrodes 16, 17, and 19 is set to 0, the leakage of the electric field to the optical waveguides 4 and 5 can be reduced. The crosstalk that occurs between them is less than -20dB. Here, the effect of the present invention can be obtained if the depth of the groove 30 is approximately the same as the depth of the electric field distribution (usually 3 to 10 μm). Further, in this embodiment, the distance between the directional couplers 12 and 13 can be made closer, and the length of the bent portion can be further shortened, so that many optical control elements can be integrated on a small substrate.

第3図は本発明による導波形光制御デバイスの
他の実施例を示す断面図である。本実施例も第2
図の実施例と光導波路、制御電極形状は全て同じ
であるが、溝の位置及び形状が異なつている。本
実施例においては、制御電極16及び18に近接
してそれぞれ溝31及び32を設け、また、制御
電極17及び19に近接して溝33及び34を設
けている。但し、溝31,32,33,34はそ
れぞれ光導波路5,6,4,7からは数μm以上
離れており、また、SiO2膜20を溝を形成後コ
ーテイングしているので光伝搬特性に与える溝の
影響が小さくなるように形成されている。本実施
例は、第2図の実施例に比べて印加電界の閉込め
効果が強いので隣接光制御エレメントへの電界も
れが非常に少なく、また、電界が光導波路中に有
効に印加されるので高効率が得られるという特長
がある。
FIG. 3 is a sectional view showing another embodiment of the waveguide type optical control device according to the present invention. This example is also the second
The shapes of the optical waveguide and control electrode are all the same as in the embodiment shown in the figure, but the positions and shapes of the grooves are different. In this embodiment, grooves 31 and 32 are provided adjacent to control electrodes 16 and 18, respectively, and grooves 33 and 34 are provided adjacent to control electrodes 17 and 19, respectively. However, the grooves 31, 32, 33, and 34 are separated from the optical waveguides 5, 6, 4, and 7 by several μm or more, and since the SiO 2 film 20 is coated after forming the grooves, the optical propagation characteristics may be affected. The grooves are formed so that the influence of the grooves is reduced. In this embodiment, the effect of confining the applied electric field is stronger than in the embodiment shown in FIG. 2, so there is very little electric field leakage to adjacent optical control elements, and the electric field is effectively applied within the optical waveguide. Therefore, it has the advantage of being highly efficient.

以上述べたように本発明によれば、光制御エ
レメントを近接した場合に電界もれによる影響が
低減され、多数のエレメントが集積可能な導波形
光制御デバイスが得られる。
As described above, according to the present invention, when light control elements are placed close to each other, the influence of electric field leakage is reduced, and a waveguide light control device in which a large number of elements can be integrated can be obtained.

なお、本発明は上述の実施例に限定されないの
はいうまでもない。例えば基板としては通常光導
波路をはさんで電極が設置されるX板又はY板
LiNbO3やLiTaO3結晶等を用いることができる。
また光制御エレメントとしては、光変調器、偏光
変換器、可変波長フイルター等を集積する場合
や、全反射形の光制御エレメントを集積する場合
にも本発明を用いることができる。
It goes without saying that the present invention is not limited to the above embodiments. For example, the substrate is usually an X plate or a Y plate on which electrodes are installed across the optical waveguide.
LiNbO 3 or LiTaO 3 crystal can be used.
Furthermore, the present invention can also be used when integrating a light modulator, a polarization converter, a variable wavelength filter, etc. as a light control element, or when integrating a total reflection type light control element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の導波形光制御デバイスを示す平
面図、第2図、第3図は本発明による導波形光制
御デバイスの実施例を示す断面図である。 図において、1は誘電体基板、2,3,4,
5,6,7は光導波路、14,15,16,1
7,18,19は制御電極、30,31,32,
33,34は溝を示す。
FIG. 1 is a plan view showing a conventional waveguide type light control device, and FIGS. 2 and 3 are sectional views showing an embodiment of the waveguide type light control device according to the present invention. In the figure, 1 is a dielectric substrate, 2, 3, 4,
5, 6, 7 are optical waveguides, 14, 15, 16, 1
7, 18, 19 are control electrodes, 30, 31, 32,
33 and 34 indicate grooves.

Claims (1)

【特許請求の範囲】[Claims] 1 電気光学効果を有する誘電体基板上に光導波
路及び該光導波路に近接して設けた制御電極とか
らなる光制御エレメントを複数個配置して構成さ
れる導波形光制御デバイスにおいて、少くとも互
いに隣接する光制御エレメント間に溝を設置した
ことを特徴とする導波形光制御デバイス。
1. In a waveguide type light control device configured by arranging a plurality of light control elements each consisting of an optical waveguide and a control electrode provided close to the optical waveguide on a dielectric substrate having an electro-optic effect, A waveguide light control device characterized in that a groove is provided between adjacent light control elements.
JP3031882A 1982-02-26 1982-02-26 Waveguide type optical control device Granted JPS58147710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3031882A JPS58147710A (en) 1982-02-26 1982-02-26 Waveguide type optical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031882A JPS58147710A (en) 1982-02-26 1982-02-26 Waveguide type optical control device

Publications (2)

Publication Number Publication Date
JPS58147710A JPS58147710A (en) 1983-09-02
JPH0425524B2 true JPH0425524B2 (en) 1992-05-01

Family

ID=12300441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031882A Granted JPS58147710A (en) 1982-02-26 1982-02-26 Waveguide type optical control device

Country Status (1)

Country Link
JP (1) JPS58147710A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635206Y2 (en) * 1988-03-25 1994-09-14 日本電気株式会社 Waveguide optical device
JP2717980B2 (en) * 1989-02-16 1998-02-25 富士通株式会社 Integrated optical waveguide device
JP5092494B2 (en) * 2007-03-29 2012-12-05 住友大阪セメント株式会社 Optical waveguide device and method for suppressing temperature crosstalk of optical waveguide device
JP5007629B2 (en) * 2007-08-27 2012-08-22 住友大阪セメント株式会社 Optical waveguide device
JP5229378B2 (en) * 2011-12-19 2013-07-03 住友大阪セメント株式会社 Optical waveguide device
JP5077480B2 (en) * 2011-12-19 2012-11-21 住友大阪セメント株式会社 Optical waveguide device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTER=1978 *
APPLIED PHYSICS LETTER=1979 *

Also Published As

Publication number Publication date
JPS58147710A (en) 1983-09-02

Similar Documents

Publication Publication Date Title
US7095926B2 (en) Optical device
JP4183716B2 (en) Optical waveguide device
JPH0387704A (en) Optical circuit
US20070081766A1 (en) Optical waveguide device
JP2022549711A (en) Coplanar waveguide guidewire electrode structure and modulator
US4983006A (en) Polarization-independent optical waveguide switch
EP0721135B1 (en) Optical waveguide device
JPH0425524B2 (en)
US6337931B1 (en) Effective optical path length compensable optical device
JPS5987B2 (en) Electro-optical switches and modulators
US7088874B2 (en) Electro-optic devices, including modulators and switches
EP1193537B1 (en) Optical waveguide
JPH0375847B2 (en)
JPH07120631A (en) Optical waveguide type part
KR100288447B1 (en) Optical intensity modulator and its fabrication method
US5050947A (en) Optical waveguide control device employing directional coupler on substrate
JP2001350046A (en) Integrated optical waveguide element
JPH045174B2 (en)
JPH0588123A (en) Variable wavelength filter
JP2853663B2 (en) Integrated optical circuit
JPH0440694B2 (en)
JPH01201628A (en) Optical switch
JPH0361932B2 (en)
JP2812320B2 (en) Integrated optical circuit and manufacturing method thereof
JPS5936249B2 (en) light switch