JPS62127829A - Waveguide type liquid crystal matrix switch - Google Patents

Waveguide type liquid crystal matrix switch

Info

Publication number
JPS62127829A
JPS62127829A JP26726485A JP26726485A JPS62127829A JP S62127829 A JPS62127829 A JP S62127829A JP 26726485 A JP26726485 A JP 26726485A JP 26726485 A JP26726485 A JP 26726485A JP S62127829 A JPS62127829 A JP S62127829A
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
waveguide
waveguides
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26726485A
Other languages
Japanese (ja)
Inventor
Masayuki Niijima
新嶋 昌幸
Hisaharu Yanagawa
柳川 久治
Mikio Kokayu
小粥 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26726485A priority Critical patent/JPS62127829A/en
Publication of JPS62127829A publication Critical patent/JPS62127829A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a low loss and to reduce a crosstalk by bringing a liquid crystal to a molecular orientation in the direction of a bisector of a cross angle made by two waveguides, and setting a refractive index of the liquid crystal at the time when an electric field is impressed and when it is not impressed between electrodes, to a value being equal to a refractive index of the waveguide. CONSTITUTION:A liquid crystal cell 1s is field with a liquid crystal, and this liquid crystal has an anisotropy in its refractive index, but brought to a molecular orientation so that the refractive index becomes equal against input use and output use waveguides 10a2, 11a2. That is to say, an empty cell 12 for inserting the liquid crystal has an oriented layer which has been formed on the upper face of a substrate, and this oriented layer is brought to rubbing in the direction of a bisector of a cross angle made by two waveguides 10a2, 11a2, and the liquid crystal is brought to a molecular orientation in the direction in which the rubbing has been executed. Also, a refractive index of the waveguides 10a2, 11a2 is set so as to become roughly equal to a refractive index of the liquid crystal in case when an electric field is not impressed between the upper and lower electrodes of the liquid crystal cell 12. In this way, at the time of a switching operation, a large deflection angle is obtained, a crosstalk is reduced and an insertion loss becomes small.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光フアイバ伝送回路や端末装置などの光路切
替えに用いられる導波路形液晶光マ) IJソクススイ
ノチに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a waveguide type liquid crystal light beam (IJ) used for optical path switching in optical fiber transmission circuits, terminal devices, etc.

(従来の技術) 液晶光マトリックススイッチとして、従来クラッド層に
液晶を使用したものが知られている。第6図及び第7図
は斯る従来の液晶光マトリックススイッチを示し、下部
電極であるSi基板lの表面に5iOzバツフyN2を
介して5iO2−TazOsからなる平板導波路3が形
成されている。そして、平板導波路3の外表面にSiO
□配向層4を介して液晶のクラッドN5が配設され、更
にその外層に5iO1上部基板6が配設されている。上
述の平板導波路3には1本(例えば、2本)の平行光線
8a、 8b (第6図)が入射し、この平行光線8a
、 8bの光路中の動作点に、上述の下部電極lに加え
、前記上部基板6の外表面に形成された上部電極7が設
けられ、この上部及び下部電極7.1間に所定の電界を
印加することにより光路が切り替わるようになっている
。即ち、液晶5は電界を印加するとその結晶構造が変化
し、屈折率が変化する。これにより光路中の導波路の実
効屈折率が変化し、電界の印加部分と無印加部分とで屈
折率の界面B(第5図)が生し、伝搬光の光路が偏向さ
れ、出力光線9a。
(Prior Art) A liquid crystal optical matrix switch that uses liquid crystal in a cladding layer is conventionally known. FIGS. 6 and 7 show such a conventional liquid crystal optical matrix switch, in which a flat waveguide 3 made of 5iO2-TazOs is formed on the surface of a Si substrate 1 serving as a lower electrode via a 5iOz buffer yN2. Then, on the outer surface of the flat waveguide 3, SiO
□A liquid crystal cladding N5 is provided via the alignment layer 4, and a 5iO1 upper substrate 6 is further provided as an outer layer thereof. One (for example, two) parallel rays 8a, 8b (Fig. 6) enter the above-mentioned flat plate waveguide 3, and this parallel ray 8a
, 8b, in addition to the above-mentioned lower electrode l, an upper electrode 7 formed on the outer surface of the upper substrate 6 is provided, and a predetermined electric field is applied between the upper and lower electrodes 7.1. The optical path is switched by applying the voltage. That is, when an electric field is applied to the liquid crystal 5, its crystal structure changes and the refractive index changes. As a result, the effective refractive index of the waveguide in the optical path changes, and a refractive index interface B (Fig. 5) is created between the electric field applied part and the non-applied part, the optical path of the propagating light is deflected, and the output light beam 9a .

9bが得られる。斯(して、n木の各入出力端子を設け
、人力光路と出力光路の各交差部にパターン電極を設け
るとnxn光マトリックススイッチが得られる。
9b is obtained. In this way, by providing n tree input/output terminals and providing pattern electrodes at each intersection of the manual optical path and the output optical path, an nxn optical matrix switch is obtained.

(発明が解決しようとする問題点) 従来の光マトリツクススイッチの平tit波路3及びク
ラッド(液晶)層5の各厚みは夫々約0.5μm及び9
.0μmあり、屈折率は光の波長が1.3μmの場合で
導波路3が1.741.液晶は分子長軸方向に1.60
9.短軸方向に1.492である。このような光マトリ
ツクススイッチではレンズ系により完全な平行光線を得
ることが困難であるために、入力端から出力端までの光
路距離が長いと光束が広がってクロストーク(漏話)が
大きくなりマトリックス数を増加して大型化を図ること
が困難であった。
(Problems to be Solved by the Invention) The thicknesses of the flat tit wave path 3 and the cladding (liquid crystal) layer 5 of the conventional optical matrix switch are approximately 0.5 μm and 9 μm, respectively.
.. When the wavelength of light is 1.3 μm, the refractive index of waveguide 3 is 1.741. 1.60 in the long axis direction of the liquid crystal molecules
9. It is 1.492 in the minor axis direction. In such an optical matrix switch, it is difficult to obtain perfectly parallel light rays due to the lens system, so if the optical path distance from the input end to the output end is long, the light flux will spread and crosstalk will increase. It was difficult to increase the number and increase the size.

又、導波路3の厚みが薄いため光信号の損失が大きい。Furthermore, since the waveguide 3 is thin, the optical signal loss is large.

本発明はかかる問題点を解決するためになされたもので
、低[置火で光ファイバと接続でき、挿入tfiが小さ
く、且つ、クロストークが小さい液晶光マトリックスス
イッチを提供することを目的とする。
The present invention was made in order to solve such problems, and an object of the present invention is to provide a liquid crystal optical matrix switch that can be connected to an optical fiber with low heating, has a small insertion TFI, and has low crosstalk. .

(問題を解決するための手段) 上述の口約を達成するために本発明に依れば、導波路の
各交差部に液晶セルと、該液晶セルの上部及び下部電極
とを設け、各液晶セルに充填される液晶を当該2つの導
波路がなす交差角の実質的に2等分線方向に分子配向さ
せ、前記上部及び下部電極間の電界印加時及び無印加時
のいずれか一方における液晶の屈折率を前記導波路の屈
折率と実質的に等しい値に設定したことを特徴とする導
波路形液晶光マトリックススイッチが提供される。
(Means for Solving the Problem) According to the present invention, in order to achieve the above-mentioned conditions, a liquid crystal cell is provided at each intersection of the waveguide, and upper and lower electrodes of the liquid crystal cell are provided, and each liquid crystal The liquid crystal filled in the cell is oriented substantially in the direction of the bisector of the intersection angle formed by the two waveguides, and the liquid crystal is oriented either when an electric field is applied or when no electric field is applied between the upper and lower electrodes. There is provided a waveguide type liquid crystal optical matrix switch characterized in that the refractive index of the waveguide is set to a value substantially equal to the refractive index of the waveguide.

(作用) 本発明に依る導波路形液晶光マトリックススイッチの導
波路の各交差部に設けられ、液晶セルに充填された液晶
は電界印加時及び無印加時のいずれか一方において、そ
の屈折率が導波路の屈折率と実質的に等しい値に設定さ
れており、液晶と導波路の屈折率が等しいとき、導波路
を伝搬してきた光信号は液晶セルによって偏向されるこ
となく同導波路を伝搬していく。一方、電界状態の反転
により液晶と導波路の屈折率の界面が生じ該界面におい
て導波路を伝搬してきた光信号が反射又は屈折され、光
信号の伝搬する導波路が切替えられる。
(Function) The liquid crystal provided at each intersection of the waveguides of the waveguide-type liquid crystal optical matrix switch according to the present invention and filled in the liquid crystal cell has a refractive index that changes either when an electric field is applied or when no electric field is applied. It is set to a value that is substantially equal to the refractive index of the waveguide, and when the refractive index of the liquid crystal and the waveguide are equal, the optical signal propagating through the waveguide is propagated through the waveguide without being deflected by the liquid crystal cell. I will do it. On the other hand, the reversal of the electric field state creates an interface between the refractive index of the liquid crystal and the waveguide, at which the optical signal propagating through the waveguide is reflected or refracted, and the waveguide through which the optical signal propagates is switched.

(実施例) 以下本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は0本の入力用導波路10(10a。1 and 2 show zero input waveguides 10 (10a).

〜1oan)と、これらに交差するn木の出力用導波路
11  (11a+〜1lan)とを格子状にパターン
配列した、本発明に係るnxn液晶光マトリックススイ
ッチを示し、各導波路10a、〜10an、 1la1
〜1lanは後述するように夫々厚さ50μm1幅5o
μmの断面正方形のSift−Tag’s (2酸化ケ
イ素・タンタル酸系)から成り、各入力用4波路108
1〜10anと各出力用導波路11al=11anとは
所定の角度θ (例えば、246)をなして交差するよ
うに配設されている。
1oan) and n output waveguides 11 (11a+-1lan) intersecting these are arranged in a lattice pattern, each waveguide 10a, 10an , 1la1
~1 lan is 50μm thick, 5o wide, as described later.
It consists of Sift-Tag's (silicon dioxide/tantalic acid type) with a square cross section of μm, and 4 wave paths 108 for each input.
1 to 10an and each output waveguide 11al=11an are arranged to intersect with each other at a predetermined angle θ (for example, 246).

又、入力用導波路10a+〜1Oanの各導波路間隔及
び出力用導波路flat〜1lanの各導波路間隔は夫
々略0.5mmに設定されている。そして、各交差部、
且つ導波路の光路内に液晶挿入用の空セル12が形成さ
れている。より具体的には、液晶挿入用の空セル12は
入力用導波路10a2の光軸に対して前記所定の角度θ
の半分の角度(12°)だけ、傾けて配設されており、
且つ、出力用導波路11a2の光軸に対しても同じ角度
(12°)だけ傾けて配設されている。そして、液晶セ
ル12の一側面12aは入力用導波路10a2の上流側
に臨み、且つ出力導波路11a2の下流側に臨んでいる
Further, the interval between each waveguide of the input waveguides 10a+ to 1Oan and the interval between each waveguide of the output waveguides flat to 1lan are each set to approximately 0.5 mm. And each intersection,
Moreover, an empty cell 12 for inserting a liquid crystal is formed in the optical path of the waveguide. More specifically, the empty cell 12 for inserting the liquid crystal is formed at the predetermined angle θ with respect to the optical axis of the input waveguide 10a2.
It is arranged at an angle of half (12°),
In addition, they are arranged at an angle (12°) at the same angle with respect to the optical axis of the output waveguide 11a2. One side 12a of the liquid crystal cell 12 faces the upstream side of the input waveguide 10a2 and the downstream side of the output waveguide 11a2.

液晶セル12には液晶(例えば、Pct(1132、屈
折率は波長1.3μmに対し、分子長軸方向1.609
.短軸方向1.492 )が充填され、この液晶は屈折
率に異方性を有するが、前記入力用及び出力用導波路1
0az、 1lazに対して屈折率が等しくなるように
分子配向される。即ち、液晶挿入用の空セル12は、詳
細は後述するように基板上面に形成させた配向層を存し
、この配向層は2つの導波路10az、 1laiがな
す交差角の実質的に2等分線方向にラビングされており
、液晶はラビングされた方向に分子配向される。
The liquid crystal cell 12 has a liquid crystal (for example, Pct (1132, refractive index is 1.609 in the long axis direction of the molecule for a wavelength of 1.3 μm).
.. 1.492 ) in the short axis direction, and this liquid crystal has anisotropy in the refractive index, but the input and output waveguides 1
The molecules are oriented so that the refractive index is equal to 0az and 1laz. That is, the empty cell 12 for inserting the liquid crystal has an alignment layer formed on the upper surface of the substrate, as will be described in detail later, and this alignment layer has substantially the same angle of intersection between the two waveguides 10az and 1lai. The liquid crystal is rubbed in the direction of the rays, and the molecules of the liquid crystal are oriented in the direction of the rubbing.

導波路10az、 1lazの屈折率は液晶セル12の
後述する上下電極(第1図には仮想線で上部電極13a
が示しである)間に電界が印加されない場合の液晶の屈
折率と略等しくなるように設定しである。
The refractive index of the waveguides 10az and 1laz is determined by the upper and lower electrodes of the liquid crystal cell 12 (in FIG.
The refractive index is set to be approximately equal to the refractive index of the liquid crystal when no electric field is applied between them.

従って、上下電極に電界が印加されない場合には導波路
10az、 1lazと液晶との間に屈折率の界面が生
じないために導波路10a2. flatを伝搬してき
た光信号は導波路10az、 1lazと液晶との境界
面(前記−側面12a等)で屈折や反射を生じることな
く直進することになる。一方、上下電極に電界が印加さ
れた場合には液晶の分子は電極に対して垂直配向となり
、屈折率が小さくなって導波路10atと液晶との間に
屈折率の界面(12a)が生じ、この界面12aにおい
て導波路10a、を伝搬してきた光信号は全反射を生じ
、出力用導波路11a2にその光路を切替える。
Therefore, when no electric field is applied to the upper and lower electrodes, no refractive index interface is generated between the waveguides 10az, 1laz and the liquid crystal, so that the waveguides 10a2. The optical signal propagating through the flat propagates straight without being refracted or reflected at the interface between the waveguides 10az, 1laz and the liquid crystal (the above-mentioned negative side surface 12a, etc.). On the other hand, when an electric field is applied to the upper and lower electrodes, the liquid crystal molecules are aligned perpendicularly to the electrodes, the refractive index becomes smaller, and a refractive index interface (12a) is created between the waveguide 10at and the liquid crystal. At this interface 12a, the optical signal that has propagated through the waveguide 10a undergoes total reflection, and its optical path is switched to the output waveguide 11a2.

斯くして、導波路の各交差部の液晶セルの上下電極の電
界を公知の方法で制御すれば、nxnマトリックススイ
ッチが実現される。
Thus, by controlling the electric fields of the upper and lower electrodes of the liquid crystal cell at each intersection of the waveguides using a known method, an nxn matrix switch can be realized.

次に、第3図及び第4図に示される導波路及び液晶セル
の形成手順を参照しながら、本発明に係る液晶光マトリ
ックススイッチの構成の詳細を説明する。
Next, details of the configuration of the liquid crystal optical matrix switch according to the present invention will be explained with reference to the steps for forming the waveguide and liquid crystal cell shown in FIGS. 3 and 4.

導波路10の両側にクラッド層19を形成させる場合に
はSiO□基板15(第3図(a))に下部薄膜電極1
3bを蒸着した後(同図(b)) 、クラッド層19“
が蒸着される(同図(C))。そして、このクラッド層
19’のコア部、即ち、導波路10が形成される部分1
9′をスパッタエツチング法によりエツチングしく同図
(d)) 、これに5iOt−Ta205導波路iio
”を蒸着しく同図(e))、スパッタエツチング法によ
り前記導波路形成部分19°1を残して導波路層101
′をエツチングし、導波路10を形成する(同図(f)
)。尚、クラッド層19の導波路10の下方部分は配向
層17として機能する。
When forming the cladding layer 19 on both sides of the waveguide 10, the lower thin film electrode 1 is formed on the SiO□ substrate 15 (FIG. 3(a)).
After depositing the cladding layer 19" (FIG. 3(b)),
is deposited ((C) in the same figure). The core portion of this cladding layer 19', that is, the portion 1 where the waveguide 10 is formed.
9' is etched by a sputter etching method (see Figure (d)), and a 5iOt-Ta205 waveguide iii
The waveguide layer 101 is formed by sputter etching, leaving the waveguide forming portion 19°1, as shown in FIG.
' is etched to form the waveguide 10 (FIG. 1(f)).
). Note that the portion of the cladding layer 19 below the waveguide 10 functions as the alignment layer 17.

次に、上述のようにして形成された第3図の導波路10
に、前記交差部位置の液晶挿入用の空セル12がエツチ
ングにより穿設される(第4図(a))。そして、液晶
の分子配向を前述した一定方向に揃えるために液晶セル
12部分の配向層17に該一定方向にラビング処理(配
列処理)が施される。次いで、上部薄膜電極13aを蒸
着し、液晶注入口21を穿設した上部SiO□基板20
を、電極蒸着面を下にしてこれらが液晶挿入用の空セル
12に整合するように導波路10に接合する。このよう
に形成された液晶挿入用の空セル12に液晶注入口21
から液晶24が注入され、封止部材22により液密に封
止される。尚、前記下部薄膜電極13bは共通電極とし
て機能し、上部(1膜)電極13aはパターン電極とし
て機能し、各上部電極13aから引き出されるリードを
図示しない制御回路に接続して公知の切換制御が実行さ
れる。
Next, the waveguide 10 of FIG. 3 formed as described above is
Then, an empty cell 12 for inserting a liquid crystal at the intersection position is formed by etching (FIG. 4(a)). Then, in order to align the molecular orientation of the liquid crystal in the above-described certain direction, the alignment layer 17 in the liquid crystal cell 12 portion is subjected to a rubbing process (alignment process) in the certain direction. Next, an upper SiO□ substrate 20 on which an upper thin film electrode 13a is deposited and a liquid crystal injection port 21 is formed is formed.
are bonded to the waveguide 10 with the electrode deposition surface facing down and aligned with the empty cell 12 for inserting the liquid crystal. A liquid crystal injection port 21 is inserted into the thus formed empty cell 12 for inserting the liquid crystal.
A liquid crystal 24 is injected from the tank and sealed liquid-tightly by a sealing member 22 . The lower thin film electrode 13b functions as a common electrode, the upper (single film) electrode 13a functions as a pattern electrode, and the leads drawn out from each upper electrode 13a are connected to a control circuit (not shown) to perform known switching control. executed.

又、前記上部電極13aの形状を長さ350μm9幅1
50μmとしく第1圓)、各導波路間隔を0.5mmと
する(第2図)と、電極の間隔は約1 mとなるので、
リード幅を100μmとしても、10 X 10のマト
リックスイッチに集積可能である。
Further, the shape of the upper electrode 13a is set to have a length of 350 μm and a width of 1.
Assuming that the distance between each waveguide is 0.5 mm (Fig. 2), the distance between the electrodes will be approximately 1 m, so
Even if the lead width is 100 μm, it can be integrated into a 10×10 matrix switch.

更に、本発明の液晶光マトリックススイッチは導波路1
0.11の外形形状を種々に変更することにより5M光
フアイバ及びGl光ファイバのいずれにも適用可能であ
る。
Furthermore, the liquid crystal optical matrix switch of the present invention has a waveguide 1
By variously changing the external shape of 0.11, it can be applied to both 5M optical fiber and GI optical fiber.

更に又、上述の実施例では液晶セル12に充填される液
晶の屈折率を電界無印加時に導波路10゜11の屈折率
と略等しい値になるように設定されたが、本発明はこれ
に限定されず、電界印加時に両者の屈折率が等しくなる
ように設定するようにしてもよく、この場合、電界無印
加時に入力用導波路を伝搬してきた光信号は導波路と液
晶との界面で屈折するので、出力用導波路はこの屈折方
向に配設すればよい。
Furthermore, in the above-described embodiment, the refractive index of the liquid crystal filled in the liquid crystal cell 12 was set to be approximately equal to the refractive index of the waveguide 10° 11 when no electric field was applied. Without limitation, the refractive index of both may be set to be equal when an electric field is applied. In this case, the optical signal propagating through the input waveguide when no electric field is applied will be reflected at the interface between the waveguide and the liquid crystal. Since the beam is bent, the output waveguide may be arranged in the direction of this bending.

(発明の効果) 以上詳述したように本発明の導波路形成部分マトリック
ススイッチに依れば、導波路の各交差部の光路内に液晶
セルを設け、該液晶セルに充填される液晶の分子配向を
2つの導波路がなす交差角の実質的に2等分線方向に一
敗させ、上部及び下部電極間の電界印加時及び無印加時
のいずれか−方における液晶の屈折率を導波路の屈折率
と実質的に等しい値に設定したので、スイノチイング動
作時に大きな偏向角が得られ、クロストークが小さく挿
入1員が小さく、しかも低損失で光ファイバと接続でき
るという優れた効果を奏する。
(Effects of the Invention) As described in detail above, according to the waveguide forming part matrix switch of the present invention, a liquid crystal cell is provided in the optical path at each intersection of the waveguide, and liquid crystal molecules filled in the liquid crystal cell are provided. The alignment is made substantially in the direction of the bisector of the intersection angle formed by the two waveguides, and the refractive index of the liquid crystal is determined by changing the refractive index of the liquid crystal when an electric field is applied or when no electric field is applied between the upper and lower electrodes. Since the refractive index is set to a value substantially equal to the refractive index of , a large deflection angle can be obtained during the switching operation, and excellent effects such as small crosstalk, small insertion member, and low loss connection to the optical fiber can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の一実施例を示し、第1図は
導波路形液晶光マトリックススイッチの導波路交差部に
形成された液晶セルを示す横断面図、第2図は入力用導
波路lO及び出力用導波路11の構成を示すレイアウト
図、第3図は導波路の形成手順を説明するための工程図
、第4図は導波路内に形成される液晶セルの縦断面図、
第5図及び第6図は従来の液晶光マトリックススイッチ
の構成図である。 10・・・人力用導波路、11・・・出力用導波路、1
2・・・液晶セル、13a・・・上部(薄膜)電極、1
3b・・・下部(薄膜)電極、17・・・配向層、24
・・・液晶。 出 願 人   古河電気工業株式会社代 埋入  弁
理士 長門侃二 猟1図 第2図 第3図 (a)      (b)      (c)    
  (d)第4図 (a)           (b) 第5図 第6図
1 to 4 show one embodiment of the present invention, FIG. 1 is a cross-sectional view showing a liquid crystal cell formed at a waveguide intersection of a waveguide-type liquid crystal optical matrix switch, and FIG. 2 is an input 3 is a process diagram for explaining the waveguide formation procedure, and FIG. 4 is a vertical cross section of a liquid crystal cell formed in the waveguide. figure,
FIGS. 5 and 6 are configuration diagrams of a conventional liquid crystal optical matrix switch. 10... Waveguide for human power, 11... Waveguide for output, 1
2...Liquid crystal cell, 13a...Upper (thin film) electrode, 1
3b... Lower (thin film) electrode, 17... Orientation layer, 24
···liquid crystal. Applicant: Furukawa Electric Co., Ltd. Patent attorney: Kanji Nagato Figure 1 Figure 2 Figure 3 (a) (b) (c)
(d) Figure 4 (a) (b) Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、導波路の各交差部に液晶セルと、該液晶セルの上部
及び下部電極とを設け、各液晶セルに充填される液晶を
当該2つの導波路がなす交差角の実質的に2等分線方向
に分子配向させ、前記上部及び下部電極間の電界印加時
及び無印加時のいずれか一方における液晶の屈折率を前
記導波路の屈折率と実質的に等しい値に設定したことを
特徴とする導波路形液晶光マトリックススイッチ。 2、前記各液晶セルの上部及び下部の少なくともいずれ
か一方に配向層を設け、該配向層を配列処理したことを
特徴とする特許請求の範囲第1項記載の導波路形液晶光
マトリックススイッチ。
[Claims] 1. A liquid crystal cell and upper and lower electrodes of the liquid crystal cell are provided at each intersection of the waveguides, and the liquid crystal filled in each liquid crystal cell is The molecules are oriented substantially in the bisector direction, and the refractive index of the liquid crystal is made to be substantially equal to the refractive index of the waveguide either when an electric field is applied or when no electric field is applied between the upper and lower electrodes. A waveguide type liquid crystal optical matrix switch characterized by: 2. The waveguide type liquid crystal optical matrix switch according to claim 1, wherein an alignment layer is provided on at least one of the upper and lower parts of each of the liquid crystal cells, and the alignment layer is subjected to alignment treatment.
JP26726485A 1985-11-29 1985-11-29 Waveguide type liquid crystal matrix switch Pending JPS62127829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26726485A JPS62127829A (en) 1985-11-29 1985-11-29 Waveguide type liquid crystal matrix switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26726485A JPS62127829A (en) 1985-11-29 1985-11-29 Waveguide type liquid crystal matrix switch

Publications (1)

Publication Number Publication Date
JPS62127829A true JPS62127829A (en) 1987-06-10

Family

ID=17442426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26726485A Pending JPS62127829A (en) 1985-11-29 1985-11-29 Waveguide type liquid crystal matrix switch

Country Status (1)

Country Link
JP (1) JPS62127829A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184825A (en) * 1988-11-25 1990-07-19 Philips Gloeilampenfab:Nv Integrated semiconductor device having photoelectric switching element
US5317429A (en) * 1990-11-28 1994-05-31 Fujitsu Limited Trilayer nematic liquid crystal optical switching device
WO2001033289A1 (en) * 1999-11-01 2001-05-10 Corning Incorporated LIQUID CRYSTAL PLANAR NON-BLOCKING NxN CROSS-CONNECT
US6768856B2 (en) 2001-02-09 2004-07-27 Corning Incorporated High germanium content waveguide materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536058A (en) * 1976-07-06 1978-01-20 Mitsubishi Electric Corp Photo switching element
JPS57147618A (en) * 1981-03-10 1982-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical switch matrix
JPS5870216A (en) * 1981-10-22 1983-04-26 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch
JPS60154237A (en) * 1984-01-24 1985-08-13 Nec Corp Optical switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536058A (en) * 1976-07-06 1978-01-20 Mitsubishi Electric Corp Photo switching element
JPS57147618A (en) * 1981-03-10 1982-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical switch matrix
JPS5870216A (en) * 1981-10-22 1983-04-26 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch
JPS60154237A (en) * 1984-01-24 1985-08-13 Nec Corp Optical switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184825A (en) * 1988-11-25 1990-07-19 Philips Gloeilampenfab:Nv Integrated semiconductor device having photoelectric switching element
US5317429A (en) * 1990-11-28 1994-05-31 Fujitsu Limited Trilayer nematic liquid crystal optical switching device
WO2001033289A1 (en) * 1999-11-01 2001-05-10 Corning Incorporated LIQUID CRYSTAL PLANAR NON-BLOCKING NxN CROSS-CONNECT
US6559921B1 (en) 1999-11-01 2003-05-06 Corning Incorporated Liquid crystal planar non-blocking NxN cross-connect
US6768856B2 (en) 2001-02-09 2004-07-27 Corning Incorporated High germanium content waveguide materials

Similar Documents

Publication Publication Date Title
US4130342A (en) Passive optical channel crossover, switch and bend structure
US6055342A (en) Integrated optical intensity modulator and method for fabricating the same
EP0415386A2 (en) Optical waveguide circuit with intersections
US5044712A (en) Waveguided electrooptic switches using ferroelectric liquid crystals
US20030142262A1 (en) Liquid crystal planar non-blocking NxN cross-connect
JPH01248142A (en) Optical switch
CN112014983A (en) Electro-optical switch based on lithium niobate waveguide and manufacturing method thereof
JPS6218506A (en) Light wave propagation mode separate structural body
JPS62127829A (en) Waveguide type liquid crystal matrix switch
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JPH0634839A (en) Mutliterminal star coupler capable of making mutual connection
JPH0850261A (en) Optical circulator
JP2962378B2 (en) Light switch
JP2635986B2 (en) Optical waveguide switch
JPH01201628A (en) Optical switch
JPS61121042A (en) Optical switch
JPS60154237A (en) Optical switch
JP2788762B2 (en) Optical circuit
JP2003287727A (en) Variable light attenuating device
JPS6294823A (en) Waveguide type optical modulator
JPS58121024A (en) Optical switch
JPS61240227A (en) Optical switch device
JPH03215804A (en) Waveguide type optical attenuator and optical integrated circuit
JPS6283731A (en) Optical switch
JPS6269247A (en) Optical switch