JPS61240227A - Optical switch device - Google Patents

Optical switch device

Info

Publication number
JPS61240227A
JPS61240227A JP8284985A JP8284985A JPS61240227A JP S61240227 A JPS61240227 A JP S61240227A JP 8284985 A JP8284985 A JP 8284985A JP 8284985 A JP8284985 A JP 8284985A JP S61240227 A JPS61240227 A JP S61240227A
Authority
JP
Japan
Prior art keywords
optical
crosstalk
optical waveguide
refractive index
switch device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8284985A
Other languages
Japanese (ja)
Other versions
JPH063508B2 (en
Inventor
Hidetaka Tono
秀隆 東野
Toshihiko Makino
俊彦 牧野
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8284985A priority Critical patent/JPH063508B2/en
Publication of JPS61240227A publication Critical patent/JPS61240227A/en
Publication of JPH063508B2 publication Critical patent/JPH063508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve a low crosstalk, a low switch voltage, and a high speed responsiveness by placing symmetrical two-split parallel electrodes on a cross part so as to be positioned in the center of the cross part, through a buffer layer, and impressing voltages whose voltage amplitudes are equal to each other and whose phases are different by 180 deg., between the respective parallel electrodes. CONSTITUTION:As for a cross part 4 of two pieces of cross optical waveguides 2, 3 which is provided on a substrate 1, its effective refractive index becomes higher than the optical waveguides 2, 3. In this case, when a beam P1 is made incident on the optical waveguide 2, it nearly becomes P4, travels straight and goes out, but it partially becomes P3, and a crosstalk is generated. Two pairs of symmetrical parallel electrodes which is provided on the cross waveguide 4 are formed on about a bisector on the cross waveguide. The crosstalk generated by a slight shift of the electrode, a manufacturing condition shift, etc. of the optical waveguide is eliminated entirely by using the split electrode, and driving the voltages whose amplitudes are equal and whose phases are different by 180 deg.C. In this way, a TIR type is made small in size and low in its voltage, the high speed responsiveness is utilized, and also the crosstalk can be decreased by applying an electrical bias.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光を変調、交換することを利用する光通信お
よび、光情報処理、光応用計測の分野の光スイッチ装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical switch device in the fields of optical communication, optical information processing, and optical applied measurement that utilize modulating and exchanging light.

従来の技術 光路切換えまたは変調を行う光スィッチにおいて、低ク
ロストーク、低スイッチ電圧、高速応答が要求されてい
る。従来、高速応速の関点からは、スイッチ素子の小型
化が計れ電極容量が小さくなる点から交差型の導波路光
スィッチ、内部全反射(TIR)型光スイッチと呼ばれ
るものが盛んに研究されてきた。このタイプのスイッチ
は、高速応答性にすぐれるが、クロストークが若干悪い
ために、それをおぎなうべく改良がなされた。第5図に
示すのがそれである。この従来例ではPLZT薄膜光導
波路2,3の交差部分4の屈折率を上げて、クロストー
クを改善している。
2. Description of the Related Art Optical switches that perform optical path switching or modulation are required to have low crosstalk, low switching voltage, and high speed response. Conventionally, from the viewpoint of high-speed response, cross-type waveguide optical switches and total internal reflection (TIR) type optical switches have been actively researched because the switching elements can be made smaller and the electrode capacitance can be reduced. It's here. This type of switch has excellent high-speed response, but has slightly poor crosstalk, so improvements have been made to overcome this problem. This is shown in FIG. In this conventional example, the refractive index of the intersection 4 of the PLZT thin film optical waveguides 2 and 3 is increased to improve crosstalk.

しかしこの従来技術においては、電極11a。However, in this prior art, the electrode 11a.

11bのギャップの位置精度が厳しく、交差部分4の2
等分線よりずれると、光導波路の非対称性のためクロス
トークが劣化するという問題点があった。また、一方に
おいて、第6図に示す様な、イ      Δβ反転型
の方向性結合器型の光スィッチでは、低スイッチ電圧、
低クロストークが得られやすいが、電極長が長くなり、
スイッチ電圧と最高応答時間とはほぼ比例関係にあり、
高速応答性において劣るという欠点を有していた。
The positional accuracy of the gap 11b is severe, and the intersection part 4 2
If the optical waveguide deviates from the equal dividing line, there is a problem in that crosstalk deteriorates due to the asymmetry of the optical waveguide. On the other hand, in a Δβ inversion type directional coupler type optical switch as shown in FIG.
It is easy to obtain low crosstalk, but the electrode length becomes long,
There is a nearly proportional relationship between switch voltage and maximum response time.
It had the disadvantage of being inferior in high-speed response.

発明が解決しようとする問題点 低クロストーク、低スイッチ電圧、高速応答性にすぐれ
た光スイッチ装置を実現するために、TIR型光スイッ
チでは製作時の電極の位置ずれや交差導波路製作条件の
ずれによるクロストークの劣化が問題となっていた。ま
た、方向性結合器型では、Δβ反転法により、製作精度
の許容度は向上したが、電極長が長くなり、高速応答性
に劣るという問題点があった。
Problems to be Solved by the Invention In order to realize an optical switch device with low crosstalk, low switching voltage, and high-speed response, TIR type optical switches are designed to avoid misalignment of electrodes during fabrication and the conditions for fabricating crossed waveguides. Deterioration of crosstalk due to misalignment has been a problem. Further, in the directional coupler type, although the tolerance of manufacturing accuracy has been improved by using the Δβ inversion method, there are problems in that the electrode length becomes long and high-speed response is inferior.

問題点を解決するだめの手段 従来の技術において、問題であった、低クロストーク実
現のための製作精度の厳しさと、高速応答性に関して、
筆者らは、−次電気光学効果を有する光学材料よシなる
交差型導波路光スィッチにおいて、交差部分の実効的な
屈折率を上げた構造において、バッファ層を介し、その
交差部上に対称な2分割平行電極を交差部中央にくるよ
うに配置し、この2分割平行電極に、互いに等しい電圧
振幅で、位相が180°異なる電圧をそれぞれの平行電
極間に印加することにより光路の切換えを行う光スィッ
チを提供する。また、光導波路形状としては、L I 
N b Os 単結晶にTi拡散または、LiO外拡散
、またはHイオン交換により屈折率を上げて形成したも
のを用い、あるいは、透明な基板上に形成したP L 
Z R(x/y/z )X、 y、 z≦100.y+
z=100))  薄膜を導波路材料に用い、PLZT
薄膜の膜厚を変えたり、バッファ層より屈折率の大きな
透明薄帯をPLZT薄膜の上に装荷することにより、実
効的な屈折率を上げたものを用いる。また、バッファ層
には透明な誘電体薄膜あるいは、ITOなどの透明導電
性薄膜などを用いる。
Means to solve the problem In conventional technology, we have to solve the problem of strict manufacturing precision and high-speed response to achieve low crosstalk.
In a crossed waveguide optical switch made of an optical material with a -order electro-optic effect, we have developed a structure in which the effective refractive index of the intersection is increased, and a symmetrical waveguide is placed on the intersection via a buffer layer. The optical path is switched by placing two divided parallel electrodes in the center of the intersection, and applying voltages with the same voltage amplitude and 180 degrees of phase difference between the two divided parallel electrodes between the two parallel electrodes. Provide light switches. In addition, the shape of the optical waveguide is L I
NbOs single crystal formed by increasing the refractive index by Ti diffusion, LiO out-diffusion, or H ion exchange, or P L formed on a transparent substrate.
Z R(x/y/z)X, y, z≦100. y+
z=100)) thin film as the waveguide material, PLZT
The effective refractive index is increased by changing the thickness of the thin film or by loading a transparent ribbon having a higher refractive index than the buffer layer on top of the PLZT thin film. Further, a transparent dielectric thin film or a transparent conductive thin film such as ITO is used for the buffer layer.

作  用 本発明の手段において、交差光導波路の交差部分の屈折
率を高くすることにより、低クロストーク化を計り、わ
ずかな交差角によりスイッチ電圧化が可能となり、短い
電極長により高速応答性が可能となるが、製作時の電極
位置ずれや光導波路製作時の条件ずれによる非対称性に
よるクロストーク劣化を、対称2分割平行電極を設け、
これに、位相の1800異なる等振幅の電圧を印加する
ことにより、あたかもΔβ反転型方向性結合器であるか
のごとく、クロストークが、電圧により微調整可能とな
り、低クロストーク化が可能となる。
Function: In the means of the present invention, by increasing the refractive index of the crossing portion of the crossed optical waveguides, it is possible to reduce crosstalk, and a small crossing angle enables switching voltage, and a short electrode length increases high-speed response. However, it is possible to prevent crosstalk degradation due to asymmetry caused by misalignment of the electrode position during fabrication or misalignment of conditions during fabrication of the optical waveguide, by providing symmetrical two-part parallel electrodes.
By applying equal amplitude voltages with 1800 phase differences to this, crosstalk can be finely adjusted by voltage, as if it were a Δβ inversion type directional coupler, and crosstalk can be reduced. .

実施例 第1図は本発明の一実施例を示す上面図である。Example FIG. 1 is a top view showing an embodiment of the present invention.

同図において、基板1上に設けられた交差する2本の光
導波路2,3の交差部4は、光導波路2゜3よりも実効
的な屈折率が高くなっている。このときに光導波路2に
Pl  の光が入射すると、はとんどはP4となって直
進して出ていくが、一部はP3  となりクロストーク
が発生する。交差導波路4上に設けられた2組の対称平
行電極対、この例では、等電極ギャップで、等しい長さ
L /2を有する平行電極対、6a−sb、5a−6d
が、バッファ層6を介して、交差導波路上のほぼ二等分
線上に形成されている。電極対5a−5bと5cm6層
間に、同じ電圧を印加すると、従来例とほぼ同一の動作
を示す。従来においては、このTIR型光スイッチのス
イッチ動作は次の様に考えられていた。電極に印加した
電圧により、電気光学材料内部に内部電界が誘起させ、
この内部電界により1o−4〜10−3程度だけ屈折率
の低い部分を発生させ、導波光が、この低屈折率部によ
り全反射し切換わると考えられていた。
In the figure, the intersection 4 of the two intersecting optical waveguides 2 and 3 provided on the substrate 1 has a higher effective refractive index than the optical waveguide 2.3. At this time, when light of Pl enters the optical waveguide 2, most of the light becomes P4 and goes straight out, but some becomes P3 and crosstalk occurs. Two symmetric parallel electrode pairs provided on the crossed waveguide 4, in this example parallel electrode pairs with equal electrode gap and equal length L /2, 6a-sb, 5a-6d
is formed approximately on the bisector of the crossed waveguide via the buffer layer 6. When the same voltage is applied between the electrode pair 5a-5b and six 5 cm layers, almost the same operation as the conventional example is exhibited. Conventionally, the switching operation of this TIR type optical switch was considered as follows. An internal electric field is induced inside the electro-optic material by the voltage applied to the electrode,
It was believed that this internal electric field generates a portion with a low refractive index of about 10@-4 to 10@-3, and that the guided light is totally reflected by this low refractive index portion and is switched.

益帆毫等は、交差光導波路の研究を通じTIR型光スイ
ッチの動作原理が従来とは少し趣を異にするという見解
を持つに到った。というのは、交差角1°程度にした場
合、導波路の屈折率増加量Δn(光の閉じこめに寄与す
る屈折率増加分)が10−5程度においては、印加電圧
の低い時には、方向性結合器型の動作を示し、直進光と
反射光出力が、電圧を上げていくと凝周期的反転をくり
かえす動1      作を示すため、TIR光スイッ
チといえども、交差部において、場所ごとに伝搬定数β
と結合係数にの異なる偶・奇モードの結合と考え、電圧
印加により、結合係数Kが変化して、出力の変化となっ
て出てくると考えだ方が都合が良いことに気づいた。理
論的にも、この考えを裏付ける結果が出ており、この考
えの正当なことを示しているという知見を得た。筆者等
は、この知見から、方向性結合器におけるΔβ反転法を
詳細に検討した結果、TIR型導波路光スイッチにおい
て、応用可能なことを見出し、分割電極を用い、等振幅
、1800位相の異なる電圧駆動することにより多少の
電極の位置ずれ、光導波路の製作条件ずれ等によるクロ
ストークを完全になくする状態が実現できることをつき
とめた。本発明によシ、TIR型の小型。
Through research on crossed optical waveguides, Masuho et al. came to the conclusion that the operating principle of TIR type optical switches is slightly different from conventional ones. This is because when the intersection angle is about 1°, when the waveguide refractive index increase Δn (refractive index increase that contributes to light confinement) is about 10-5, directional coupling occurs when the applied voltage is low. It exhibits a vessel-like operation, in which the straight light and reflected light output repeat periodic reversal as the voltage is increased, so even though it is a TIR optical switch, the propagation constant varies at each location at the intersection. β
I realized that it is more convenient to think of this as coupling between even and odd modes with different coupling coefficients, and to think that applying a voltage changes the coupling coefficient K, resulting in a change in the output. Theoretically, we have obtained results that support this idea, and we have obtained the knowledge that this idea is valid. Based on this knowledge, the authors investigated the Δβ inversion method in directional couplers in detail and found that it can be applied to TIR waveguide optical switches. We have found that by voltage driving, it is possible to completely eliminate crosstalk caused by slight electrode positional deviations, deviations in optical waveguide manufacturing conditions, etc. According to the present invention, a small TIR type.

低電圧化、高速応答性を生かし、更に、クロストークを
電気的なバイアス印加により減少させることが可能とな
9、高性能な光スィッチを提供できることになった。
It has become possible to provide a high-performance optical switch that takes advantage of low voltage and high-speed response, and can further reduce crosstalk by applying an electrical bias9.

具体的なスイッチ構造について述べる。第2図は、光導
波路をL I N b O3単結晶基板1に形成したも
のを示す。TfO熱拡散や、Liの外拡散や、Hイオン
交換法により、交差光波路礼 3,4を形成し、交差部
の導波路は、Δnを大きくしである。バッファ層6には
、ドリフトを押えるためITOを用いた。電極sa、s
b等はAIを用いて蒸着形成した。これらの構造のスイ
ッチで本発明の分割電極構造を用いたところ、従来のク
ロストーク1o〜25 dBが、電圧数V印加すること
により、3odB以下に減少することを確認した。
The specific switch structure will be described. FIG. 2 shows an optical waveguide formed on a L I N b O3 single crystal substrate 1. In FIG. Intersecting optical waveguides 3 and 4 are formed by TfO thermal diffusion, Li out-diffusion, and H ion exchange, and the waveguides at the intersection have a large Δn. ITO was used for the buffer layer 6 in order to suppress drift. electrodes sa, s
b etc. were formed by vapor deposition using AI. When the split electrode structure of the present invention was used in switches having these structures, it was confirmed that the conventional crosstalk of 10 to 25 dB was reduced to 3 odB or less by applying a voltage of several volts.

第3,4図では、光導波路にPLZT薄膜7を用いた実
施例の一つを示す。第3図においては、サファイヤ基板
1(0面)上にPLZT(2810/1oo)組成のタ
ーゲットによりマグネトロンスパッタ法によりエピタキ
シャル成長させた約3500人の薄膜を約SOO人エツ
チングし、交差部4を除く光導波路2,3は1oOo人
エツチングしてリッジ型導波路を形成した。この上にバ
ッフ1層にTa2o6のアモルファス膜を約1500A
積層し、その上に4Wギヤツプの1閣長さの分割電極を
形成した。交差角102幅10μmの導波路とした。P
LZT薄膜は成長条件により1次のものも2次の電気光
学効果をもつものもできるが、本実施例では1次の電気
光学効果を示すものを用いた。
3 and 4 show one embodiment in which a PLZT thin film 7 is used in the optical waveguide. In FIG. 3, a thin film of approximately 3,500 layers epitaxially grown on a sapphire substrate 1 (plane 0) by magnetron sputtering using a target with a composition of PLZT (2810/1oo) is etched by approximately SOO, and the light guide excluding the intersection 4 is etched. Waveways 2 and 3 were etched 1000 times to form a ridge-type waveguide. On top of this, a Ta2o6 amorphous film is applied as a buffer layer at approximately 1500A.
They were laminated, and a 4W gap one cabinet length split electrode was formed thereon. The waveguide had a crossing angle of 102 and a width of 10 μm. P
The LZT thin film can have either a first-order or a second-order electro-optic effect depending on the growth conditions, but in this example, a film showing a first-order electro-optic effect was used.

スイッチ電圧は約5vが得られ、数Vのオフセット電圧
印加で、クロストークが、10dBから2odB以下ま
で減少した。
A switch voltage of approximately 5V was obtained, and crosstalk was reduced from 10 dB to 2 odB or less by applying an offset voltage of several volts.

第4図では、第3図と同様なPLZT薄膜7を用い、P
LZT薄膜にエツチング加工を行わずに、その上に透明
薄帯としてTa2o5アモルファス膜を、導波路孔 3
には約1oo人、交差部上には2oO人形成し、バッフ
1層6には、A12o3を鋤口したT a 205膜を
用いて、約1600人形成し、分割電極5a、5b等を
設けた。寸法は第3図と同一であった。この時、スイッ
チ電圧、クロストークとも、第3図と同様な好結果を得
たが、第4図の場合には損失が第3図の場合より若干減
少した。
In FIG. 4, a PLZT thin film 7 similar to that in FIG.
Without etching the LZT thin film, a Ta2o5 amorphous film was placed on top of it as a transparent ribbon, and the waveguide hole 3
Approximately 100 people were formed on the surface, and 200 people were formed on the intersection, and approximately 1600 people were formed on the buffer 1 layer 6 using a T a 205 film coated with A12O3, and divided electrodes 5a, 5b, etc. were provided. Ta. The dimensions were the same as in Figure 3. At this time, good results similar to those in FIG. 3 were obtained for both switch voltage and crosstalk, but in the case of FIG. 4, the loss was slightly lower than in the case of FIG. 3.

以上の様に、本発明により、低スイッチ電圧。As described above, the present invention provides low switching voltage.

低クロストーク、高速応答性に優れた光スイッチ装置が
提供されることになった。
An optical switch device with low crosstalk and excellent high-speed response has now been provided.

なお、本発明の実施例では、バッフ7層に1、To、T
a205.A6203添加T a 20 sを用いたが
、これに限定するものではない。
In addition, in the embodiment of the present invention, 1, To, T
a205. Although A6203-added T a 20 s was used, the present invention is not limited to this.

発明の効果 本発明により、低スイッチ電圧、低クロストーク、高速
応答性に優れた光スイッチ装置がバイアス電圧印加によ
シ容易に得られる様になった。特に、クロストークにお
いては、数Vのバイアス印加により、約5〜10dBの
減少が計られ本発明の有用性が示された。
Effects of the Invention According to the present invention, an optical switch device with low switching voltage, low crosstalk, and excellent high-speed response can be easily obtained by applying a bias voltage. In particular, crosstalk was reduced by approximately 5 to 10 dB by applying a bias of several volts, demonstrating the usefulness of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す上面図、第2図は本発
明の一実施例を示すL I N b Os単結晶を用い
た光スイッチ装置の断面図、第3図、第4図は本発明の
一実施例を示すPLZT薄膜を用いた光スイッチ装置を
示す断面図、第6図、第6図は従来例を示す上面図でち
る。 1・・・・・・基板、2. 3. 12. 13・・・
−・・光導波路、4・・・・・・光導波路交差部高屈折
率領域、5a、  sb。 sc、sb、11a、  11b・・・・・・電極、6
・・・・・・バッファ層、7・・・・・・PLZT薄膜
、8・・・・・・透明薄帯。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名4・
・・光31液路擾を部諒し痛碌域SA、5b、6t、5
d−’f、 硫 第2図 第 35!1 第4図
FIG. 1 is a top view showing an embodiment of the present invention, FIG. 2 is a sectional view of an optical switch device using a L I N b Os single crystal showing an embodiment of the present invention, FIGS. The figure is a sectional view showing an optical switch device using a PLZT thin film showing an embodiment of the present invention, and FIGS. 6 and 6 are top views showing a conventional example. 1...Substrate, 2. 3. 12. 13...
-... Optical waveguide, 4... Optical waveguide intersection high refractive index region, 5a, sb. sc, sb, 11a, 11b... Electrode, 6
. . . Buffer layer, 7 . . . PLZT thin film, 8 . . . Transparent ribbon. Name of agent: Patent attorney Toshio Nakao and 1 other person 4.
・・Review the light 31 liquid path, and the painful area SA, 5b, 6t, 5
d-'f, Sulfur Figure 2 Figure 35!1 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)一次電気光学係数を有する電気光学材料よりなる
2本の交差する光導路の交差部分が、前記光導波路の他
の部分よりも屈折率の大きく、かつ、前記光導波路の交
差部分の上に、透明なバッファ層を介して、長さの等し
い2組の対称な平行電極対を有する光スイッチ装置にお
いて、前記2組の対称な平行電極対に、互いに大きさが
等しく、位相の180°反転した電圧を印加することに
より光を切換えることを特徴とする光スイッチ装置。
(1) The intersection of two intersecting optical guides made of an electro-optic material having a first-order electro-optic coefficient has a higher refractive index than other parts of the optical waveguide, and is above the intersection of the optical waveguides. In an optical switch device having two pairs of symmetrical parallel electrodes having equal lengths, the two pairs of parallel electrodes have equal sizes and a phase of 180° through a transparent buffer layer. An optical switch device that switches light by applying an inverted voltage.
(2)光導波路が、LiNbO_3単結晶にTi拡散ま
たは、Li外拡散、またはH^+イオン交換により屈折
率を上げて形成することを特徴とする特許請求の範囲第
1項記載の光スイッチ装置。
(2) The optical switch device according to claim 1, wherein the optical waveguide is formed in a LiNbO_3 single crystal by increasing the refractive index by Ti diffusion, Li out-diffusion, or H^+ ion exchange. .
(3)光導波路が、透明な基板上に形成された、鉛、ジ
ルコニウム、ランタン、チタンよりなる複合酸化物PL
ZT(x/y/z)薄膜 (Pb_1_−_x_/_1_0_0La_x_/_1
_0_0(Zr_y_/_1_0_0Ti_z_/_1
_0_0)_x_/_4_0_0O_3、(0≦x、y
、z≦100、y+Z=100))からなり、前記光導
波路部分の膜厚が大きい交差する2本のリッジ構造を有
するものあるいは、前記光導波路部分が、前記PLZT
薄膜の上にバッファ層より屈折率の大きな交差する2本
の透明薄帯により前記光導波路の実効屈折率を上げたこ
とを特徴とする特許請求の範囲第1項記載の光スイッチ
装置。
(3) Optical waveguide is a composite oxide PL made of lead, zirconium, lanthanum, and titanium formed on a transparent substrate
ZT (x/y/z) thin film (Pb_1_−_x_/_1_0_0La_x_/_1
_0_0(Zr_y_/_1_0_0Ti_z_/_1
_0_0)_x_/_4_0_0O_3, (0≦x,y
, z≦100, y+Z=100)), and the optical waveguide portion has a large film thickness and has a structure of two intersecting ridges, or the optical waveguide portion is made of the PLZT
2. The optical switch device according to claim 1, wherein the effective refractive index of the optical waveguide is increased by two intersecting transparent ribbons having a higher refractive index than the buffer layer on the thin film.
(4)透明なバッファ層が、透明誘電体薄膜あるいは、
透明導電性薄膜よりなることを特徴とする特許請求の範
囲第1項記載の光スイッチ装置。
(4) The transparent buffer layer is a transparent dielectric thin film or
The optical switch device according to claim 1, characterized in that it is made of a transparent conductive thin film.
JP8284985A 1985-04-18 1985-04-18 Optical switch device Expired - Lifetime JPH063508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8284985A JPH063508B2 (en) 1985-04-18 1985-04-18 Optical switch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8284985A JPH063508B2 (en) 1985-04-18 1985-04-18 Optical switch device

Publications (2)

Publication Number Publication Date
JPS61240227A true JPS61240227A (en) 1986-10-25
JPH063508B2 JPH063508B2 (en) 1994-01-12

Family

ID=13785821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8284985A Expired - Lifetime JPH063508B2 (en) 1985-04-18 1985-04-18 Optical switch device

Country Status (1)

Country Link
JP (1) JPH063508B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273207A (en) * 1985-09-27 1987-04-03 Fujitsu Ltd Optical waveguide device
WO1997046909A1 (en) * 1996-06-05 1997-12-11 HEINRICH-HERTZ-INSTITUT FüR NACHRICHTENTECHNIK BERLIN GMBH Digital optical switch
EP1406115A2 (en) * 2002-09-05 2004-04-07 FiBest Limited Directional coupler type optical modulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273207A (en) * 1985-09-27 1987-04-03 Fujitsu Ltd Optical waveguide device
JPH0578016B2 (en) * 1985-09-27 1993-10-27 Fujitsu Ltd
WO1997046909A1 (en) * 1996-06-05 1997-12-11 HEINRICH-HERTZ-INSTITUT FüR NACHRICHTENTECHNIK BERLIN GMBH Digital optical switch
EP1406115A2 (en) * 2002-09-05 2004-04-07 FiBest Limited Directional coupler type optical modulator
EP1406115A3 (en) * 2002-09-05 2005-02-09 FiBest Limited Directional coupler type optical modulator
US6973238B2 (en) 2002-09-05 2005-12-06 Fibest, Ltd. Optical switch and optical communication system

Also Published As

Publication number Publication date
JPH063508B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JP4711351B2 (en) Light modulator
US5303315A (en) Near Z digital switch
US11994758B1 (en) Active photonic devices with enhanced pockels effect via isotope substitution
US4172630A (en) Multimode electrooptic waveguide switch
JP3272064B2 (en) 4-section optical coupler
JP3250712B2 (en) Polarization independent light control element
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JPS61240227A (en) Optical switch device
JPH07325276A (en) Polarization-independent optical control element
JP2646558B2 (en) Optical polarization control element
JP2000028979A (en) Optical control element independent of polarization
JPH0375847B2 (en)
JPH0756199A (en) Polarization-independent waveguide type optical switch
JPH0721597B2 (en) Optical switch
JPH05297332A (en) Optical modulator
JPH0750284B2 (en) Optical path switch
JPH0827447B2 (en) Optical waveguide device
JPH03163534A (en) Optical deflecting element
JP3139009B2 (en) Light switch
JPS61231522A (en) Optical control type optical switch device
JPH0713685B2 (en) Crossed-waveguide optical switch
JP2606552B2 (en) Light control device
JPS6269247A (en) Optical switch
JPS6259933A (en) Optical switch
JPS63221306A (en) Light guide type optical control device