JPS61121042A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS61121042A
JPS61121042A JP59242918A JP24291884A JPS61121042A JP S61121042 A JPS61121042 A JP S61121042A JP 59242918 A JP59242918 A JP 59242918A JP 24291884 A JP24291884 A JP 24291884A JP S61121042 A JPS61121042 A JP S61121042A
Authority
JP
Japan
Prior art keywords
optical
optical waveguides
waveguides
waveguide
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59242918A
Other languages
Japanese (ja)
Inventor
Osamu Yamazaki
山崎 攻
Takao Kawaguchi
隆夫 川口
Hidetaka Tono
秀隆 東野
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59242918A priority Critical patent/JPS61121042A/en
Publication of JPS61121042A publication Critical patent/JPS61121042A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a device including coupling parts small-sized by arranging optical waveguides for incident light in parallel approximately on a substrate and providing another output-side optical waveguide of a multiplexer crossing said optical waveguides and providing an optical switch of total reflection type at each intersection of optical waveguides. CONSTITUTION:Optical waveguides of load type coated with a tantalum oxide are used as the first - the fourth optical waveguides 2-5. Input-side and output-side end faces 16 and 17 of a substrate 1 are produced by cleavage along the R surface of a sapphire. The first - the fifth optical waveguides 2-6 are produced in parallel and vertically to the input end face in accordance with the core diameter of an optical fiber. Another optical waveguide, namely, the fifth optical waveguide 6 is provided to cross the first - the fourth optical waveguides 2-5 at 2 deg. and is bent at a low curvature before the output end face 17 to be vertical to the output end face. The thickness of an aluminum oxide of the waveguide is increased twice in crossing parts, and 1A-4A optical switches 8-11 are provided there.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光信号の伝送に用いられる光スイッチに関する
もので、特に複数個の伝送路を有する場合に特に有効な
光スイッチに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical switch used for transmitting optical signals, and particularly to an optical switch that is particularly effective when having a plurality of transmission paths.

従来の技術 光信号伝送系に用いられる光スイッチは、伝送路の切換
えや、選択的光信号の抽出や送出のため使用される。従
来はプリズムやミラーを機械的に駆動して光路を変える
光スイッチが用いられていたが、機械式であるため応答
速度が遅く、最近では電気光学効果や音響光学効果を用
いた電子的光スイッチが研究されるようになった。なか
でも全反射型光スイッチは、超高速で、超小型であり、
最も実用性が高い。(C,S、Tsai、IEICK 
J。
2. Description of the Related Art Optical switches used in optical signal transmission systems are used to switch transmission paths and selectively extract and send out optical signals. Conventionally, optical switches have been used to change the optical path by mechanically driving a prism or mirror, but because they are mechanical, the response speed is slow, and recently electronic optical switches that use electro-optic or acousto-optic effects have been used. has begun to be studied. Among these, total internal reflection type optical switches are ultra-high speed and ultra-compact.
The most practical. (C.S., Tsai, IEICK
J.

Quantum 、Electronics &人pp
lications 、vol。
Quantum, Electronics & People pp
lications, vol.

QE−14PI)513.1978) 発明が解決しようとする問題点 従来の全反射型光スイッチで光マルチプレクサを構成す
る場合、1ケの全反射型光スイッチで2個の入射側の光
導波路の導波光を、その導波路の交差する部分に制御電
極をおき、電気光学効果で交差部分の等側屈折率を変化
させて、導波光を透過もしくは全反射させることにより
光路を切換える。この際出射側の一方を出力導波路とす
ると交差部分の電界の制御により、電界を印加すると全
反射側、電界を印加しないと直進透過する側の光信号が
選択できる。このような全反射型光スイッチを多段ピラ
ミッド型に接続すると光マルチプレクサが構成される。
QE-14PI) 513.1978) Problems to be Solved by the Invention When configuring an optical multiplexer using conventional total reflection type optical switches, it is difficult to combine two optical waveguides on the input side with one total reflection type optical switch. A control electrode is placed at the intersection of the waveguides, and the electro-optic effect changes the isolateral refractive index at the intersection to cause the guided light to be transmitted or totally reflected, thereby switching the optical path. In this case, if one of the output sides is used as an output waveguide, by controlling the electric field at the intersection, it is possible to select the optical signal on the total reflection side when an electric field is applied, and the optical signal on the straight transmission side when no electric field is applied. An optical multiplexer is constructed by connecting such total reflection type optical switches in a multi-stage pyramid shape.

つまりN段接続すると2 個の入力ポートを有するマル
チプレクサとなる。もちろん入力と出力を逆にするとデ
マルチプレクサとなることは当然である。
In other words, if N stages are connected, it becomes a multiplexer with two input ports. Of course, if the input and output are reversed, it becomes a demultiplexer.

従来の構成では、光導波路が角度をもって交差するため
、多段となると入力端で多数の光導波路の角度の違いが
大きくなり、外部の光ファイバ等への結合が著しく困難
であり、上記の光導波路の一部にゆるい曲率もたせ、光
導波路を平行に配置することが行われていたが、曲率を
大きくできないため基板全体が大きな寸法となった。ま
た光スイッチの部分の基板の結晶軸上での角度がスイッ
チにより異り等制約に電気光学効果が異るため、光スイ
ッチの効率も変化し、制御用の印加電圧が異るという問
題があった。また光スイッチにおける損失が透過した導
波光と全反射した導波光により異るため、多段接続した
場合、全段透過で来た光と、全段とも全反射で来た光の
強度の差は無視できないという問題があった。、また構
成上、2N以外の入力ポートの数の構成とすることが困
難であり、駆動回路も著しく複雑であった。
In the conventional configuration, the optical waveguides intersect at an angle, so when the optical waveguides are multistage, the difference in angle between the many optical waveguides becomes large at the input end, making coupling to an external optical fiber etc. extremely difficult. Conventionally, a part of the substrate had a gentle curvature and the optical waveguides were arranged in parallel, but since the curvature could not be made large, the overall size of the substrate became large. In addition, the angle of the optical switch part on the crystal axis of the substrate differs depending on the switch, and the electro-optic effect varies depending on the switch, so the efficiency of the optical switch also changes, causing the problem that the applied voltage for control differs. Ta. In addition, the loss in an optical switch differs depending on the transmitted guided light and the totally reflected guided light, so when connecting multiple stages, the difference in intensity between the light transmitted through all stages and the light transmitted through all stages can be ignored. The problem was that I couldn't do it. Furthermore, due to the structure, it is difficult to configure the number of input ports other than 2N, and the drive circuit is also extremely complicated.

問題点を解決するための手段 本発明は従来の問題を解決するために、基板上にまずほ
ぼ平行に入射光の光導波路を配置し、これらの光導波路
に交差するもうひとつのマルチプレクサの出力側の光導
波路を設ける。それぞれの光導波路の交点に全反射型の
光スイッチを設けて構成するものである。
Means for Solving the Problems In order to solve the conventional problems, the present invention first arranges optical waveguides for incident light almost parallel on a substrate, and then connects the output side of another multiplexer that intersects these optical waveguides. An optical waveguide is provided. A total reflection type optical switch is provided at the intersection of each optical waveguide.

作用 本発明における光スイッチの構成では、光スイッチのう
ち、検出すべき所望のチャンネルの光導波路に配置した
光スイッチにのみ電界を印加することにより動作する。
Operation The optical switch according to the present invention operates by applying an electric field only to the optical switch disposed in the optical waveguide of the desired channel to be detected.

それぞれの光スイッチに順次電界を印加することにより
、多数の入射光信号を順次検出する光マルチプレクサと
して動作する。
By sequentially applying an electric field to each optical switch, it operates as an optical multiplexer that sequentially detects a large number of incident optical signals.

逆にするともちろんデマルチプレクサとしても動作する
Of course, if reversed, it also works as a demultiplexer.

本発明は全反射型の光スイッチでは、電界を印加しない
場合、即ち透過する導波光はほとんど損失がないが、全
反射する方の導波光はスイッチ部分で、約1デシベル程
度損失があることに注目したもので、どのチャンネルの
入射光も、−回だけ全反射するだけであるので、チャン
ネルによる光信号の損失はばらつきが少く、はぼ一定で
ある。
In the present invention, in a total reflection type optical switch, when no electric field is applied, that is, there is almost no loss in the transmitted guided light, but the guided light that is totally reflected has a loss of about 1 decibel at the switch part. In this case, since the incident light of any channel is totally reflected only - times, the optical signal loss due to the channels has little variation and is almost constant.

また入射光信号の数も任意で、2 に限定されず、電界
の印加もシフトレジスタ等の回路で簡単に実施できる。
Further, the number of incident optical signals is arbitrary and is not limited to 2, and the application of an electric field can be easily implemented using a circuit such as a shift register.

また各入射光の接続される導波路も平行に構成できるの
で、プリズムやレンズ等により一括して光フアイバ列に
結合できるという効果がある。したがって、結合部も含
め極めて小型にできる。また光スイッチも平行に並んで
いるため、電気光学効果は等しく、駆動回路も同一でよ
く、都合がよい。
Furthermore, since the waveguides to which each incident light beam is connected can also be constructed in parallel, there is an effect that the light beams can be collectively coupled to an optical fiber array using a prism, a lens, or the like. Therefore, it can be made extremely compact including the coupling portion. Furthermore, since the optical switches are arranged in parallel, the electro-optic effect is the same and the drive circuit can be the same, which is convenient.

実施例 第1図は本発明の一実施例を示す概略図である。Example FIG. 1 is a schematic diagram showing an embodiment of the present invention.

基板1は電気光学効果が大きく、光損傷のない材料であ
るPLZT薄膜をサファイアC面上にエピタキシャル成
長させて用いた。第1光導波路2から第4光導波路は酸
化アルミニウムの薄い層を帯状に設け、全体を酸化メン
タルで覆ったいわゆるロード型の光導波路とした。基板
1の入力側、出力側の端面16,17をサファイアのR
面に合わせてへき開して作製した結果、このへき開面は
極めて滑かで複数個の光導波路にほぼ垂直な面となリ、
端面結合に好適であった。第1光導波路2から第5光導
波路6までは、光ファイバの芯径に合わせて126ミク
ロンピッチで平行にかつ入力端面に垂直に作製した。こ
れらの光導波路に交差するもうひとつの光波路即ち第6
光導波路6は上記の第1ないし第4光導波数2〜5と交
差角2度で設け、出力端面17の手前で出力端面に垂直
になるようゆるい曲率で曲げた。それぞれの光導波路の
交差する部分には導波路の酸化アルミニウムの厚さを2
倍にしてあり1人光スイッチ8から4人光スイッチ11
を設けた。これらの光スイッチの電極間に電界を印加し
ない場合、第1ないし第4光導波路の導波光は直進し、
第6光導波路6へ移ることはない。ここでは、交差部で
の酸化アルミニウムの厚さが厚いので、洩れ光はすくな
い。
For the substrate 1, a PLZT thin film, which is a material that has a large electro-optic effect and is free from optical damage, was epitaxially grown on a sapphire C surface. The first to fourth optical waveguides were so-called road-type optical waveguides in which a thin layer of aluminum oxide was provided in a band shape and the entire structure was covered with mental oxide. The input side and output side end faces 16 and 17 of the substrate 1 are made of sapphire.
As a result of cleavage according to the plane, the cleaved plane is extremely smooth and almost perpendicular to the multiple optical waveguides.
It was suitable for end face bonding. The first to fifth optical waveguides 2 to 6 were fabricated parallel to each other at a pitch of 126 microns to match the core diameter of the optical fiber and perpendicular to the input end surface. Another optical waveguide intersects these optical waveguides, that is, the sixth optical waveguide.
The optical waveguide 6 was provided at an intersecting angle of 2 degrees with the first to fourth optical waveguides 2 to 5, and was bent with a gentle curvature before the output end face 17 so as to be perpendicular to the output end face. The thickness of the aluminum oxide of the waveguide is 2 at the intersection of each optical waveguide.
There are 1 person light switch 8 to 4 person light switch 11.
has been established. When no electric field is applied between the electrodes of these optical switches, the guided light in the first to fourth optical waveguides travels straight,
It does not move to the sixth optical waveguide 6. Here, since the thickness of the aluminum oxide at the intersection is thick, there is little light leakage.

ここで、任意の光スイッチに電界を印加すると、そこの
光導波路を進む導波光が第6光導波路6へ乗り移る。し
たがって光スイッチの1人から4人を順次動作させるこ
とにより4人力のマルチプレクサとして動作させること
ができた。この実施例では同一の基板1の上にもうひと
つの光導波路である第6光導波路7を設け、ひとつの入
力から複数の光導波路ヘデマルチプレクシングする機能
も組みこんである。光スイツチ部の動作は同様であるの
で説明を省くが、これにより光伝送路のアクセサとして
働かせることも可能である。即ち、例えば第2光導波路
3を伝搬する光信号をアクセスしようとすれば、2人光
スイッチ9に電界を印加し、第5光導波路6の出力信号
としての取出すことができる。この信号を、そのままあ
るいはデータ処理を行い再び第6光導波路7から2B光
スイツチ13へ介して、第2光導波路へ光信をもどすこ
とができ、アクセサとして機能する。この場合、その他
の導波路の光信号はそのit伝搬し、アクセサの部分を
通過するので都合がよい。もちろん簡単な信号゛処理で
光信号を任意の光導波路から任意の光導波路へ切換える
こともできる。
Here, when an electric field is applied to any optical switch, the guided light traveling through that optical waveguide transfers to the sixth optical waveguide 6. Therefore, by sequentially operating one to four optical switches, it was possible to operate it as a four-person multiplexer. In this embodiment, a sixth optical waveguide 7, which is another optical waveguide, is provided on the same substrate 1, and a function of demultiplexing one input to a plurality of optical waveguides is also incorporated. Since the operation of the optical switch section is the same, the explanation will be omitted, but it can also be used as an accessor for the optical transmission line. That is, for example, if an attempt is made to access an optical signal propagating through the second optical waveguide 3, an electric field is applied to the two-person optical switch 9, and the optical signal can be extracted as an output signal from the fifth optical waveguide 6. This signal can be returned to the second optical waveguide as it is or after data processing from the sixth optical waveguide 7 to the 2B optical switch 13, thereby functioning as an accessor. In this case, it is convenient for the optical signals in the other waveguides to propagate and pass through the accessor part. Of course, it is also possible to switch the optical signal from any optical waveguide to any optical waveguide by simple signal processing.

発明の効果 本発明は以上実施例で述べたように、マルチプレクサ、
デマルチプレクサ、アクセサ、交換器などと広い用途が
あり、光信号の伝送に極めて有効であり、産業上の利用
効果は大きい。
Effects of the Invention As described in the embodiments above, the present invention includes a multiplexer,
It has a wide range of uses, including demultiplexers, accessors, and exchanges, and is extremely effective in transmitting optical signals, making it highly effective in industrial applications.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の光スイッチの概略平面図である
。 1・・・・・・基板、2〜7・・・・・・光導波路、8
〜15・・・・・・光スイッチ、16.17・・・・・
・出力端面。
The figure is a schematic plan view of an optical switch according to an embodiment of the present invention. 1... Substrate, 2-7... Optical waveguide, 8
~15... Optical switch, 16.17...
・Output end face.

Claims (4)

【特許請求の範囲】[Claims] (1)基板上にほぼ平行に配置した複数個の光導波路と
、これらの光導波路に交差するもうひとつの光導波路を
配置し、おのおのの光導波路の交差する部分に全反射型
光スイッチを構成し、これらの全反射型光スイッチ群を
制御することにより、上記複数個の光導波路のなかの任
意の光導波路の光信号を検出あるいは送出する光スイッ
チ。
(1) A total internal reflection type optical switch is constructed by arranging multiple optical waveguides arranged almost in parallel on a substrate and another optical waveguide that intersects these optical waveguides, and forming a total internal reflection type optical switch at the intersection of each optical waveguide. and an optical switch that detects or transmits an optical signal from any one of the plurality of optical waveguides by controlling a group of these total reflection type optical switches.
(2)複数個の光導波路に交差するように、さらにもう
ひとつの光導波路を配置し、おのおのの光導波路の交差
する部分に全反射型光スイッチを構成し、これらの全反
射光スイッチ群を制御することにより、上記複数個の光
導波路のなかの任意の光導波路の光信号を検出あるいは
送出できる構成とした特許請求の範囲第1項記載の光ス
イッチ。
(2) Another optical waveguide is arranged so as to intersect with the plurality of optical waveguides, and a total internal reflection type optical switch is constructed at the intersection of each optical waveguide. 2. The optical switch according to claim 1, wherein the optical switch is configured to be capable of detecting or transmitting an optical signal from any one of the plurality of optical waveguides by controlling the optical waveguide.
(3)一方のスイッチ群を介して検出した光信号を直接
あるいは信号処理後、もう一方のスイッチ群を介して送
出する特許請求の範囲第2項記載の光スイッチ。
(3) The optical switch according to claim 2, wherein the optical signal detected through one switch group is transmitted directly or after signal processing through the other switch group.
(4)複数個の光導波路にほぼ垂直に基板の端面を形成
したことを特徴とする特許請求の範囲第1項記載の光ス
イッチ。
(4) The optical switch according to claim 1, wherein the end face of the substrate is formed substantially perpendicular to the plurality of optical waveguides.
JP59242918A 1984-11-16 1984-11-16 Optical switch Pending JPS61121042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242918A JPS61121042A (en) 1984-11-16 1984-11-16 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242918A JPS61121042A (en) 1984-11-16 1984-11-16 Optical switch

Publications (1)

Publication Number Publication Date
JPS61121042A true JPS61121042A (en) 1986-06-09

Family

ID=17096145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242918A Pending JPS61121042A (en) 1984-11-16 1984-11-16 Optical switch

Country Status (1)

Country Link
JP (1) JPS61121042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0792955A3 (en) * 1996-02-29 1998-05-13 Kyocera Corporation Sapphire single crystal, semiconductor laser diode using the same for substrate, and method for manufacturing the same
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0792955A3 (en) * 1996-02-29 1998-05-13 Kyocera Corporation Sapphire single crystal, semiconductor laser diode using the same for substrate, and method for manufacturing the same
US6819693B2 (en) 1996-02-29 2004-11-16 Kyocera Corporation Sapphire monocrystal, semiconductor laser diode using the same for substrate, and method for manufacturing the same
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides

Similar Documents

Publication Publication Date Title
EP0000647B1 (en) Optical crosspoint switch
JPH0387704A (en) Optical circuit
JPS62182726A (en) Liquid crystal swiching unit with optical fiber
JPS61121042A (en) Optical switch
JPH0447804B2 (en)
JP2006243013A (en) Multi-port optical switch
JP2858744B2 (en) Multi-channel optical switch and driving method thereof
JPH0513289B2 (en)
JP2000121854A (en) Optical part, optical branching device, optical demultiplexer and optical multiplexer
JPS63191106A (en) Optical branching circuits
JP3083015B2 (en) Waveguide type optical branching coupling device
JPH055908A (en) Optical switch
JPH03256028A (en) Light controlling device
JP3665871B2 (en) Optical parts
JP3003688B2 (en) Multi-channel optical switch and driving method thereof
JPH01257921A (en) Optical circuit element
JPH10232414A (en) Multi-channel optical switch and driving method therefor
JPS5880603A (en) Fiber wiring type rotary access optical switch
JPH10232324A (en) Waveguide splitter array
JPH06202170A (en) Optical switch
JPH05273603A (en) Optical switching device
JPH0246431A (en) Two-dimensional optical switch
JPS62212633A (en) Optical gate matrix switch
JPH02114242A (en) Optical matrix switch device
JPH03153220A (en) Optical matrix switch