JP2858744B2 - Multi-channel optical switch and driving method thereof - Google Patents

Multi-channel optical switch and driving method thereof

Info

Publication number
JP2858744B2
JP2858744B2 JP57098820A JP9882082A JP2858744B2 JP 2858744 B2 JP2858744 B2 JP 2858744B2 JP 57098820 A JP57098820 A JP 57098820A JP 9882082 A JP9882082 A JP 9882082A JP 2858744 B2 JP2858744 B2 JP 2858744B2
Authority
JP
Japan
Prior art keywords
optical
optical switch
optical waveguide
waveguide
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57098820A
Other languages
Japanese (ja)
Other versions
JPS58215632A (en
Inventor
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57098820A priority Critical patent/JP2858744B2/en
Priority to US06/502,805 priority patent/US4618210A/en
Publication of JPS58215632A publication Critical patent/JPS58215632A/en
Application granted granted Critical
Publication of JP2858744B2 publication Critical patent/JP2858744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Description

【発明の詳細な説明】 本発明は基板上に設置された光導波路を用いて光路の
切換えを行なう導波形の光スイッチに関し特に1つの光
導波路への入射光を複数の光導波路へ切換えて出力した
り、複数の光導波路からの入射光を任意に選択して1つ
の光導波路へ導く機能を有する多チャンネル光スイッチ
に関する。 光通信システムや光情報処理システムの実用化が急速
に進められつつあり、それらのシステムでは情報量の増
大やシステム機能の拡大が求められている。 光伝送路網の交換機能、光テータバスにおける端末間
の接続、切換え、さらにシステムの信頼性向上のための
予備光源とファイバ間の切換え等を可能にする光スイッ
チの必要性が高まっている。現在、電磁石等による機械
的移動を用いた光スイッチが実用化されているが、高速
性、多点間の切換え、信頼性等に関しては十分な特性は
得られない。上記の条件を全て満たし、さらに高効率、
小形で単一モードファイバ系への適応性を有する光スイ
ッチとして基板上に設置した光導波路を用いて構成され
る導波形の光スイッチの開発が進められている。特に導
波形の光スイッチでは1つの基板上に複数の光スイッチ
エレメントを集積化できるという特長があるので比較的
容易に多チャンネル光スイッチが得られる。 複数の端末から送られた光信号を時系列に切換えて1
つの光ファイバ伝送路で多重化して伝送したり、逆に1
つのファイバから送られる複数の光信号を時分割で複数
端末に振り分けたりする場合1×N(Nは2以上の整
数)やN×1の多チャンネルスイッチが必要とされる。
また、1×N多チャンネル光スイッチを任意に組合せて
N×Nのマトリックススイッチを構成することも可能で
あるので、先に述べた光通信、情報処理システム機能を
拡大する上で先ず1×N多チャンネル光スイッチを実現
することが重要である。導波形の光スイッチには方向性
結合形、全反射形、分岐干渉形、バランストブリッヂ
形、Y分岐形等の方式があるが、光スイッチにおいて特
に重要なパラメータであるクロストークを比較的容易に
低くでき、また構成が簡単で多チャンネル化し易いもの
は方向性結合形と全反射形の光スイッチである。方向性
結合形光スイッチは幅数μm〜数十μmの光導波路2本
を数μmの間隔で互いに近接させて、光方向性結合器を
構成し光導波路近傍に設けた制御電極に電圧を印加する
ことにより上記2本の光導波路間の結合度を制御するも
のである。一方、全反射形光スイッチは2本の光導波路
を数度の角度で交差させ、その交差部に制御電極を設置
して交差部における光の反射率を制御するものである。 全反射形光スイッチでは低クロストークを得るために
は前記の交差角を大きくする必要があるがこの場合印加
電圧は逆に増加してしまうという欠点がある。通常高電
圧の高速駆動回路を得るのは困難であるので全反射形ス
イッチは高速スイッチングには不向である。一方、方向
性結合形光スイッチは低電圧で動作し、しかも低クロス
トークを得るのも他の光スイッチに比べ容易である。 従来の方向性結合形光スイッチを用いた1×Nの多チ
ャンネル光スイッチの構成の代表的な一例を第1図(平
面図)に示す。 第1図においてニオブ酸リチウム等の誘電体又はGaAs
等の半導体基板1の上に不純物の拡散や結晶成長等によ
って入力光導波路2と出力光導波路3,4,5,6が形成さ
れ、入出力光導波路間に3つの方向性結合形光スイッチ
10,11,12が挿入されて全体で1×4の多チャンネル光ス
イッチを構成している。即ち、第1図の構成では1つの
方向性結合形光スイッチは1×2光スイッチとしての機
能をもち、それが2段に接続されて1×4光スイッチを
構成している。 従来のこのような構成ではN−1個の1×2光スイッ
チ即ち方向性結合形光スイッチを多段に接続することに
より1×Nの多チャンネル光スイッチを構成することが
できる。ここで、第1図の構成では方向性結合形光スイ
ッチ10,11,12はそれぞれ結合度が0の状態と結合度が10
0%の状態の両状態を制御電極20,21,22への印加電圧に
よって選択できる必要がある。通常、上記目的を達成す
るために制御電極20,21,22は第1図に示すように光透過
方向に2分割され、それぞれの電極によって互いに逆向
きの電界を基板中に誘起するように駆動される。第2図
は上記電極への印加電圧と、方向性結合形光スイッチの
1つの入力ポートから光が入射した場合の2つの出力ポ
ートからの出力光レベルの関係を示す一例である。すな
わち、第1図において入力光導波路2から光が入射した
場合、光導波路7へ出力される光レべルが第2図の曲線
30で、光導波路8へ出力される光レベルが曲線31で示さ
れている。 第2図において電圧V1のとき結合量100%電圧V2のと
き結合度0となる。そこで従来の構成の多チャンネル光
スイッチでは、上記のようにV1,V2の2値の電圧値が必
要であり、しかも通常それらの電圧は光スイッチのエレ
メントによって少しづつ異なるので複雑な駆動回路が必
要であった。 また、方向性結合形光スイッチのクロストークは光導
波路や電極の不完全性や2つの光導波路間の非対称性に
よって劣化を招くが、従来の構成では100%結合及び結
合0の両状態で通常のシステムで必要とされる−20dB以
下の低クロストーク特性をもつ必要があったので要求さ
れる製作精度が高く(非対称性が±0.1μm以内)、製
作歩止りは低い値(数分の1程度)であった。従来の構
成及び駆動方式においても100%結合が結合0の状態の
一方を0ボルトで得ることも設計上は可能であるが、0
ボルトで−20dB以下の低クロストークを得るのは非常に
高精度の製作を要求されるので実際にはかなり困難であ
る。また多チャンネル光スイッチを高速に駆動するため
にはより低い電圧値が要求されている。 本発明の目的は0ボルトと1電圧値の間でスイッチン
グを行なうことが可能で、低クロストークが容易に得ら
れ、さらに従来よりも低電圧で動作可能な1×N多チャ
ンネル光スイッチ及びその駆動方法を提供することにあ
る。 本発明の多チャンネル光スイッチは、n本(n=4、
5、……)の光導波路を備え、光方向性結合器を介して
各光導波路が他の光導波路に結合している構造を具備し
た光スイッチにおいて、前記光方向性結合器を構成する
光導波路の屈折率、寸法が等しく、1本の光導波路に互
いに異なる結合点で(n−1)本の光導波路が結合して
いることを特徴とする。また本発明の多チャンネル光ス
イッチの駆動方法は、n本(n=4、5、……)の光導
波路を備え、光方向性係合器を介して各光導波路が他の
光導波路に結合している構造を具備し、前記光方向性結
合器を構成する光導波路の屈折率、寸法が等しく、1本
の光導波路に互いに異なる結合点で(n−1)本の光導
波路が結合している光スイッチであって、接続すべき光
導波路に接続している光方向性結合器の制御電極への印
加電圧を0とし、他の光導波路に接続している光方向性
結合器の制御電極への印加電圧をV(V≠0)としたこ
とを特徴とする。 以下図面を参照して本発明を詳細に説明する。第3図
は本発明の一実施例である1×4の多チャンネル光スイ
ッチの平面図を示す。誘電体又は半導体基板1上に1本
の入力光導波路32と4本の出力光導波路33,34,35,36が
設置され、入力光導波路32と上記4本の出力光導波路3
3,34,35,36の間を光透過方向に順次互いに近接させて光
方向性結合器40,41,42,43が構成され、それらの光方向
性結合器上に制御電極44,45,46,47がそれぞれ設置され
ている。本実施例においては、基板1の一例としてニオ
ブ酸リチウム結晶を用い、光導波路32,33,34,35,36はチ
タンを熱拡散して形成した。また、上記光導波路の幅は
数μm〜数十μmであり、光方向性結合器を構成する2
本の光導波路間隔は数μm程度、光方向性結合器の長さ
は数mm〜十数mmである。 第4図は本実施例の多チャンネル光スイッチの動作を
説明するための図であり、光方向性結合器の制御電極へ
の印加電圧と出力光レベルの関係を示すものである。す
なわち、第3図において入力光導波路32に光50を入射し
た場合、光導波路33に結合されて出力する光レベルが曲
線48、結合されないで光導波路32に残っている出力光レ
ベルが曲線49である。 本実施例においては電圧V1のとき結合量が0であり、
電圧0のとき結合量が80〜100%となるように設計され
ている。 本実施例では接続すべき入出力光導波路間で構成され
る光方向性結合器の制御電極のみが電圧0であり、他の
制御電極には電圧V1′が印加される。例えば制御電極46
の電圧を0とし、他の制御電極の印加電圧をV1′とする
と入力光導波路32への入射光50の80〜100%は出力光導
波路35へ結合し残りの光量は全て光導波路32中を通って
出射光51となり他の出力光導波路には結合しない。通常
結合量が0となる状態は光導波路の非対称性の影響を受
けなく、また、結合量100%の状態に比べて低クロスト
ークが容易に得られるので上記の例では他の出力光導波
路33,34,36へのもれ光は非常に小さい。同様に、いずれ
の出力光導波路へ切換える場合でも非常に小さいクロス
トークが得られる。また、印加電圧0のとき、完全に10
0%の結合量を得るのは先に述べたように困難である
が、90〜97%程度の結合量はかなり容易に得えれるの
で、本実施例の多チャンネル光スイッチの損失となる出
射光51の光量は数%以下にすることができる。また同じ
形状の光方向性結合器を考えた場合、本実施例のV1′の
値は第2図のV2よりもかなり低い値である。 第5図は本発明の他の実施例である1×4の多チャン
ネル光スイッチの平面図である。第5図において1は第
3図の実施例と同様な誘電体又は半導体基板であり、基
板1上に入力光導波路52と出力光導波路53,54,55,56が
設置され、入力光導波路52に入射光が順次上記の各々の
出力光導波路と結合するように光方向性結合器60,61,6
2,63が設置されている。 本実施例の光方向性結合器の制御電極及び印加電圧特
性は第1図及び第2図に示した例と同じであり電圧V1
おいて結合量100%である。但し本実施例においては結
合すべき出力光導波路端の光方向性結合器の制御電極の
電圧は0であり、他の制御電極の印加電圧はV1となって
いる。また電圧0のときの結合量は0〜20%となるよう
に設計されている。 第3図の実施例と同様本実施例においても任意の1つ
の出力光導波路へ出力したとき他の出力光導波路へのも
れは非常に小さい。 第1図の従来例と比べると電圧V2は不要であるので低
電圧動作が可能である。 以上述べたように本発明によれば0ボルトと1電圧値
の間でスイッチングが可能であるので従来よりも駆動回
路が簡単であり、また容易に低クロストーク特性が得ら
れ従来よりも低電圧で動作する多チャンネル光スイッチ
が得られる。 なお、本発明の多チャンネル光スイッチは可逆である
のでN×1光スイッチとして使用することも可能であ
る。また、基板材料、光導波路及び光スイッチ形状は上
記実施例に限定されない。例えばタンタル酸リチウム、
InP等の化合物半導体等を用いること、光導波路として
リブ形光導波路や埋込み光導波路等を用いることができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical switch for switching an optical path by using an optical waveguide provided on a substrate, and more particularly to switching an incident light to one optical waveguide to a plurality of optical waveguides and outputting the same. And a multi-channel optical switch having a function of arbitrarily selecting incident light from a plurality of optical waveguides and guiding the same to one optical waveguide. The practical use of optical communication systems and optical information processing systems is rapidly progressing, and in these systems, an increase in the amount of information and an increase in system functions are required. There is an increasing need for an optical switch that enables a switching function of an optical transmission network, connection and switching between terminals in an optical data bus, and switching between a backup light source and a fiber for improving the reliability of the system. At present, an optical switch using mechanical movement by an electromagnet or the like has been put to practical use, but sufficient characteristics cannot be obtained with respect to high speed, switching between multiple points, reliability, and the like. Satisfies all of the above conditions, with higher efficiency,
Development of a waveguide-type optical switch configured using an optical waveguide installed on a substrate as a small-size optical switch having adaptability to a single-mode fiber system has been advanced. Particularly, a waveguide type optical switch has a feature that a plurality of optical switch elements can be integrated on one substrate, so that a multi-channel optical switch can be obtained relatively easily. Switching optical signals sent from multiple terminals in time series to 1
Multiplexed transmission over two optical fiber transmission lines,
When distributing a plurality of optical signals transmitted from one fiber to a plurality of terminals in a time division manner, a 1 × N (N is an integer of 2 or more) or N × 1 multi-channel switch is required.
Since an N × N matrix switch can be formed by arbitrarily combining 1 × N multi-channel optical switches, 1 × N matrix switches must be first used to expand the optical communication and information processing system functions described above. It is important to realize a multi-channel optical switch. Waveguide type optical switches include directional coupling type, total reflection type, branch interference type, balanced bridge type, Y-branch type, etc. The crosstalk which is a particularly important parameter in optical switches is relatively easy. Optical switches of directional coupling type and total reflection type are those which can be made lower, have a simple structure and are easy to be multi-channel. In a directional coupling type optical switch, two optical waveguides having a width of several μm to several tens of μm are brought close to each other at an interval of several μm, and a voltage is applied to a control electrode provided in the vicinity of the optical waveguide by forming an optical directional coupler. By doing so, the degree of coupling between the two optical waveguides is controlled. On the other hand, the total reflection type optical switch crosses two optical waveguides at an angle of several degrees, and a control electrode is provided at the intersection to control the light reflectance at the intersection. In the total reflection type optical switch, in order to obtain low crosstalk, it is necessary to increase the crossing angle. However, in this case, there is a disadvantage that the applied voltage increases. Since it is usually difficult to obtain a high-speed driving circuit with a high voltage, a total reflection type switch is not suitable for high-speed switching. On the other hand, the directional coupling type optical switch operates at a low voltage, and it is easier to obtain low crosstalk than other optical switches. FIG. 1 (plan view) shows a typical example of the configuration of a 1 × N multi-channel optical switch using a conventional directional coupling type optical switch. In FIG. 1, a dielectric such as lithium niobate or GaAs
An input optical waveguide 2 and output optical waveguides 3, 4, 5, and 6 are formed on a semiconductor substrate 1 such as by diffusion of impurities or crystal growth, and three directional coupling type optical switches are provided between the input and output optical waveguides.
10, 11, and 12 are inserted to form a 1 × 4 multi-channel optical switch as a whole. That is, in the configuration of FIG. 1, one directional coupling type optical switch has a function as a 1 × 2 optical switch, which is connected in two stages to constitute a 1 × 4 optical switch. In such a conventional configuration, a 1 × N multi-channel optical switch can be formed by connecting N−1 1 × 2 optical switches, that is, directional coupling type optical switches in multiple stages. Here, in the configuration of FIG. 1, the directional coupling type optical switches 10, 11, and 12 have a coupling degree of 0 and a coupling degree of 10, respectively.
It is necessary that both of the 0% states can be selected by the voltage applied to the control electrodes 20, 21, 22. Usually, in order to achieve the above object, the control electrodes 20, 21, and 22 are divided into two in the light transmission direction as shown in FIG. 1, and each electrode is driven so as to induce electric fields in directions opposite to each other in the substrate. Is done. FIG. 2 is an example showing the relationship between the voltage applied to the electrodes and the output light levels from two output ports when light enters from one input port of the directional coupling type optical switch. That is, when light enters from the input optical waveguide 2 in FIG. 1, the light level output to the optical waveguide 7 is changed by the curve shown in FIG.
At 30, the light level output to the optical waveguide 8 is indicated by the curve 31. The coupling degree 0 when bond content 100% voltage V 2 when the voltages V 1 in Figure 2. Therefore, in the conventional multi-channel optical switch, two voltage values of V 1 and V 2 are required as described above, and since these voltages usually differ little by little by the elements of the optical switch, a complicated driving circuit is required. Was needed. The crosstalk of the directional coupling type optical switch is deteriorated due to imperfections of the optical waveguides and electrodes and the asymmetry between the two optical waveguides. It was necessary to have a low crosstalk characteristic of -20 dB or less, which is required by the system of the above, so the required manufacturing accuracy was high (asymmetry was within ± 0.1 μm), and the manufacturing yield was low (a fraction of a few Degree). In the conventional configuration and driving method, it is possible in design to obtain one of the states in which the 100% coupling is in the coupling 0 state at 0 volt.
Obtaining low crosstalk of less than -20 dB in volts is quite difficult in practice, as it requires very high precision fabrication. Further, in order to drive the multi-channel optical switch at high speed, a lower voltage value is required. SUMMARY OF THE INVENTION An object of the present invention is to provide a 1 × N multichannel optical switch capable of switching between 0 volts and 1 voltage, easily obtaining low crosstalk, and operable at a lower voltage than conventional ones. It is to provide a driving method. The multi-channel optical switch of the present invention has n (n = 4,
5,...), And each of the optical waveguides is coupled to another optical waveguide via an optical directional coupler. It is characterized in that (n-1) optical waveguides are coupled to one optical waveguide at mutually different coupling points with the same refractive index and size of the waveguide. The driving method of the multi-channel optical switch according to the present invention includes n (n = 4, 5,...) Optical waveguides, and each optical waveguide is coupled to another optical waveguide via the optical directional engaging device. (N-1) optical waveguides are coupled to one optical waveguide at different coupling points from each other at the same refractive index and the same size. The voltage applied to the control electrode of the optical directional coupler connected to the optical waveguide to be connected is set to 0, and the optical switch connected to the other optical waveguide is controlled. The voltage applied to the electrode is set to V (V ≠ 0). Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 3 is a plan view of a 1 × 4 multi-channel optical switch according to an embodiment of the present invention. One input optical waveguide 32 and four output optical waveguides 33, 34, 35, and 36 are provided on the dielectric or semiconductor substrate 1, and the input optical waveguide 32 and the four output optical waveguides 3 are provided.
Light directional couplers 40, 41, 42, and 43 are sequentially arranged in the light transmission direction between 3, 34, 35, and 36 to form control electrodes 44, 45, 46 and 47 are installed respectively. In this embodiment, a lithium niobate crystal is used as an example of the substrate 1, and the optical waveguides 32, 33, 34, 35, and 36 are formed by thermally diffusing titanium. The width of the optical waveguide is several μm to several tens μm, and the width of the optical waveguide is 2 μm.
The distance between the optical waveguides is about several μm, and the length of the optical directional coupler is several mm to several tens of mm. FIG. 4 is a diagram for explaining the operation of the multi-channel optical switch of the present embodiment, and shows the relationship between the voltage applied to the control electrode of the optical directional coupler and the output light level. That is, when the light 50 enters the input optical waveguide 32 in FIG. 3, the light level coupled to the optical waveguide 33 and output is represented by a curve 48, and the output light level remaining in the optical waveguide 32 without being coupled is represented by a curve 49. is there. In the present embodiment, the coupling amount is 0 at the voltage V 1 ,
It is designed so that the coupling amount is 80 to 100% when the voltage is 0. In this embodiment, only the control electrode of the optical directional coupler formed between the input and output optical waveguides to be connected has a voltage of 0, and the other control electrodes are applied with the voltage V 1 ′. For example, the control electrode 46
Is 0 and the applied voltage of the other control electrodes is V 1 ′, 80 to 100% of the incident light 50 to the input optical waveguide 32 is coupled to the output optical waveguide 35 and the remaining light quantity is all in the optical waveguide 32. The output light 51 passes through the optical waveguide 51 and is not coupled to another output optical waveguide. Normally, the state where the coupling amount is 0 is not affected by the asymmetry of the optical waveguide, and low crosstalk is easily obtained as compared with the state where the coupling amount is 100%. , 34, 36, the leakage light is very small. Similarly, very small crosstalk can be obtained when switching to any of the output optical waveguides. In addition, when the applied voltage is 0, 10
Although it is difficult to obtain a coupling amount of 0% as described above, a coupling amount of about 90 to 97% can be obtained quite easily, which results in a loss of the multi-channel optical switch of this embodiment. The light amount of the emitted light 51 can be set to several percent or less. Further, when considering a light directional coupler having the same shape, the value of V 1 ′ in this embodiment is much lower than V 2 in FIG. FIG. 5 is a plan view of a 1 × 4 multi-channel optical switch according to another embodiment of the present invention. In FIG. 5, reference numeral 1 denotes a dielectric or semiconductor substrate similar to that of the embodiment shown in FIG. 3, and an input optical waveguide 52 and output optical waveguides 53, 54, 55, 56 are provided on the substrate 1; Optical directional couplers 60, 61, and 6 so that incident light is sequentially coupled to each of the output optical waveguides.
2,63 are installed. The control electrode and the applied voltage characteristics of the optical directional coupler according to the present embodiment is a bond of 100% at voltages V 1 is the same as the example shown in FIGS. 1 and 2. However the voltage of the control electrode of the optical directional coupler output optical waveguide end to be coupled in the present embodiment is 0, the voltage applied to the other control electrode has a V 1. In addition, the coupling amount when the voltage is 0 is designed to be 0 to 20%. Similarly to the embodiment of FIG. 3, in this embodiment, when the light is output to any one output optical waveguide, the leakage to the other output optical waveguide is very small. Voltage V 2 as compared with the conventional example of FIG. 1 is capable of low voltage operation because it is unnecessary. As described above, according to the present invention, switching between 0 volts and 1 voltage value is possible, so that the driving circuit is simpler than before, and low crosstalk characteristics can be easily obtained and lower voltage than before. , A multi-channel optical switch that operates on Since the multi-channel optical switch of the present invention is reversible, it can be used as an N × 1 optical switch. Further, the substrate material, the optical waveguide, and the shape of the optical switch are not limited to those in the above embodiment. For example, lithium tantalate,
A compound semiconductor such as InP or the like can be used, and a rib-shaped optical waveguide, a buried optical waveguide, or the like can be used as the optical waveguide.

【図面の簡単な説明】 第1図は従来の多チャンネル光スイッチを説明するため
の平面図、第3図、第5図は本発明による多チャンネル
光スイッチの実施例を示す平面図第2図、第4図は多チ
ャンネル光スイッチの駆動方法を説明するための図であ
る。 図において1は基板、2,32,52は入力光導波路、3,4,5,
6,33,34,35,36,53,54,55,56は出力光導波路である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view for explaining a conventional multi-channel optical switch, and FIGS. 3 and 5 are plan views showing an embodiment of the multi-channel optical switch according to the present invention. FIG. 4 is a diagram for explaining a driving method of the multi-channel optical switch. In the figure, 1 is a substrate, 2, 32, 52 are input optical waveguides, 3, 4, 5, and
6, 33, 34, 35, 36, 53, 54, 55, and 56 are output optical waveguides.

Claims (1)

(57)【特許請求の範囲】 1.n本(n=4、5、……)の光導波路を備え、光方
向性結合器を介して各光導波路が他の光導波路に結合し
ている構造を具備した光スイッチにおいて、前記光方向
性結合器を構成する光導波路の屈折率、寸法が等しく、
1本の光導波路に互いに異なる結合点で(n−1)本の
光導波路が結合していることを特徴とする多チャンネル
光スイッチ。 2.n本(n=4、5、……)の光導波路を備え、光方
向性結合器を介して各光導波路が他の光導波路に結合し
ている構造を具備し、前記光方向性結合器を構成する光
導波路の屈折率、寸法が等しく、1本の光導波路に互い
に異なる結合点で(n−1)本の光導波路が結合してい
る光スイッチであって、接続すべき光導波路に接続して
いる光方向性結合器の制御電極への印加電圧を0とし、
他の光導波路に接続している光方向性結合器の制御電極
への印加電圧をV(V≠0)としたことを特徴とする多
チャンネル光スイッチの駆動方法。
(57) [Claims] An optical switch comprising n (n = 4, 5,...) optical waveguides, wherein each optical waveguide is coupled to another optical waveguide via an optical directional coupler. The refractive index and dimensions of the optical waveguides constituting the sexual coupler are equal,
A multi-channel optical switch, wherein (n-1) optical waveguides are coupled to one optical waveguide at different coupling points. 2. the optical directional coupler includes n (n = 4, 5,...) optical waveguides, and each optical waveguide is coupled to another optical waveguide via an optical directional coupler. Is an optical switch in which (n-1) optical waveguides are coupled to one optical waveguide at different coupling points and have the same refractive index and dimensions. The applied voltage to the control electrode of the connected optical directional coupler is set to 0,
A method for driving a multi-channel optical switch, wherein a voltage applied to a control electrode of an optical directional coupler connected to another optical waveguide is set to V (V ≠ 0).
JP57098820A 1982-06-09 1982-06-09 Multi-channel optical switch and driving method thereof Expired - Lifetime JP2858744B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57098820A JP2858744B2 (en) 1982-06-09 1982-06-09 Multi-channel optical switch and driving method thereof
US06/502,805 US4618210A (en) 1982-06-09 1983-06-09 Optical switch of switched directional coupler type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098820A JP2858744B2 (en) 1982-06-09 1982-06-09 Multi-channel optical switch and driving method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP10-274730A Division JP3003688B2 (en) 1982-06-09 Multi-channel optical switch and driving method thereof
JP14217697A Division JPH10232414A (en) 1997-05-30 1997-05-30 Multi-channel optical switch and driving method therefor

Publications (2)

Publication Number Publication Date
JPS58215632A JPS58215632A (en) 1983-12-15
JP2858744B2 true JP2858744B2 (en) 1999-02-17

Family

ID=14229943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098820A Expired - Lifetime JP2858744B2 (en) 1982-06-09 1982-06-09 Multi-channel optical switch and driving method thereof

Country Status (1)

Country Link
JP (1) JP2858744B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE461482B (en) * 1986-05-16 1990-02-19 Ericsson Telefon Ab L M OPTOELECTRONIC DIRECT SWITCH WITH LICENSOR-FREE CONTROL SIGNAL
JPH01214804A (en) * 1988-02-23 1989-08-29 Hitachi Cable Ltd Optical multiplexer/demultiplexer and optical module using it
US5425116A (en) * 1993-11-16 1995-06-13 At&T Corp. Tunable optical waveguide grating arrangement
JPH08211427A (en) * 1995-02-08 1996-08-20 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and demultiplexer
KR20010046674A (en) * 1999-11-15 2001-06-15 김춘호 An waveguide type optical matrix switch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146297A (en) * 1978-01-16 1979-03-27 Bell Telephone Laboratories, Incorporated Tunable optical waveguide directional coupler filter

Also Published As

Publication number Publication date
JPS58215632A (en) 1983-12-15

Similar Documents

Publication Publication Date Title
US4618210A (en) Optical switch of switched directional coupler type
US5862276A (en) Planar microphotonic circuits
US5263102A (en) Polarization-independent optical switches/modulators
JPH0387704A (en) Optical circuit
Watson et al. A polarization-independent 1× 16 guided-wave optical switch integrated on lithium niobate
JPS61198122A (en) Modulator and improvement thereof
US5757990A (en) Optical switch
JP2858744B2 (en) Multi-channel optical switch and driving method thereof
US4998791A (en) Integrated optical switches with very high extinction ratios
JPS59168414A (en) Reflection type multichannel optical switch
US5185831A (en) Optical waveguide device
US6970626B2 (en) Directional optical coupler
JP3003688B2 (en) Multi-channel optical switch and driving method thereof
JPH0513289B2 (en)
JPH10232414A (en) Multi-channel optical switch and driving method therefor
US4934776A (en) Ultra-high-extinction cascaded coupled-waveguide optical modulators and optical gate arrays
JPS6076722A (en) Matrix optical switch
JPH0553157A (en) Optical control device
JPH11174500A (en) Multi-channel optical switch and its driving method
JPS61121042A (en) Optical switch
JPH01201628A (en) Optical switch
EP0494751B1 (en) Directional coupler type optical function element
JP2848209B2 (en) Waveguide type N × N optical switch
JPS62212633A (en) Optical gate matrix switch
JP2659786B2 (en) Mode light separator