JPS58215632A - Multichannel optical switch and its driving method - Google Patents

Multichannel optical switch and its driving method

Info

Publication number
JPS58215632A
JPS58215632A JP9882082A JP9882082A JPS58215632A JP S58215632 A JPS58215632 A JP S58215632A JP 9882082 A JP9882082 A JP 9882082A JP 9882082 A JP9882082 A JP 9882082A JP S58215632 A JPS58215632 A JP S58215632A
Authority
JP
Japan
Prior art keywords
optical
waveguide
optical switch
waveguides
leading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9882082A
Other languages
Japanese (ja)
Other versions
JP2858744B2 (en
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57098820A priority Critical patent/JP2858744B2/en
Priority to US06/502,805 priority patent/US4618210A/en
Publication of JPS58215632A publication Critical patent/JPS58215632A/en
Application granted granted Critical
Publication of JP2858744B2 publication Critical patent/JP2858744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To perform switching with low crosstalk with 0-1 volt by coupling (n-1) optical waveguides with one optical waveguide mutually different coupling points. CONSTITUTION:One input optical waveguide 32 and four output optical waveguides 33-36 are installed on a dielectric or semiconductor substrate 1 and optical directional couplers 40-43 having mutual close light transmission directions are constituted successively between the optical waveguide 32 and four optical waveguides 33-36; and control electrodes 44-47 are arranged on those optical directional couplers. Then, only the control electrode of an optical directional coupler constituted between inpt and output optical waveguides to be connected mutually is held at 0V, and the other control electrode is applied with a voltage V'. When the amount of coupling is zero, low crosstalk is obtained easily without any influence of the asymmetry of the optical waveguides. Therefore, switching with low crosstalk is carried out between 0 and 1volt.

Description

【発明の詳細な説明】 本発明は基板上に設置された光導波路を用いて光路の切
換えを行なう導波形の光スィッチに関し特に1つの先導
波路への入射光を複数の光導波路へ切換えて出力したり
、複数の光導波路からの入射光を任意に選択して1つの
先導波路へ導く機能を有する多チャンネル光スィッチに
関する0光通信システムや光情報処理システムの実用化
が急速に進められつつあり、それらのシステムでは情報
量の増大やシステム機能の拡大が求められている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveguide-type optical switch that switches optical paths using optical waveguides installed on a substrate. The practical application of optical communication systems and optical information processing systems related to multi-channel optical switches that have the function of arbitrarily selecting incident light from multiple optical waveguides and guiding it to one leading waveguide is rapidly progressing. , these systems are required to increase the amount of information and expand system functions.

光伝送路網の交換機能、光データバスにおける端末間の
接続、切換え、さらにシステムの信頼性向上のための予
備光源とファイバ間の切換え等を可能にする光スィッチ
の必要性が高まっている。
There is an increasing need for optical switches that enable switching functions in optical transmission networks, connections and switching between terminals in optical data buses, and switching between standby light sources and fibers to improve system reliability.

現在、電磁石等による機械的移動を用いた光スィッチが
実用化されているが、高速性、多点間の切換え、信頼性
等に関しては十分な特性は得られない。上記の条件を全
て満たし、さらに高効率、小形で単一モードファイバ系
への適応性を有する光スィッチとして基板上に設置した
先導波路を用いて構成される導波形の光スィッチの開発
が進められている。特に導波形の光スィッチでは1つの
基板上に複数の光スイツチエレメントを集積化できると
いう特長があるので比較的容易に多チャンネル光スィッ
チが得られる。
Currently, optical switches using mechanical movement using electromagnets or the like are in practical use, but they do not have sufficient characteristics in terms of high speed, switching between multiple points, reliability, etc. The development of a waveguide optical switch that satisfies all of the above conditions and is also highly efficient, compact, and adaptable to single-mode fiber systems is underway, consisting of a guiding waveguide installed on a substrate. ing. In particular, a waveguide type optical switch has the advantage that a plurality of optical switch elements can be integrated on one substrate, so a multi-channel optical switch can be obtained relatively easily.

複数の端末から送られた光信号を時系列に切換えて1つ
の光フアイバ伝送路で多重化して伝送したり、逆に1つ
のファイバから送られる複数の光信号を時分割で複数端
末に振り分けたりする場合IXN(Nは2以上の整数)
やNXIの多チヤンネルスイッチが必要とされる。また
、1×N多チヤンネル光スイツチを任意に組合せてNX
Nのマトリックススイッチを構成することも可能である
ので、先に述べた光通信、情和処理システム機能を拡大
する上で先ずIXN多チャンネル光スイッチを実現する
ことが重要である。導波形の光スィッチには方向性結合
形、全反射形、分岐干渉形、バランスドブリッヂ形、Y
分岐形等の方式があるが、光スィッチに詔いて特に重要
なパラメータであるクロストークを比較的容易−こ低く
でき、また構成が簡単で多チャンネル化し易いものは方
向性結合形と全反射形の光スィッチである0方向性結合
形光スイッチは幅数μm〜数十μmの光導波路2本を数
μmの間隔で互いに近接させて、光方向性結合器を構成
し光導波路近傍に設けた制御電極に電圧を印加すること
により上記2本の光導波路間の結合度を制御するもので
ある〇一方、全反射形光スイッチは2本の光導波路を数
度の角度で交差させ、その交差部に制御電極を設置して
交差部にあける光の反射率を制御するものである。
Optical signals sent from multiple terminals can be switched in time series and multiplexed and transmitted over a single optical fiber transmission line, or conversely, multiple optical signals sent from a single fiber can be time-divided and distributed to multiple terminals. IXN (N is an integer greater than or equal to 2)
or NXI multi-channel switches are required. In addition, 1×N multi-channel optical switches can be arbitrarily combined to
Since it is also possible to configure a matrix switch of N, it is important to first realize an IXN multichannel optical switch in order to expand the functions of the optical communication and information processing system described above. Waveguide type optical switches include directional coupling type, total internal reflection type, branching interference type, balanced bridge type, and Y
There are methods such as the branch type, but the directional coupling type and total internal reflection type are relatively easy to reduce crosstalk, which is a particularly important parameter for optical switches, and are easy to configure and can be multi-channeled. A zero-directional coupling type optical switch is an optical switch in which two optical waveguides with a width of several μm to several tens of μm are placed close to each other with an interval of several μm to form an optical directional coupler, which is installed near the optical waveguide. The degree of coupling between the two optical waveguides is controlled by applying a voltage to the control electrode.On the other hand, a total internal reflection optical switch crosses two optical waveguides at an angle of several degrees, and A control electrode is installed at the intersection to control the reflectance of light at the intersection.

全反射形光スイッチでは低クロストークを得るためには
前記の交差角を大きくする必要があるがこの場合印加N
1圧は逆に増加してしまうという欠点がある。通常高電
圧の高速駆動回路を得るのは困雛であるので全反射形ス
イッチは高速スイッチングには不向である。一方、方向
性結合形光スイッチは低電圧で動作し、しかも低クロス
トークを得るのも他の光スィッチに比べ容易である。
In a total internal reflection type optical switch, in order to obtain low crosstalk, it is necessary to increase the above-mentioned crossing angle, but in this case, the applied N
There is a drawback that 1 pressure increases conversely. Generally, it is difficult to obtain a high-voltage, high-speed drive circuit, so total reflection switches are not suitable for high-speed switching. On the other hand, a directional coupling type optical switch operates at a low voltage, and it is easier to obtain low crosstalk than other optical switches.

従来の方向性結合形光スイッチを用いた1xNの多チャ
ンネル光スィッチの構成の代表的な一例を第1図(平面
図)に示す。
A typical example of the configuration of a 1×N multi-channel optical switch using a conventional directional coupling type optical switch is shown in FIG. 1 (plan view).

第1図においてニオブ酸リチウム等の訴電体又はGaA
s等の半導体基板1の上に不純物の波数や結晶成長等に
よって入力光導波路2と出力光導波路3,4.5.6が
形成され、入出刃先導波路間lこ3つの方向性結合形光
スイッチ10.11 、12が挿入されて全体でIX4
の多チャンネル光スィッチを構成している。即ち、第1
図の構成では1つの方向性結合形光スイッチはIX2光
スイッチとしての機能をもち、それが2段に接続されて
1×4光スイツチを構成している。
In Figure 1, an electrolyte such as lithium niobate or GaA
An input optical waveguide 2 and an output optical waveguide 3, 4, 5, 6 are formed on a semiconductor substrate 1 such as s by the wave number of impurities, crystal growth, etc., and these three directionally coupled light beams are formed between the leading waveguides. Switches 10, 11 and 12 are inserted and the total is IX4
It constitutes a multi-channel optical switch. That is, the first
In the configuration shown in the figure, one directional coupling type optical switch has a function as an IX2 optical switch, and is connected in two stages to form a 1×4 optical switch.

従来のこのような構成ではN−1個の1×2光スイッチ
即ち方向性結合形光スイッチを多段化接続することによ
りl×Nの多芋ヤンネル光スイッチを構成する仁とがで
きる。ここで、第1図の構成では方向性結合形光スイッ
チ10.11 、12はそれぞれ結合度が0の状態と結
合度が100%の状態の両状態を制御電極20.21.
22への印加電圧によって選択できる必要がある。通常
、上記目的を達成するために制御電極20,21.22
は第1図化示すように光透過方向1こ2分割され、それ
ぞれの電極番こよって互い薯ζ逆向きの電界を基板中に
訴起するよう8こ駆動される0第2図は上記電極への印
加電圧と、方向性結合形光スイッチの1つの入力ボート
から光が入射した場合の2つの出力ボートからの出力光
レベルの関係を示す一例である。すなわち、第1図にお
いて人力光導波路2から光が入射した場合、先導波路7
へ出力される光レベルが第2図の曲線間で、光導波路8
へ出力される光レベルが曲線31で示されている。
In such a conventional configuration, by connecting N-1 1.times.2 optical switches, that is, directional coupling type optical switches in multiple stages, it is possible to construct a 1.times.N multilayer optical switch. Here, in the configuration of FIG. 1, the directional coupling type optical switches 10.11 and 12 have control electrodes 20.21, .
It is necessary to be able to select the voltage applied to 22. Usually, to achieve the above purpose, control electrodes 20, 21, 22
As shown in Figure 1, the electrode is divided into 1 and 2 parts in the light transmission direction, and each electrode number is driven to create 8 electric fields in the substrate in opposite directions. This is an example showing the relationship between the voltage applied to the switch and the level of output light from two output ports when light enters from one input port of a directional coupling type optical switch. That is, in FIG. 1, when light enters from the manual optical waveguide 2, the leading waveguide 7
If the light level output to the optical waveguide 8 is between the curves in FIG.
The light level output to is shown by curve 31.

第2図において電圧7重のとき結合量i ooqA電圧
■電圧上き結合度0となる。そこで従来の構成の多チャ
ンネル光スィッチでは、上記のようにVn lVsの2
値の重圧値が必要であり、しかも通常それらの電圧は光
スィッチのエレメントによって少しづつ異なるので複雑
な駆動回路が必要であった。
In FIG. 2, when the voltage is 7 times, the coupling amount i ooqA voltage ■ voltage-up coupling degree becomes 0. Therefore, in a conventional multi-channel optical switch, Vn lVs is 2
A complicated driving circuit was required because a large number of voltages were required, and these voltages usually varied slightly depending on the elements of the optical switch.

また、方向性結合形光スイッチのクロストークは光導波
路や電極の不完全性や2つの光導波路間の非対称性柘よ
って劣化を招くが、従来の構成ではtool結合及び結
合0の両状態で通常のシステムで必要とされる一20d
B以下の低クロストーク特性をもつ必要があったので要
求される製作精度が高く(非対称性が±01μm以内)
、製作歩止りは低い値(数分の1程度)であった。従来
の構成及び駆動方式においてもZoo%結合か結合0の
状態の一方を0ボルトで得ることも設計上は可能である
が、0ボルトで一20dB以下の低クロストークを得る
のは非常に高精度の製作を要求されるので実際1こはか
なり困難である。また多チャンネル光スィッチを高速l
こ駆動するためにはより低い電圧値が要求されている。
In addition, crosstalk in a directional coupling type optical switch causes deterioration due to imperfections in the optical waveguides and electrodes and asymmetry between the two optical waveguides, but in the conventional configuration, it is normal in both the tool coupling and 0 coupling states. -20d required in the system of
Since it was necessary to have low crosstalk characteristics of B or less, the required manufacturing precision was high (asymmetry within ±01 μm).
, the production yield was low (about a fraction of a fraction). Even with the conventional configuration and drive method, it is possible in design to obtain either Zoo% coupling or 0 coupling state at 0 volts, but it is extremely expensive to obtain a low crosstalk of -20 dB or less at 0 volts. In reality, it is quite difficult to make one because precision manufacturing is required. In addition, multi-channel optical switches can be installed at high speeds.
In order to drive this, a lower voltage value is required.

本発明の目的は0ボルトと1電圧値の間でスイッチング
を行なうことが可能で、低クロストークが容易に得られ
、さらに従来よりも低電圧で動作可能な1xllJ多チ
ヤンネル光スイツチ及びその駆動方法を提供することに
ある。
The object of the present invention is to provide a 1xllJ multichannel optical switch that can perform switching between 0 volts and 1 voltage value, easily obtain low crosstalk, and can operate at a lower voltage than conventional ones, and a method for driving the same. Our goal is to provide the following.

本発明の多チャンネル光スィッチは、1本(n−1,2
,3,・・・・・・)の光導波路を備え、光方向性結合
器を介して1本の光導波路に(n−1)本の光導波路が
結合している構造、あるいはn番目の光導波路が(n−
1,)番目の光導波路屹結合している構造となってる。
The multi-channel optical switch of the present invention has one (n-1, 2
, 3, ...), where (n-1) optical waveguides are coupled to one optical waveguide via an optical directional coupler, or The optical waveguide is (n-
1.) The structure is such that the optical waveguides are connected to each other.

また本発明の駆動方法は上記多チャンネル光スィッチで
、接続すべき先導波路に接続している光方向性結合器の
制御電極ζこは0ボルトの電圧を印加し、他の光方向性
結合器の制御電極にはV(V+o)ボルトの電圧を印加
する方法である。
Further, the driving method of the present invention is to apply a voltage of 0 volts to the control electrode ζ of the optical directional coupler connected to the leading waveguide to be connected in the multi-channel optical switch, and to In this method, a voltage of V (V+o) volts is applied to the control electrode.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例である1×4の多チャンネル
光スィッチの平面図を示す。pm、体又は半導体基板1
上に1本の入力光導波路32と4本の出刃先導波路33
.34.35.36が設置され、入力光導波路32と上
記4本の出力光導波路33.34.35.36の間を光
透過方向に順次互いlこ近接させて光方向性結合器40
.41.42.43が構成され、それらの光方向性結合
器上1こ制御電極44.45.46.47がそれぞれ設
置されている。本実施例においては、基板1の一例とし
てニオブ酸リチウム結晶を用い、光導波路32.33.
34,35.36はチタンを熱拡散し、て形成した。ま
た、上記光導波路の幅は数μm〜数十μmであり、光方
向性結合器を構成する2本の先導波路間隔は数μm程度
、光方向性結合器の長さは数朋〜十数喘である。
FIG. 3 shows a plan view of a 1×4 multi-channel optical switch which is an embodiment of the present invention. pm, body or semiconductor substrate 1
One input optical waveguide 32 and four leading waveguides 33 on top
.. 34, 35, and 36 are installed, and the input optical waveguide 32 and the four output optical waveguides 33, 34, 35, and 36 are sequentially brought close to each other in the light transmission direction to form an optical directional coupler 40.
.. 41, 42, 43 are constructed, and one control electrode 44, 45, 46, 47 is installed on each optical directional coupler. In this embodiment, a lithium niobate crystal is used as an example of the substrate 1, and the optical waveguides 32, 33.
34, 35, and 36 were formed by thermally diffusing titanium. The width of the optical waveguide is several μm to several tens of μm, the distance between the two leading waveguides constituting the optical directional coupler is about several μm, and the length of the optical directional coupler is several μm to several tens of μm. I am panting.

第4図は本実施例の多チャンネル光スィッチの動作を説
明するための図であり、光方向性結合器の制御電極への
印加電圧と出力光レベルの関係を示すものである。すな
わち、第3図において入力光導波路32に光(資)を入
射した場合、光導波路おに結合されて出力する光レベル
が曲線絽、結合されないで先導波路32に残っている出
力光レベルが曲線49である。
FIG. 4 is a diagram for explaining the operation of the multi-channel optical switch of this embodiment, and shows the relationship between the voltage applied to the control electrode of the optical directional coupler and the output light level. That is, in FIG. 3, when light is input to the input optical waveguide 32, the level of light coupled to the optical waveguide and outputted is a curved line, and the level of outputted light remaining in the leading waveguide 32 without being coupled is a curved line. It is 49.

本実施例においては電圧v重のとき結合量が0であり、
電圧0のとき結合量が80〜100%となるように設計
されている。
In this example, when the voltage is v, the amount of coupling is 0,
It is designed so that the amount of coupling is 80 to 100% when the voltage is 0.

本実施例では接続すべき入出力光導波路間で構成される
光方向性結合器の制御電極のみが電圧0であり、他の制
御電極には電圧Vu’が印加される。
In this embodiment, only the control electrode of the optical directional coupler configured between the input and output optical waveguides to be connected has a voltage of 0, and the voltage Vu' is applied to the other control electrodes.

例えば制御電極46の電圧を0とし、他の制御電極の印
加電圧をV重′とする走入刃先導波路32への入射光間
の80〜100チは出力光導波路あへ結合し残りの光量
は全て先導波路32中を通って出射光51となり他の出
刃先導波路1こは結合しない0通常績合量が0となる状
態は先導波路の非対称性の影響を受けなく、また、結合
量Zoo%の状態ζこ比べて低クロストークが容易ζこ
得られるので上記の例では他の出刃先導波路33,34
.36へのもれ光は非常に小さい0同様に、いずれの出
刃先導波路へ切換える場合でも非常に小さいクロストー
クが得られる。また、印加電圧Oのとき、完全に100
%の結合量を得るのは先に述べたように困難であるが、
90〜97%程度の結合器、ほかなり容易に得えれるの
で、本実施例の多チャンネル光スィッチの損失となる出
射光51の光量は数チ以Fにすることができる。また同
じ形状の元方向性結合器を考えた場合、本実施例のV%
の値は第2図の)r、よりもかなり低い値である。
For example, when the voltage of the control electrode 46 is set to 0 and the voltage applied to the other control electrodes is set to V', 80 to 100 beams of light incident on the leading waveguide 32 are coupled to the output optical waveguide A, and the remaining amount of light is All of the light passes through the leading waveguide 32 and becomes the output light 51, which is not coupled to any other leading waveguide 1. Normally, the state where the total amount is 0 is not affected by the asymmetry of the leading wavepath, and the coupling amount Zoo % state ζ Since low crosstalk can be easily obtained compared to this state ζ, in the above example
.. The leakage light to 36 is very small.Similarly to 0, very small crosstalk can be obtained when switching to either leading waveguide. Also, when the applied voltage is O, it is completely 100
As mentioned earlier, it is difficult to obtain a binding amount of %, but
Since a coupler with a ratio of about 90 to 97% can be easily obtained, the amount of output light 51 resulting in a loss in the multi-channel optical switch of this embodiment can be reduced to several Fahrenheit or more. Also, when considering an original directional coupler with the same shape, V% of this example is
The value of ) is much lower than r in FIG.

第5図は本発明の他の実施例である1×4の多チャンネ
ル光スィッチの平面図である。第5図において1は第3
図の実施例と同様な誘電体又は半導体基板であり、基板
1上に人力光導波路52と出力光導波路fi3.54.
55.56が設置され、入力光導波路521こ入射光が
順次−上記の各々の出力光導波路と結合するよう(こ光
方向性結合器(!1 、61 、 fi2 、63が設
置されている0 本実施例の元方向性結合器の制御電極及び印加電圧特性
は第1図及び第2図に示した例と同じであり電圧Vuに
おいて結合量100%である。但し本実施例においては
結合すべき出力光導波路端の光方向性結合器の制御電極
の電圧は0であり、他の制御電極の印加電圧はV、とな
っている。tた電圧0のときの結ば−1はθ〜20チと
なるように設計されている〇 第3図の実施例と同様本実施例においても任意の1つの
出刃先導波路へ一出力したとき他の出力光導波路へのも
れは非常に小さい。
FIG. 5 is a plan view of a 1×4 multi-channel optical switch which is another embodiment of the present invention. In Figure 5, 1 is the third
It is a dielectric or semiconductor substrate similar to the embodiment shown in the figure, and has a manual optical waveguide 52 and an output optical waveguide fi3.54 on the substrate 1.
55 and 56 are installed, and the input optical waveguide 521 is installed so that the incident light is sequentially coupled to each of the above output optical waveguides (optical directional couplers (!1, 61, fi2, 63 are installed). The control electrode and applied voltage characteristics of the original directional coupler of this example are the same as those shown in Figures 1 and 2, and the coupling amount is 100% at voltage Vu.However, in this example, the coupling amount is 100%. The voltage of the control electrode of the optical directional coupler at the end of the output optical waveguide is 0, and the applied voltage of the other control electrodes is V. When the voltage t is 0, the connection -1 is θ ~ 20 Similar to the embodiment shown in FIG. 3, this embodiment is also designed to have a high output power, and when one output is sent to any one leading waveguide, the leakage to other output optical waveguides is very small.

第1図の従来91iと比べると電圧Vt<を不要である
ので低砿圧動作が可能である。
Compared to the conventional 91i shown in FIG. 1, since the voltage Vt< is not required, low-pressure operation is possible.

以上述べたように本発明によればOボルト上1電圧値の
間でスイ・yチングが可能であるので従来よりも駆動回
路がFfij単であり、また容易に低クロストーク特性
が得られ従来よりも低電圧で動作する多チャンネル光ス
ィッチが得られる〇なお、本発明の多チャンネルスイ・
ソチは可逆であるのでNXI光スイッチとして使用する
ことも可能である。また、基板月利、光導波路及び光ス
イツチ形状は上記実施例に限定されtl、!: (11
0例えばタンタル醸リチウム、InP等の化合物半導体
等を用いること、光導波路としてリブ形先導波路や埋込
み先導波路尋を用いることができる。
As described above, according to the present invention, switching is possible between one voltage value above O volts, so the drive circuit is simpler than the conventional one, and low crosstalk characteristics can be easily obtained. It is possible to obtain a multi-channel optical switch that operates at a lower voltage than the multi-channel optical switch of the present invention.
Since Sochi is reversible, it can also be used as an NXI optical switch. In addition, the substrate monthly rate, optical waveguide, and optical switch shape are limited to those of the above embodiment. : (11
For example, a compound semiconductor such as tantalum lithium or InP can be used, and a rib-shaped leading waveguide or a buried leading waveguide can be used as the optical waveguide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多チャンネル光スィッチを説明するため
の平面図、第3図、第5図は本発明による多チャンネル
光スィッチの実施例を示す平面図第2図、第4図は多チ
ャンネル光スィッチの駆動方法を説明するための図であ
る。 図に刺いて lは基板、2.32.52は入力光導波路
、  3.4 + 5 I6 e 33.34 + 3
5 + 36 + 53 。 54.55.56は出刃先導波路である。 牙 1 図 牙 2 図 牙 3 図 舛 4 図     − 牙S図
FIG. 1 is a plan view for explaining a conventional multi-channel optical switch, and FIGS. 3 and 5 are plan views showing an embodiment of a multi-channel optical switch according to the present invention. FIGS. 2 and 4 are plan views for explaining a multi-channel optical switch. It is a figure for explaining the driving method of an optical switch. In the figure, l is the substrate, 2.32.52 is the input optical waveguide, 3.4 + 5 I6 e 33.34 + 3
5 + 36 + 53. 54, 55, and 56 are Deba leading waveways. Fang 1 Fig. 2 Fig. 3 Fig. 4 Fig. - Fang S Fig.

Claims (1)

【特許請求の範囲】 i 1本(n−131・・・・・・・・・)の光導波路
を備え、光方向性結合器を介して各光導波路が他の光導
波路1こ結合している構造を具備した光スィッチICお
い°C,1本の光導波路に互いに異ムる結合点で(n 
−1)本の先導波路が結合していることを特徴とする多
チャンネル光スィッチ。 21本の光導波路を備え、元方向性結合器を介して各先
導波路が他の光導波路に結合しでいる構造を具備した光
スイッチにおいて、L番目(Lx2・3.・・・・・・
、n)の光導波路が(A−t)番目の光導波路に結合し
ているこさを特徴とする多チャンネル光スィッチ。 31本の光導波路に各光方向性結合器を介して互いに異
なる結合点でn1本(01”’ 2 + 3 + 4 
+・・・・・・・・・)の先導波路が結合している多チ
ャンネル光スィッチあるいは、1番目(L−2@ 3 
e・・・・・・。 n)の先導波路が光方向性結合器を介して(↓−1)番
目の光導波路に結合している多チャンネル光スィッチに
おいて、接続すべき先導波路に接続している光方向性結
合器の制御電極への印加電圧を0とし、他の先導波路に
接続している光方向性結合器の制御電極への印加電圧を
v(■Φ0)としたことを特徴とする多チャンネル光ス
ィッチの駆動方法。
[Claims] i.Equipped with one (n-131...) optical waveguide, each optical waveguide is coupled to one other optical waveguide via an optical directional coupler. An optical switch IC with a structure of
-1) A multi-channel optical switch characterized in that two leading waveguides are coupled together. In an optical switch that includes 21 optical waveguides and has a structure in which each leading waveguide is coupled to another optical waveguide via a directional coupler, the L-th (Lx2, 3, etc.)
, n) are coupled to the (A-t)th optical waveguide. 31 optical waveguides are connected to n1 optical waveguides at different coupling points via each optical directional coupler (01''' 2 + 3 + 4
A multi-channel optical switch to which leading wavepaths of L-2@3
e....... In a multi-channel optical switch in which the leading waveguide n) is coupled to the (↓-1)th optical waveguide via an optical directional coupler, the optical directional coupler connected to the leading waveguide to be connected is Driving a multi-channel optical switch characterized in that the voltage applied to the control electrode is 0, and the voltage applied to the control electrode of an optical directional coupler connected to another leading waveguide is v (Φ0). Method.
JP57098820A 1982-06-09 1982-06-09 Multi-channel optical switch and driving method thereof Expired - Lifetime JP2858744B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57098820A JP2858744B2 (en) 1982-06-09 1982-06-09 Multi-channel optical switch and driving method thereof
US06/502,805 US4618210A (en) 1982-06-09 1983-06-09 Optical switch of switched directional coupler type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098820A JP2858744B2 (en) 1982-06-09 1982-06-09 Multi-channel optical switch and driving method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP10-274730A Division JP3003688B2 (en) 1982-06-09 Multi-channel optical switch and driving method thereof
JP14217697A Division JPH10232414A (en) 1997-05-30 1997-05-30 Multi-channel optical switch and driving method therefor

Publications (2)

Publication Number Publication Date
JPS58215632A true JPS58215632A (en) 1983-12-15
JP2858744B2 JP2858744B2 (en) 1999-02-17

Family

ID=14229943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098820A Expired - Lifetime JP2858744B2 (en) 1982-06-09 1982-06-09 Multi-channel optical switch and driving method thereof

Country Status (1)

Country Link
JP (1) JP2858744B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3713990A1 (en) * 1986-05-16 1987-11-19 Ericsson Telefon Ab L M OPTO-ELECTRONIC DIRECTIONAL COUPLER FOR A TENSION-FREE CONTROL SIGNAL
JPH01214804A (en) * 1988-02-23 1989-08-29 Hitachi Cable Ltd Optical multiplexer/demultiplexer and optical module using it
EP0653659A1 (en) * 1993-11-16 1995-05-17 AT&T Corp. Tunable optical waveguide grating arrangement
JPH08211427A (en) * 1995-02-08 1996-08-20 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and demultiplexer
KR20010046674A (en) * 1999-11-15 2001-06-15 김춘호 An waveguide type optical matrix switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130051A (en) * 1978-01-16 1979-10-09 Western Electric Co Adjustable light control filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130051A (en) * 1978-01-16 1979-10-09 Western Electric Co Adjustable light control filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3713990A1 (en) * 1986-05-16 1987-11-19 Ericsson Telefon Ab L M OPTO-ELECTRONIC DIRECTIONAL COUPLER FOR A TENSION-FREE CONTROL SIGNAL
JPH01214804A (en) * 1988-02-23 1989-08-29 Hitachi Cable Ltd Optical multiplexer/demultiplexer and optical module using it
EP0653659A1 (en) * 1993-11-16 1995-05-17 AT&T Corp. Tunable optical waveguide grating arrangement
AU681442B2 (en) * 1993-11-16 1997-08-28 At & T Corporation Tunable optical waveguide grating arrangement
JPH08211427A (en) * 1995-02-08 1996-08-20 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and demultiplexer
KR20010046674A (en) * 1999-11-15 2001-06-15 김춘호 An waveguide type optical matrix switch

Also Published As

Publication number Publication date
JP2858744B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
US4618210A (en) Optical switch of switched directional coupler type
US4130342A (en) Passive optical channel crossover, switch and bend structure
JPH0387704A (en) Optical circuit
JPS59168414A (en) Reflection type multichannel optical switch
JPS58215632A (en) Multichannel optical switch and its driving method
US6430329B1 (en) Integrated optical switch array
US4998791A (en) Integrated optical switches with very high extinction ratios
JPH0375847B2 (en)
US6970626B2 (en) Directional optical coupler
JPH0513289B2 (en)
JP3003688B2 (en) Multi-channel optical switch and driving method thereof
JPH10232414A (en) Multi-channel optical switch and driving method therefor
JPS6076722A (en) Matrix optical switch
US4934776A (en) Ultra-high-extinction cascaded coupled-waveguide optical modulators and optical gate arrays
US6263125B1 (en) Integrated optical switch array
RU2107318C1 (en) Multichannel fibre-optical commutator
JPH11174500A (en) Multi-channel optical switch and its driving method
JPS61121042A (en) Optical switch
JP2853663B2 (en) Integrated optical circuit
JPS58147710A (en) Waveguide type optical control device
JPH0553157A (en) Optical control device
JPH03256028A (en) Light controlling device
JPH01201628A (en) Optical switch
CN117214995A (en) Phase control waveguide structure based on anisotropic material and wavelength division multiplexer structure thereof
JPS62212633A (en) Optical gate matrix switch