JPS60154237A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS60154237A
JPS60154237A JP1118884A JP1118884A JPS60154237A JP S60154237 A JPS60154237 A JP S60154237A JP 1118884 A JP1118884 A JP 1118884A JP 1118884 A JP1118884 A JP 1118884A JP S60154237 A JPS60154237 A JP S60154237A
Authority
JP
Japan
Prior art keywords
waveguide
light
optical
liquid crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1118884A
Other languages
Japanese (ja)
Inventor
Yoshinori Oota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1118884A priority Critical patent/JPS60154237A/en
Publication of JPS60154237A publication Critical patent/JPS60154237A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To switch light guides by installing a linear multi-mode channel light guide group on a dielectric substrate so that they cross one another across liquid crystal at acute angles, and applying a voltage to the liquid crystal layer. CONSTITUTION:A glass substrate 11 has plural parallel linear light guides 3 on the surface and a glass substrate 2 has a light guide 4 of the same structure with the substrate 1. The substrates 1 and 2 are arranged so that their surface on which the light guides 3 and 4 are formed face each other across a fine gap and the light guides 3 and 4 cross each other at an 1-3 deg. angle theta on the same plane when viewed through the substrates 1 and 2. The liquie crystal 5 is charged in the gap between the substrate 1 and 2. Transparent electrodes 12 and 13 are provided on light guides 10 and 11 along the bisector of the light guides 10 and 11 shown while the intersection part of the light guides 3 and 4 are enlarged. When a voltage is applied between the electrodes 12 and 13, a light wave supplied to the light guide 10 from left is coupled with the light guide 11 through the liquid crystal, and when no voltage is applied, it propagates in the light guide 10 and is switched.

Description

【発明の詳細な説明】 〔発明の属する技術分野の説明〕 本発明はファイバを伝わる光ビームの光路を切換える光
フアイバスイッチ、とくに機械的可動部をもたない、電
子式の光スィッチに関する。
DETAILED DESCRIPTION OF THE INVENTION [Description of the technical field to which the invention pertains] The present invention relates to an optical fiber switch that switches the optical path of a light beam traveling through a fiber, and particularly to an electronic optical switch that does not have mechanically movable parts.

〔従来技術の説明〕[Description of prior art]

光フアイバ通信システムにおいては、回線の信頼性を高
め、保守を容易にするために、常用・予備の回線の切換
や光部品の切換え用、測定用などに広く光スィッチが用
いられている。また、塞がっている通話路を回避し、空
いている経路を選択してそれらを結んで通話を設定する
いわゆる交換機を光部品で構成する光交換機を実現する
のに、多チャンネルの切換端子を持つ光スィッチが使用
される。光スィッチは遠地間の通信システムのみならず
、限定された地域内での情報処理機器間を結んだデータ
の伝送システム、いわゆる光データハイウェイにおける
、ハイウェイと端末との接続ノードなどにも盛んに利用
されている。光スィッチは特定の端末を回避する必要が
ある場合、たとえば端末の故障、保守点検、無使用時な
どの際に経路をバイパスするのに有効である。
In optical fiber communication systems, optical switches are widely used for switching between regular and backup lines, switching optical components, and measuring, in order to improve line reliability and facilitate maintenance. In addition, in order to realize an optical switching system that uses optical components to avoid blocked communication channels, select open channels, and connect them to set up a call, it is necessary to have multi-channel switching terminals. A light switch is used. Optical switches are widely used not only in communication systems between long distances, but also in data transmission systems that connect information processing devices within a limited area, such as the connection nodes between highways and terminals on so-called optical data highways. has been done. Optical switches are effective in bypassing routes when it is necessary to avoid a particular terminal, such as when the terminal is out of order, undergoing maintenance or inspection, or when it is not in use.

このような目的に合った光スィッチとして開発されてき
ているものの1つに、プリズムやミラーを電磁的に変位
させるものがある。これは、光プァイバ出射光を平行ビ
ームに変換し、この光路中にプリズムやミラーを挿入す
ることによって光路を空間的に変化させ、再び集光され
る光ファイバを選択するものである。この方式の光スィ
ッチは高いクロストークと低い光挿入損の特性を有し、
利用しやすいという利点があるが、機械的可動機構を有
するため、速い切換速度を得ることが困難であり、切換
回数にたいする寿命や、極く間隔の長い動作に対する信
頼性に不安がある。たとえば、長期間にわたってほとん
ど固定的に成る状態を保持し、或時突然スイッチ動作を
行なわせたときに正しく動作をしないという不安定さが
存在する。
One type of optical switch that has been developed for this purpose is one that electromagnetically displaces a prism or mirror. This converts the light emitted from an optical fiber into a parallel beam, spatially changes the optical path by inserting a prism or mirror into this optical path, and selects the optical fiber on which the light is focused again. This type of optical switch has the characteristics of high crosstalk and low optical insertion loss,
Although it has the advantage of being easy to use, since it has a mechanical movable mechanism, it is difficult to obtain a high switching speed, and there are concerns about the lifespan for the number of switchings and the reliability for operations with extremely long intervals. For example, there is instability in that the switch remains almost fixed for a long period of time and does not operate correctly when suddenly switched.

したがって素子の交換や点検が困難な光海底中継器など
への利用は困難である。
Therefore, it is difficult to use it in optical submarine repeaters, etc., where it is difficult to replace or inspect elements.

機械的な可動部を有することなく、電子的にファイバ光
をスイッチする素子としては次のようなものも知られて
いる。例えば透過光の偏光方向を電圧または電流の印加
によって90′[g1転させる機能をもった偏光変換素
子に入射光を透過させ、この後、光の偏光方向によって
光路の方向を異ならしめる偏光素子を透過させることに
よって異なる光ファイバに光を導びくものがある。偏光
変換素子としては、電気光学結晶や液晶などの電気光学
材料、鉄ガーネツト結晶や高濃度鉛ガラスなどのような
磁気光学材料が用いられている。しかし従来のこの種の
光スィッチには難点がいくつかある。
The following devices are also known as devices that electronically switch fiber optics without having mechanically movable parts. For example, incident light is passed through a polarization conversion element that has the function of inverting the polarization direction of transmitted light by 90'[g1] by applying a voltage or current, and then a polarization element that changes the direction of the optical path depending on the polarization direction of the light is used. Some guide light to different optical fibers by transmitting it. As the polarization conversion element, electro-optic materials such as electro-optic crystals and liquid crystals, and magneto-optic materials such as iron garnet crystals and high-concentration lead glass are used. However, conventional optical switches of this type have several drawbacks.

そのひとつは構成する偏光素子が高価であるかもしくは
特性が不十分である点である。上に述べた光の偏光方向
によって光路を変える偏光素子としては、古くから知ら
れている複屈折の大きな材料である方解石を使った偏光
プリズムや、やはり複屈折の大きな材料であるルチル結
晶をプリズム状に成形研磨したもの、ガラスで作った全
反射プリズムの反射面上に誘電体の三層膜を形成し損光
素子とするものなどがある。方解石は自然石であって高
価であること、ルチルプリズムも結晶材料自体が高価で
あるとともに、高い屈折率を有するた 1■ めにプリズム入射面には良好な無反射膜を形成する必要
があること、ガラス材料に誘電体多層膜を設けた偏光素
子では、多層膜の入射光にたいする波長特性が敏感であ
るため、設計波長よりずれた波長の光の入射にたいして
偏光特性が劣化するなどの難点を有する。
One of these is that the constituent polarizing elements are expensive or have insufficient characteristics. The above-mentioned polarizing elements that change the optical path depending on the polarization direction of the light include polarizing prisms made of calcite, a material with a long known high birefringence, and prisms made of rutile crystal, which also has a high birefringence. There are some types that are shaped and polished, and others that have a three-layer dielectric film formed on the reflective surface of a total reflection prism made of glass to form a light-loss element. Calcite is a natural stone and is expensive, and the crystal material itself of rutile prism is expensive, and it has a high refractive index, so it is necessary to form a good anti-reflection film on the prism entrance surface. In particular, in polarizing elements made of glass material with a dielectric multilayer film, the wavelength characteristics of the multilayer film are sensitive to incident light, so there are drawbacks such as deterioration of the polarization characteristics when light with a wavelength that deviates from the design wavelength is incident. have

もつとも上記のような偏光素子を使用しない構成の光ス
ィッチとして導波路形の光スィッチがある。導波路形光
スイッチの代表的なものとしては、ニオブ酸リチウム単
結晶を基板として用い、該結晶のもつ電気光学効果(印
加する電界によって結晶中の屈折率が変化する効果)を
利用した方式がある。すなわちスイッチエレメントの構
造として基板の表面に平面的に形成した2本の近接した
チャンネル導波路上に電極を設置し、この電極を介して
導波路中に印加する電界によって生ずる屈折率の変化を
利用してチャンネル導波路間の光の結合を制御する方式
がそのひとつである。また他の方式は、基板表面に同じ
く平面的に交差導波路を設け、交差部に電界によって低
屈折領域を形成し、この低屈折率領域によって光を全反
射させる方式、同じく交差部に電界によって位相格子を
形成し導波光を平面内でブラック反射させる方式、また
基板表面にY分岐導波路を設け、分岐領域に屈折率の偏
りを形成し、光を屈折させるなどの方式が提案されてい
る。上記スイッチエレメントは多段に又は網目状に配列
され、多チャンネルへ光スィッチが構成される。
Of course, there is a waveguide-type optical switch that does not use a polarizing element as described above. A typical waveguide type optical switch uses a lithium niobate single crystal as a substrate and utilizes the electro-optic effect of this crystal (the effect of changing the refractive index in the crystal depending on the applied electric field). be. In other words, as a switch element structure, electrodes are installed on two adjacent channel waveguides formed flat on the surface of the substrate, and changes in the refractive index caused by an electric field applied to the waveguides via these electrodes are utilized. One method is to control the coupling of light between channel waveguides. Another method is to provide two-dimensional intersecting waveguides on the surface of the substrate, form a low refractive region at the intersection using an electric field, and completely reflect the light through this low refractive index region. Other methods have been proposed, such as forming a phase grating and black-reflecting the guided light within a plane, and providing a Y-branch waveguide on the substrate surface and creating a refractive index bias in the branch area to refract the light. . The above switch elements are arranged in multiple stages or in a mesh pattern to configure an optical switch for multiple channels.

上記方式の多チャンネル光スィッチの難点は、機械的、
熱的に強度があまり高くないこと、価格の高い結晶基板
を用いていること、利用できる電気光学効果が極めて小
さいことのため、スイッチングに要する電圧が高くなり
、素子長を短かくできず、一枚の基板上に設置できるス
イッチエレメント数が限定されるという点である。この
ため切換え得るチャンネル数が限られていた。また、電
界印加に要する対向電極を一枚の基板上に設置するため
、スイッチエレメント数が多くなった場合に、リード電
極が基板上に鉛線することとなり、このことも一枚の基
板上に設置できるスイッチエレメント数が制約されるひ
とつの要因ともなっていた。また、このタイプの導波形
素子のもつ別な ′る難点として、使用光波長にたいし
て特性が敏感に変るため、たとえば1.3μ常の光波長
用に設計・製作された素子は、1.5膓光で利用した場
合、特性が得られないことを挙げることができる。
The disadvantages of the above-mentioned multichannel optical switch are mechanical,
Because the thermal strength is not very high, the expensive crystal substrate is used, and the available electro-optic effect is extremely small, the voltage required for switching is high, the element length cannot be shortened, and it is difficult to shorten the device length. The problem is that the number of switch elements that can be installed on a single board is limited. For this reason, the number of channels that can be switched is limited. In addition, since the counter electrode required for applying an electric field is installed on a single board, when the number of switch elements increases, the lead electrode becomes a lead wire on the board. This was also one of the factors that limited the number of switch elements that could be installed. Another drawback of this type of waveguide element is that its characteristics change sensitively depending on the optical wavelength used. When used with light, the characteristics cannot be obtained.

導波路形光スイッチの別なる方式として、平面誘電体導
波路の上に液晶を層状に設け、液晶に電界を印加した領
域では導波路中の導波光にたいする屈折率が変化するこ
とを利用して、導波光を面内で屈折させる方式も提案さ
れているが、この方式では導波路はチャンネル化されて
いないため、光ファイバとの接続が困難であるなどの難
点を有する。
Another method of waveguide-type optical switches uses the fact that liquid crystal is layered on top of a planar dielectric waveguide, and the refractive index for guided light in the waveguide changes in the area where an electric field is applied to the liquid crystal. A method has also been proposed in which guided light is refracted within a plane, but this method has drawbacks such as difficulty in connecting to an optical fiber because the waveguide is not channelized.

まだ、以上に挙げた導波路形光スイッチでは、十分なス
イッチ特性を得るために、導波光の特性として、空間的
に最低次の単一モード(直線偏光)であることが必要と
される。このため、接続できる入射光ファイバとしては
、透過光にそのような特性を有する単一モード定偏波光
ファイバを用いなければならない。しかし、単一モード
定偏波光ファイバが敷設される光情報伝送系は多くはな
く、大部分はシステムコストが安価に済む多モード光フ
ァイバが使用されるため、このような系に前述の導波路
形光スイッチは適合しない。
However, in the above-mentioned waveguide type optical switch, in order to obtain sufficient switching characteristics, the guided light must have the spatially lowest order single mode (linearly polarized light). Therefore, as the input optical fiber that can be connected, it is necessary to use a single mode polarization constant optical fiber that has such characteristics for transmitted light. However, there are not many optical information transmission systems in which single-mode polarization-controlled optical fibers are installed, and most use multi-mode optical fibers, which have low system costs. Type optical switches are not applicable.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の目的は上記難点を除去し、安価、低電圧で切換
チャンネル数が多く、しかも多モード光ファイバを接続
でき、低光挿入損失の光スィッチを提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide an optical switch that is inexpensive, has a low voltage, has a large number of switching channels, can connect multimode optical fibers, and has a low optical insertion loss.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明は平面内で交わらない複数本からなる直線状多モ
ードチャンネル光導波路群を表面に有し、該光導波路群
を設けた面を向い合せ、且つ前記2つの光導波路群を鋭
角をもって交叉し合うように設置した2枚の誘電体基板
と、両基板の間隙に充填された液晶と、前記2枚の誘電
体基板上の前記光導波路が交叉して重なυ合う部位にお
いて前記液晶層に電界を印加するために、前記誘電体基
板上に前記2つの光導波路群がなす鋭角の2等分411
 i番 に沿って形成された光学的に透明な電極とからなる光ス
ィッチである。
The present invention has a plurality of linear multimode channel optical waveguides on a surface that do not intersect in a plane, the surfaces on which the optical waveguides are provided face each other, and the two optical waveguide groups intersect at an acute angle. Two dielectric substrates placed so as to match each other, a liquid crystal filled in the gap between the two substrates, and the liquid crystal layer at a portion where the optical waveguides on the two dielectric substrates intersect and overlap υ. In order to apply an electric field, an acute-angled bisection 411 formed by the two optical waveguide groups is formed on the dielectric substrate.
This is an optical switch consisting of an optically transparent electrode formed along the i-th line.

〔実施例の説明〕[Explanation of Examples]

以下に、本発明の詳細を実施例に基づき図面を用いて説
明する。
The details of the present invention will be explained below based on embodiments and with reference to the drawings.

第1図は本発明の一実施例の全体構造を示す図で、1は
膜数の平行な直線導波路3を表面に有するガラス基板、
2はガラス基板1と同一の導波路4を有する同一のガラ
そ基板であり、これら2つのガラス基板1,2は、導波
路3,4が形成しである面を向い合せにして微小な間隙
(2μm〜10μm)をもって配設され、且つ面内にお
いて1〜3°の角度θをなし、2つの基板1,2を透し
て見たとき、各々の腹数の導波路3.4が交叉し合うよ
うに設定されている。該2つの基板1,20間隙には液
晶5が充填されている。
FIG. 1 is a diagram showing the overall structure of an embodiment of the present invention, in which 1 is a glass substrate having parallel linear waveguides 3 on its surface;
2 is the same glass substrate having the same waveguide 4 as the glass substrate 1, and these two glass substrates 1 and 2 are placed with the surfaces where the waveguides 3 and 4 are formed facing each other with a small gap between them. (2 μm to 10 μm) and form an angle θ of 1 to 3 degrees in the plane, and when viewed through the two substrates 1 and 2, the waveguides 3.4 of each antinode number intersect. are set to match. The gap between the two substrates 1 and 20 is filled with liquid crystal 5.

第2図は重なり合う2つの導波路の交叉部を拡大して示
した図で、10は下側に位置する基板(第1図中1)に
設けられた導波路を示し、11.11は上側に位置する
基板2(第2図中2)に設けられた導波路を示す。12
.13は各々の導波路10.11の上に設けられた透明
電極を表わす。下側基板に設けた導波路10に左方より
注入された光波は、前記電極12.13の間に電圧を印
加したとき、電極の間にある液晶(図示略)・を通して
、上側基板に設けた導波路11に結合する。電圧を印加
しないときには、光波は自からの導波路10を伝搬する
。下側基板に設けた導波路を伝わる光が上側基板に設け
た導波路に移行するのは以下の原理による。
FIG. 2 is an enlarged view of the intersection of two overlapping waveguides, where 10 indicates the waveguide provided on the lower substrate (1 in FIG. 1), and 11.11 indicates the upper waveguide. 2 shows a waveguide provided on a substrate 2 (2 in FIG. 2) located at . 12
.. 13 represents a transparent electrode provided on each waveguide 10.11. When a voltage is applied between the electrodes 12 and 13, the light wave injected from the left into the waveguide 10 provided on the lower substrate passes through the liquid crystal (not shown) provided between the electrodes, and then passes through the liquid crystal (not shown) provided between the electrodes. The waveguide 11 is coupled to the waveguide 11. When no voltage is applied, the light wave propagates through its own waveguide 10. The reason why light traveling through the waveguide provided on the lower substrate is transferred to the waveguide provided on the upper substrate is based on the following principle.

第3図は第2図に示す2つの導波路の交叉部で基板に垂
直に、しかも交叉の中心線14に沿って切断した断面図
を示し、101は下側基板、102は上側基板、103
,104はそれぞれの・表面に設けた導波路、106,
107は導波路表面に設けた透明電極、105は2つの
基板101,102の間隙に充填された液晶である。 
1’08はスイッチ、・109は電源を示している。
FIG. 3 shows a cross-sectional view taken perpendicular to the substrate at the intersection of the two waveguides shown in FIG.
, 104 are waveguides provided on the respective surfaces, 106,
107 is a transparent electrode provided on the surface of the waveguide, and 105 is a liquid crystal filled in the gap between the two substrates 101 and 102.
1'08 is a switch, and 109 is a power supply.

この導波光は110に示す拡幅分布を示し、僅か液晶1
05中圧裾拡がりを有する。液晶105は電極106と
107と間に電圧が印加されていないときには、上記の
下側基板101に注入された光波に対してほぼ屈折率町
を示し、電圧が印加されると屈折率n2を示すように分
子配向を定めである。2つの屈折率はn露>n、の関係
を有する。スイッチ108を閉じて2つの電極に電源1
09の電圧を印加すると、光波にだいして液晶105の
屈折率が増大するため、導波光の′電界分布は111の
ように、導波路103からの浸み出しが大きくなり、液
晶105を通して導波路104へ裾を拡げる。導波路1
03と導波路104とは同一に形成されているため、導
波路103を伝わる光波は伝搬するにつれ導波路104
に結合する。
This guided light shows a broadened distribution as shown in 110, and is slightly
05 has medium pressure skirt expansion. When no voltage is applied between the electrodes 106 and 107, the liquid crystal 105 exhibits approximately a refractive index of n2 with respect to the light wave injected into the lower substrate 101, and when a voltage is applied, the liquid crystal 105 exhibits a refractive index of n2. The molecular orientation is determined as follows. The two refractive indices have a relationship of n>n. Close the switch 108 and connect the power supply 1 to the two electrodes.
When a voltage of 09 is applied, the refractive index of the liquid crystal 105 increases depending on the light wave, so the electric field distribution of the guided light becomes as shown in 111, and the seepage from the waveguide 103 increases, and the waveguide passes through the liquid crystal 105. Expand the hem to 104. Waveguide 1
Since the waveguide 104 and the waveguide 104 are formed in the same manner, the light wave propagating through the waveguide 103 will pass through the waveguide 104 as it propagates.
join to.

2つの電極106と107との間に電圧を印加しないと
きには、光波の電界分布は110に示すように浸み出し
が小さいために、上側基板に設けた導波路104には結
合しない。従って電圧の印加の有無により、下側導波路
を伝わる光は上側導波路104へ結合又は自からの導波
路を伝わるという光路の変換が実現される。第1図の構
成に示すように、1本の下側基板に設けられた導波路は
、全ての上側導波路と交叉する。従って所望の上側導波
路104に光をスイッチするには、該上側導波路104
と下側導波路103との交叉する全ての位置に設けた電
極対のうちの所望の電極対に電圧と印加することによっ
て実現される。
When no voltage is applied between the two electrodes 106 and 107, the light wave does not couple to the waveguide 104 provided on the upper substrate because the electric field distribution of the light wave has a small leakage as shown at 110. Therefore, depending on whether or not a voltage is applied, an optical path conversion is realized in which the light traveling through the lower waveguide is coupled to the upper waveguide 104 or transmitted through the own waveguide. As shown in the configuration of FIG. 1, a waveguide provided on one lower substrate intersects all upper waveguides. Therefore, in order to switch light to a desired upper waveguide 104, the upper waveguide 104 is
This is realized by applying a voltage to a desired pair of electrodes among the pairs of electrodes provided at all positions where the lower waveguide 103 and the lower waveguide 103 intersect.

本発明の特長のひとつは、多モードファイバ光をもスイ
ッチすることができる点であり、この動作は次のように
説明される。第4図は第2図に示す2つの導波路の交叉
部で基板に垂直に、しかも光導波を遮ぎるように切断し
た断面図を示している。
One of the features of the present invention is that it can also switch multimode fiber light, and this operation is explained as follows. FIG. 4 shows a cross-sectional view taken perpendicularly to the substrate at the intersection of the two waveguides shown in FIG. 2 so as to block the optical waveguide.

液晶105は分子長軸が光透過方向、即ち第4図中2軸
方向に向くように基板101 、102の表面に処理が
施こされている。導波路103を透過する光波はどのよ
うなモードに対しても液晶105は町の屈折率を示す。
The surfaces of the substrates 101 and 102 of the liquid crystal 105 are treated so that the long axis of the molecules is oriented in the light transmission direction, that is, in the two-axis direction in FIG. The liquid crystal 105 shows the refractive index of the light wave transmitted through the waveguide 103 in any mode.

電極106 、107の間に電界109をスイッチ10
8を介して印加する。電極106と107は上下垂直に
対向しているのではなく、π方向に間隙を有して設定さ
れている。電極106と107との間に印加する電圧を
正しく設定すると、液晶分子の長軸は空間軸Z t y
t gいずれの軸にだいしても45゜の角度をなす1.
このとき導波路103を透過する光 1′) 波のどのようなモードに対しても液晶はR*(IS*>
%t)の屈折率を示し、上述の第3図の説明に述べたよ
うに、対向する導波路104への光の結合が生ずる。
An electric field 109 is applied between the electrodes 106 and 107 by the switch 10.
8. The electrodes 106 and 107 are not vertically opposed to each other, but are set with a gap in the π direction. If the voltage applied between the electrodes 106 and 107 is set correctly, the long axis of the liquid crystal molecules is aligned with the spatial axis Z t y
t g making an angle of 45° to either axis1.
At this time, the liquid crystal is R*(IS*>
%t), and coupling of light into the opposing waveguide 104 occurs as described in the description of FIG. 3 above.

更に第2図に示したように、下側基板の導波路10と上
側導波路11とは角度0を介して光導波方向に交叉して
いるため、2つの導波路の重なりは光透過方向に一様で
はなく変化している。このことは、すなわち、2つの電
極間に電圧を印加したとき2つの導波路間の光の結合係
数は2つの導波路の交叉部の中心(第2図中15 )を
最大としてその光透過方向の前後で減少していることを
意味する。一般に結合導波路の結合係数が光透過方向に
分布を有すると、結合係数が一様で結合長が長い場合に
、一方の導波路から他方の導波路へ結合した光が再び元
の導波路に再結合する現象が起らないため、波数の異な
るモードすなわち、結合度の異なる多数のモードもすべ
て一方の導波路から他方の導波路へ一方向的なエネルギ
の移行が行なわれる。本実施例の構造では波数の異なる
多数の空間モードを有する導波路にたいして切換強度比
の高いスイッチング特性を有する。
Furthermore, as shown in FIG. 2, since the waveguide 10 on the lower substrate and the upper waveguide 11 intersect in the optical waveguide direction through an angle of 0, the overlap of the two waveguides is in the optical transmission direction. It is not uniform and is changing. This means that when a voltage is applied between the two electrodes, the coupling coefficient of light between the two waveguides is maximized at the center of the intersection of the two waveguides (15 in Figure 2) and in the direction of light transmission. This means that it decreases before and after. Generally, when the coupling coefficient of a coupling waveguide has a distribution in the light transmission direction, when the coupling coefficient is uniform and the coupling length is long, the light coupled from one waveguide to the other waveguide returns to the original waveguide. Since no recombination phenomenon occurs, energy of all modes having different wave numbers, that is, a large number of modes having different degrees of coupling, is unidirectionally transferred from one waveguide to the other waveguide. The structure of this embodiment has switching characteristics with a high switching intensity ratio for a waveguide having a large number of spatial modes with different wave numbers.

本発明の実施例の素子は一例として以下に示すような設
計値によって実現される。
The elements of the embodiments of the present invention are realized by design values as shown below, by way of example.

ガラス基板として屈折率1.51を有するBN2を使い
、硝酸銀や硝酸タリウムを用いたイオン交換法により屈
折率1.52程度を有する導波路を形成する。
Using BN2 having a refractive index of 1.51 as a glass substrate, a waveguide having a refractive index of about 1.52 is formed by an ion exchange method using silver nitrate or thallium nitrate.

透明電極にはインジウム・スズ酸化膜を500〜100
0^程度設け、液晶材としてn、−1,63,s、−1
,50を有するネマティック液晶材料を用いると良好な
光スィッチが得られる。
The transparent electrode has an indium tin oxide film of 500 to 100
0^, and as a liquid crystal material n, -1, 63, s, -1
, 50, a good optical switch can be obtained.

〔発明の詳細な説明〕[Detailed description of the invention]

以上の説明の如く本発明による光スィッチはガラス材料
を用いているため安価であり、直線導波路だけで構成さ
れ、多チャンネルの切換が可能、多モード光ファイバと
の接続が容易な低光挿入損失、液晶を使用していること
による低駆動電圧などの特長を有する。
As explained above, the optical switch according to the present invention is made of glass material, so it is inexpensive, it is composed of only a straight waveguide, it can switch multiple channels, and it is easy to connect with a multimode optical fiber, and has low optical insertion. It has features such as low loss and low driving voltage due to the use of liquid crystal.

以上の説明ではガラス基板上への導波路の形成方法とし
てイオン交換法を用いる場合を述べたが、G■法、スパ
ッタ法等による基板とは異なる誘電体層を形成して導波
路とするなど、他の導波路形成法を用いることができる
In the above explanation, we have described the case where the ion exchange method is used as a method for forming a waveguide on a glass substrate, but it is also possible to form a waveguide by forming a dielectric layer different from the substrate using the G method, sputtering method, etc. , other waveguide formation methods can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構造を示す平面図、第2図
は第1図における導波路交叉部を拡大して表わした図、
第3図、第4図は導波路交叉部の断面図を示す。 1.2・・・基板、3,4・・・チャンネル光導波路、
5・・・液晶、10.11・−・チャンネル導波路、1
2.13・・・透明電極、ioi 、 io2・・・基
板、103 、104・・・光導波路、105・・・液
晶層 特許出願人 日本電気株式会社 第1園 地2図
FIG. 1 is a plan view showing the structure of an embodiment of the present invention, FIG. 2 is an enlarged view of the waveguide intersection in FIG. 1,
3 and 4 show cross-sectional views of the waveguide intersection. 1.2...Substrate, 3,4...Channel optical waveguide,
5...Liquid crystal, 10.11...Channel waveguide, 1
2.13...Transparent electrode, ioi, io2...substrate, 103, 104...optical waveguide, 105...liquid crystal layer Patent applicant NEC Corporation No. 1 Sonochi 2

Claims (1)

【特許請求の範囲】[Claims] (1)平面内で交わらない複数本からなる直線状多モー
ドチャンネル光導波路群を表面に有し、該光導波路群を
設けた面を向い合せ、且つ2つの光導波路群を鋭角をも
って交叉し合うように設置した2枚の誘電体基板と、両
基板の間隙に充填された液晶と、前記2枚の誘電体基板
上の前記光導波路が交叉して重なり合う部位において、
前記液晶1@に電界を印加するために、前記誘電体基板
上に前記2つの光導波路群がなす鋭角の2等分線に沿っ
て形成された光学的に透明な電極とからなることを特徴
とする光スィッチ。
(1) The surface has a group of linear multi-mode channel optical waveguides consisting of a plurality of optical waveguides that do not intersect in a plane, the surfaces on which the optical waveguide groups are provided face each other, and the two optical waveguide groups intersect each other at an acute angle. In a region where the two dielectric substrates installed as above, the liquid crystal filled in the gap between the two substrates, and the optical waveguide on the two dielectric substrates intersect and overlap,
In order to apply an electric field to the liquid crystal 1@, it is characterized by comprising an optically transparent electrode formed on the dielectric substrate along the bisector of an acute angle formed by the two optical waveguide groups. light switch.
JP1118884A 1984-01-24 1984-01-24 Optical switch Pending JPS60154237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118884A JPS60154237A (en) 1984-01-24 1984-01-24 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118884A JPS60154237A (en) 1984-01-24 1984-01-24 Optical switch

Publications (1)

Publication Number Publication Date
JPS60154237A true JPS60154237A (en) 1985-08-13

Family

ID=11771088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118884A Pending JPS60154237A (en) 1984-01-24 1984-01-24 Optical switch

Country Status (1)

Country Link
JP (1) JPS60154237A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266226A (en) * 1985-09-19 1987-03-25 Seiko Epson Corp Liquid crystal electrooptic device
JPS62127829A (en) * 1985-11-29 1987-06-10 Furukawa Electric Co Ltd:The Waveguide type liquid crystal matrix switch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147618A (en) * 1981-03-10 1982-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical switch matrix
JPS5895715A (en) * 1981-12-03 1983-06-07 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147618A (en) * 1981-03-10 1982-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical switch matrix
JPS5895715A (en) * 1981-12-03 1983-06-07 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266226A (en) * 1985-09-19 1987-03-25 Seiko Epson Corp Liquid crystal electrooptic device
JPS62127829A (en) * 1985-11-29 1987-06-10 Furukawa Electric Co Ltd:The Waveguide type liquid crystal matrix switch

Similar Documents

Publication Publication Date Title
US5488681A (en) Method for controllable optical power splitting
US6393172B1 (en) Method of manipulating optical wave energy using patterned electro-optic structures
US5581642A (en) Optical frequency channel selection filter with electronically-controlled grating structures
US5630004A (en) Controllable beam director using poled structure
US5586206A (en) Optical power splitter with electrically-controlled switching structures
US4201442A (en) Liquid crystal switching coupler matrix
US5491762A (en) ATM switch with electrically-controlled waveguide-routing
JPS59808B2 (en) Improved liquid crystal matrix
US4143941A (en) Low loss optical data terminal device for multimode fiber guide optical communication systems
US5044712A (en) Waveguided electrooptic switches using ferroelectric liquid crystals
KR20030089492A (en) Waveguide type liquid crystal optical switch
US4561718A (en) Photoelastic effect optical waveguides
US4184738A (en) Light coupling and modulating means
CN112014983A (en) Electro-optical switch based on lithium niobate waveguide and manufacturing method thereof
US4094579A (en) Multimode optical waveguide device with non-normal butt coupling of fiber to electro-optic planar waveguide
EP0015139B1 (en) Electro-optical switching matrix
US6904207B2 (en) Waveguide type liquid-crystal optical switch
US5835644A (en) TE-pass optical waveguide polarizer using elecro-optic polymers
JPS60154237A (en) Optical switch
JPS5895330A (en) Optical switch
US20040202398A1 (en) Liquid crystal-based electrooptical device forming, in particular, a switch
JPS60146230A (en) Optical switch
JPH0750284B2 (en) Optical path switch
JP2635986B2 (en) Optical waveguide switch
JPH01201628A (en) Optical switch