JPS60146230A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS60146230A
JPS60146230A JP218384A JP218384A JPS60146230A JP S60146230 A JPS60146230 A JP S60146230A JP 218384 A JP218384 A JP 218384A JP 218384 A JP218384 A JP 218384A JP S60146230 A JPS60146230 A JP S60146230A
Authority
JP
Japan
Prior art keywords
waveguide
optical
liquid crystal
waveguides
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP218384A
Other languages
Japanese (ja)
Inventor
Yoshinori Oota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP218384A priority Critical patent/JPS60146230A/en
Publication of JPS60146230A publication Critical patent/JPS60146230A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a multi-channel switchable optical switch of low optical insertion loss, which is connected easily to an optical fiber, by combining a linear waveguide made of glass, and liquid crystal. CONSTITUTION:Glass plates 1, 2 having plural parallel linear optical waveguides 3, 4 on the surface of the substrate are provided by making the surfaces on which the waveguides 3, 4 are opposed to each other, having a minute gap, making an angle theta of 1-3 deg. on the surface, and so that plural waveguides cross each other, when seeing through two substrates. The gap of the two substrates is packed with a liquid crystal 105. As for optical wave flowing into a waveguide 103 of the surface of the lower side substrate, when a voltage is applied to two electrodes 106, 107, a refractive index of the liquid crystal to the optical wave increases, therefore, light is coupled to a waveguide 104 through the liquid crystal 105 from the waveguide 103.

Description

【発明の詳細な説明】 本発明はファイバを伝わる光ビームの光路を切換える光
フアイバスイッチ、とくに機械的可動部をもたない、電
子式の光スィッチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber switch that switches the optical path of a light beam traveling through a fiber, and particularly to an electronic optical switch that does not have mechanically movable parts.

光フアイバ通信システムにおいては、回線の信頼性を高
め、保守を容易にするために、常用・予備の回線の切換
や光部品の切換え、また測定用などに広く光スィッチが
用いられている。また、塞がっている通話路を回避し、
空いている経路を選択し結んで通話を設定するいわゆる
交換機を光部品で構成する光交換機を実現するのに、多
チャンネルの切換一端子数を持つ光スィッチが使用され
る。
In optical fiber communication systems, optical switches are widely used for switching between regular and backup lines, switching optical components, and for measurement in order to improve line reliability and facilitate maintenance. Also, avoid blocked communication channels,
An optical switch having a multi-channel switching terminal is used to realize a so-called optical switching system that is composed of optical components and that selects and connects an available route to set up a call.

また遠地間の通信システムのみならす、限定された地域
内での情報処理機器間を結んだデータの伝送システム、
いわゆる光データハイウェイに君ける、ハイウェイと端
末との接続ノードなどにも光スィッチが利用されている
。すなわち、特定の端末を回避する必要がある場合、た
とえば端末の故障、保守点検無使用時などには光スィッ
チによって経路をバイパスする。
Also, data transmission systems that connect information processing devices within a limited area, including communication systems between distant areas,
Optical switches are also used in so-called optical data highways, such as connection nodes between highways and terminals. That is, when it is necessary to avoid a specific terminal, for example, when the terminal is out of order or not being used for maintenance or inspection, the optical switch is used to bypass the route.

このような目的に合った光スィッチとして開発されてき
ているものの1つは、プリズムやミラーを電磁的に変位
させるものである。すなわち、光ファイバ出射光を平行
ビームに変換し、この光路中にプリズムやミラーを挿入
することによって光路を空間的に変化させて、再び集光
される光ファイバを選択するものである。この方式の光
スィッチは高いクロストークと低い光挿入損の特性を有
し、利用しやすいものであるが、機械的可動機構を有す
るため、速い切換速度を得ることが困難であり、切換回
数にたいする寿命や、極く間隔の長い動作に対する信頼
性に不安がある。たとえば、長期間にわたってほとんど
固定的に或状態を保持し、或時突然スイッチ動作を行な
わせたときに正しく動作をしないという不安定さが存在
する。したがって素子の交換や点検が困難な光海底中継
器などへの利用は困難である。
One type of optical switch that has been developed for this purpose is one that electromagnetically displaces a prism or mirror. That is, the light emitted from an optical fiber is converted into a parallel beam, the optical path is spatially changed by inserting a prism or a mirror into this optical path, and the optical fiber on which the light is focused again is selected. This type of optical switch has the characteristics of high crosstalk and low optical insertion loss, and is easy to use. However, because it has a mechanical movable mechanism, it is difficult to obtain a high switching speed, and the number of switching cycles is limited. There are concerns about longevity and reliability for extremely long intervals of operation. For example, there is instability in that a device maintains a certain state almost fixedly for a long period of time and does not operate correctly when a switch is suddenly operated. Therefore, it is difficult to use it in optical submarine repeaters, etc., where it is difficult to replace or inspect elements.

機械的な可動部を有することなく、電子的にファイバ光
をスイッチする素子としては次のようなものも知られて
いる。透過光の偏光方向を電圧または電流の印加によっ
て90°回転させる機能をもった偏光変換素子に入射光
を透過させ、この後、光の偏光方向によって光路の方向
を異ならしめる偏光素子を透過させることによって異な
る光ファイバに光を導ひくものである。偏光変換素子と
しては、電気光学結晶や液晶などの電気光学結晶、鉄ガ
ーネツト結晶や高濃度鉛ガラスなどのような磁気光学材
料が用いられている。従来のこの種の光スィッチには難
点がいくつかある。そのひとつは構成する偏光素子が高
価であるか、もしくは特性が不十分である点である。上
に述べた光の偏光方向によって光路を変える偏光素子と
しては、古くから知られている複屈折の大きな材料であ
る方解石を使った側光プリズムや、やはり複屈折の大き
な材料であるルチル結晶をプリズム状に成形研磨したも
の、ガラスで作った全反射プリズムの反射面上に誘電体
の三層膜を形成し偏光素子とするものなどがある。方解
石は自然石であって高価であること、ルチルプリズムも
結晶材料自体が高価であるとともに、高い屈折率を有す
るためにプリズム入射面には良好な無反射膜を形成する
必要があること、ガラス材料に誘電体多層膜を設けた偏
光素子では、多層膜の入射光にたいする波長特性が#感
であるため、設計波長よりずれた波長の光の入射にたい
して偏光特性が劣化するなどの難点を有する。
The following devices are also known as devices that electronically switch fiber optics without having mechanically movable parts. The incident light is transmitted through a polarization conversion element that has the function of rotating the polarization direction of the transmitted light by 90 degrees by applying a voltage or current, and then transmitted through a polarization element that changes the direction of the optical path depending on the polarization direction of the light. It guides light to different optical fibers. As the polarization conversion element, electro-optic crystals such as electro-optic crystals and liquid crystals, magneto-optic materials such as iron garnet crystals and high concentration lead glass are used. Conventional optical switches of this type have several drawbacks. One of these is that the constituent polarizing elements are expensive or have insufficient characteristics. The above-mentioned polarizing elements that change the optical path depending on the polarization direction of the light include side-light prisms made of calcite, which is a material with a large birefringence that has been known for a long time, and rutile crystal, which is also a material with a large birefringence. There are those that are formed into a prism shape and polished, and those that form a polarizing element by forming a three-layer dielectric film on the reflective surface of a total reflection prism made of glass. Calcite is a natural stone and is expensive; the crystal material itself for rutile prisms is expensive; and because it has a high refractive index, it is necessary to form a good anti-reflection film on the prism entrance surface. In a polarizing element made of a dielectric multilayer film, the wavelength characteristics of the multilayer film with respect to incident light are #-like, so there are drawbacks such as the polarization characteristics deteriorate when light of a wavelength deviates from the design wavelength is incident.

上記のような偏光素子を使用しない構成の光ス゛ イッ
チとしては、導波路形の光スィッチがあげられる。導波
路形光スイッチの代表的なものとしては、ニオブ酸リチ
ウム単結晶を基板として用い、該結晶のもつ電気光学効
果(印加する電界によって結晶中の屈折率が変化する効
果)を利用した方式がある。すなわちスイッチエレメン
トの構造として基板の表面に平面的に形成した2本の近
接したチャンネル樽波路上に′電極を設置し、この電極
を介して導波路中に印加する電界によって生ずる屈折率
変化を利用し゛Cチャンネル導波路間の光の結合を制御
する方式がそのひとつである。また他の方式は、基板表
面に同じく平面的に交差導波路を設け、交差部に電界に
よって低屈折領域を形成し、この低屈折率領域によって
光を全反射させる方式、同じく交差部に電界によって位
相格子を形成し導波光を平面内でブラッグ反射させる方
式、また基板表面憂こY分岐導波路を設け、分岐領域に
屈折率の偏りを形成し、光を屈折させるなどの方式が提
案されている。上記スイッチエレメントを多段に又は網
目状に配列して、多チャンネルの光スィッチを構成する
An example of an optical switch configured without using a polarizing element as described above is a waveguide type optical switch. A typical waveguide type optical switch uses a lithium niobate single crystal as a substrate and utilizes the electro-optic effect of this crystal (the effect of changing the refractive index in the crystal depending on the applied electric field). be. In other words, as the structure of the switch element, an electrode is installed on two adjacent channel barrel waveforms formed planarly on the surface of the substrate, and the change in refractive index caused by the electric field applied to the waveguide via this electrode is utilized. One method is to control the coupling of light between C-channel waveguides. Another method is to provide two-dimensional intersecting waveguides on the surface of the substrate, form a low refractive region at the intersection using an electric field, and completely reflect the light through this low refractive index region. A method has been proposed in which a phase grating is formed and the guided light is Bragg-reflected within a plane, and a method in which a Y-branch waveguide is provided on the substrate surface and a refractive index bias is formed in the branch region to refract the light. There is. A multi-channel optical switch is constructed by arranging the switch elements in multiple stages or in a mesh pattern.

上記方式の多チャンネル光スィッチの唆点は、機械的、
熱的に強度があまり高くなく、また価格の高い結晶基板
を用いていること、また、利用できる電気光学効果が極
めて小さいため、スイッチングに要する電圧が高くなり
、素子長を短かく出来ず、一枚の基板上に設置で六るス
イッチエレメント数が限定され、このため切換え得るチ
ャンネル数が限定される。また電界印加に曹fる対向電
極を一枚の基板上に設置するため、スイッチエレメント
数が多くなった場合、リード電極が基板上に鉛線する。
The key points of the above-mentioned multi-channel optical switch are mechanical,
Because it uses a crystal substrate that does not have very high thermal strength and is expensive, and because the electro-optic effect that can be used is extremely small, the voltage required for switching is high, and the element length cannot be shortened. The number of switch elements that can be installed on a single board is limited, which limits the number of channels that can be switched. Further, since a counter electrode that is capable of applying an electric field is installed on a single substrate, when the number of switch elements increases, the lead electrode becomes a lead wire on the substrate.

このことも一枚の基板上に設置できるスイッチエレメン
ト数を制約rるひとつの要因ともなっている。
This is also one of the factors that limits the number of switch elements that can be installed on one board.

導波路形光スイッチで別なる方式として、平面誘電体導
波路の上に液晶を層状に設け、液晶に電界を印加した領
域では導波路中の導波光にたいする屈折率が変化するこ
とを利用して、導波光を面内で屈折させる方式も提案さ
れているが、この方式では導波路はチャンネル化されて
いないため元ファイバ七の接続が困咋であることなどの
難点を有する。
Another method for waveguide-type optical switches uses the fact that liquid crystal is layered on top of a planar dielectric waveguide, and the refractive index for guided light in the waveguide changes in the area where an electric field is applied to the liquid crystal. A method has also been proposed in which the guided light is refracted within the plane, but this method has drawbacks such as difficulty in connecting the original fibers because the waveguide is not channelized.

本発明の目的は上記難点を除去した、安価、低’tM、
圧で、切換チャンネル数が多く、光フアイバアレーと接
続でき低光挿入損失の光スィッチを提供することにある
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to provide inexpensive, low 'tM,
The object of the present invention is to provide an optical switch that has a large number of switching channels, can be connected to an optical fiber array, and has a low optical insertion loss.

本発明によれば、平面内で交わらない複数本で構成され
る直線状単一モードチャンネル光導波路群を表面に有す
る2枚の誘電体基板と、前記光導波路群を設けた面が向
い合せとなり、前記2つの光導波路群が交叉し合うよう
に設置された前記2枚の誘電体基板の間隙に充填された
液晶と、前記誘′屯体基板上の前記光導波路が交叉して
重なり合う部位の前ζ己液晶層に電界を印加するために
、前記光導波路の上に該導波路に沿って形成された光学
的に透明な成極とによって、低電圧、低光損失、安価な
光スィッチが得られる。 m 本発明の詳細を実施例に基づき図面を2いて説明する。
According to the present invention, two dielectric substrates each having on their surfaces a group of linear single-mode channel optical waveguides each having a plurality of linear single-mode channel optical waveguides that do not intersect in a plane, and the surfaces on which the optical waveguides are provided face each other. , a liquid crystal filled in the gap between the two dielectric substrates installed so that the two optical waveguide groups intersect with each other, and a portion where the optical waveguides on the dielectric substrate intersect and overlap. An optically transparent polarization formed above and along the optical waveguide to apply an electric field to the liquid crystal layer provides a low voltage, low optical loss, and inexpensive optical switch. can get. m Details of the present invention will be explained based on embodiments and with reference to the drawings.

第1図は本発明の一実施例の全体構造を示す図で、1は
複数の平行な直線導波路3を基板表面に有するガラス板
、2は1のガラス基板と同一の導波路4を有する同一の
ガラス基板であり、これら2つのガラス基板は、導波路
3.4を形成しである面を、向い合せにして、微小な(
2μm−10μm)間隙を有し、面内において1〜3°
の角度θをなし、2つの基板を透して見たとき、各々の
複数の導波路が交叉し合うように設定されている。2つ
の基板の間隙には液晶が充填されている。第2図は交叉
して重なり合う2つの導波路の交叉部を拡大して示した
図で10は下側に位置する基板(第1図中1)に設けら
れた導波路を示し、11は上側に位置する基板(第1図
中2)に設けられた導波路を示し、12 、13はそれ
ぞれの導波路の上に設けられた透明電極を表わす。下側
基板に設けた導波路10に左方より注入された光波は、
前記電極12 、13の間に電圧を印加したきき%電極
の間にある液晶を通して、上側基板に設けた導波路11
に結合する。電圧を印加しないときには、光波は自から
の導波路10を伝搬する。下側基板に設けた導波路を伝
わる光が一ヒ側基板に設けた導波路に移行するのは以下
の原理による。第3図は第2図に示す2つの導波路の交
叉部で基板に垂直に切断した断面図を示し。
FIG. 1 is a diagram showing the overall structure of an embodiment of the present invention, where 1 is a glass plate having a plurality of parallel linear waveguides 3 on the substrate surface, and 2 is a glass plate having the same waveguide 4 as the glass substrate 1. These two glass substrates are made of the same glass substrate, and the surfaces forming the waveguide 3.4 are placed facing each other.
2μm-10μm) gap, 1~3° in the plane
When viewed through the two substrates, each of the plurality of waveguides is set to intersect with each other at an angle θ. The gap between the two substrates is filled with liquid crystal. Figure 2 is an enlarged view of the intersection of two overlapping waveguides, where 10 indicates the waveguide provided on the lower substrate (1 in Figure 1), and 11 indicates the upper waveguide. The waveguides provided on the substrate (2 in FIG. 1) located at are shown, and 12 and 13 represent transparent electrodes provided on the respective waveguides. The light wave injected from the left into the waveguide 10 provided on the lower substrate is
A waveguide 11 provided on the upper substrate passes through the liquid crystal between the electrodes with a voltage applied between the electrodes 12 and 13.
join to. When no voltage is applied, the light wave propagates through its own waveguide 10. The reason why light traveling through the waveguide provided on the lower substrate is transferred to the waveguide provided on the first substrate is based on the following principle. FIG. 3 shows a cross-sectional view taken perpendicular to the substrate at the intersection of the two waveguides shown in FIG.

101は下側基板、102は上側基板、103.104
はそれぞれの表面ζこ設けた導波路、106.107は
導波路表面に設けた透明電極、105は2つの基板の間
隙に充填された液晶である。下側基板に注入された光波
は、基板に平行な電界成分を有するTE波とする。この
導波光は110に示す振幅分布を示しており、僅か液晶
中に裾拡がりを有する。液晶105は′成極106と1
07間に電圧が印加されていないときには、L記のTE
波に対してほぼ常光屈折率n0を示し、電圧が印加され
ると異常光屈折率neを示゛ すように分子配向を定め
である。そして2つの屈折率はne) n、の関係を有
する。2つの電極に電圧を印加すると、光波にたいして
液晶の屈折率が増大するため導波光の電界分布は111
のように、導波路103からの浸み出しが大きくなり、
液晶105を通して導波路104へ裾を拡げる。導波路
103と導波路104は同一に形成されているため導波
路103を伝わる光波は伝搬するにっれ導波路104に
結合する。2つの電極106と107の間に電圧を印加
しないときには、光波の電界分布は110に示すように
浸み出しが小さいために、上側基板に設けた導波路10
4には結合しない。従って′電圧の印加有無により、下
側導波路を伝わる光は上側導波路へ結合又は自からの導
波路を伝わるという光路の変換が実現される。第1図の
構成に示すように、1本の下側基板に設けられた導波路
は、全ての上側導波路と交叉する。従って所望の上側導
波路に光をスイッチするには、該上側導波路とF側溝波
路との所望の交叉する位置に設けた′電極対に電圧を印
加することによって実現される。このような動作は、−
例として以下に示すような設計値によって実現されるガ
ラス基板として屈折率1.51を有するBK7を使い、
硝酸銀や硝酸クリウムを用いたイオン交換法により屈折
率1.52 +’4度を有する導波路を形成する。透明
電極にはインジウム・スズ酸化嘆を500〜1000 
A程度設ける。液晶相として例えばne= 1.63 
、 no= 1.50を有する通常得られるネマティッ
ク液晶を用いると、光波の液晶中の裾拡がりは光波長0
633μ7n のとき電圧を印加しない場合1μm以下
、電圧を印加したとき2μm以Fとなる。液晶層の厚さ
を2μm程度とすれば低圧を印加したときのみ光波の結
合が生ずる。九波長を単一モード光ファイバ通信に用い
られる13〜1.8μm帯の長波長帯に設定すると液晶
層の厚さを5μ7n程度と更に厚くすわば良好な光スイ
ツチング特性が得られる。液晶を保持する極めて薄い空
隙を2つの基板の間に形成するには、本発明者によって
先に示した接着方法(特願昭54−59944圧電変換
子の接着方法、特願昭55−98587 、接着方法)
、すなわち、接着する一方の基板に低融点金属膜を蒸着
法等により設け、他方の基板に別なる金属例えば金等の
薄膜を設け、それらを合せて加熱またはレーザ照射によ
りて2つの薄膜間に固相反応を生じさせる方法によって
、空隙間隔の精度の高い接着を行うことができる。
101 is the lower substrate, 102 is the upper substrate, 103.104
106 and 107 are transparent electrodes provided on the waveguide surfaces, and 105 is a liquid crystal filled in the gap between the two substrates. The light wave injected into the lower substrate is a TE wave having an electric field component parallel to the substrate. This guided light has an amplitude distribution shown at 110, and has a slight broadening in the liquid crystal. The liquid crystal 105 is polarized 106 and 1
When no voltage is applied between 07 and TE of L
The molecular orientation is determined so that it exhibits approximately an ordinary refractive index n0 with respect to waves, and an extraordinary refractive index ne when a voltage is applied. The two refractive indices have the following relationship: ne) n. When a voltage is applied to the two electrodes, the refractive index of the liquid crystal increases with respect to the light wave, so the electric field distribution of the guided light becomes 111
As in, the seepage from the waveguide 103 increases,
It extends to the waveguide 104 through the liquid crystal 105. Since the waveguide 103 and the waveguide 104 are formed identically, the light wave propagating through the waveguide 103 is coupled to the waveguide 104 through which it propagates. When no voltage is applied between the two electrodes 106 and 107, the electric field distribution of the light wave has a small leakage as shown at 110, so the waveguide 10 provided on the upper substrate
It does not combine with 4. Therefore, depending on whether or not a voltage is applied, an optical path conversion is realized in which light traveling through the lower waveguide is coupled to the upper waveguide or transmitted through the own waveguide. As shown in the configuration of FIG. 1, a waveguide provided on one lower substrate intersects all upper waveguides. Therefore, switching the light to a desired upper waveguide is achieved by applying a voltage to a pair of electrodes provided at a desired intersection of the upper waveguide and the F-side groove waveguide. Such behavior is −
As an example, using BK7 with a refractive index of 1.51 as a glass substrate realized by the design values shown below,
A waveguide having a refractive index of 1.52 +'4 degrees is formed by an ion exchange method using silver nitrate or chromium nitrate. The transparent electrode contains indium tin oxide with a concentration of 500 to 1000.
Provide level A. For example, as a liquid crystal phase, ne=1.63
, no = 1.50, the tail spread of the light wave in the liquid crystal is equal to the light wavelength 0.
When the voltage is 633μ7n and no voltage is applied, it is 1 μm or less, and when a voltage is applied, it is 2 μm or more F. If the thickness of the liquid crystal layer is about 2 μm, coupling of light waves will occur only when a low voltage is applied. If the nine wavelengths are set in the long wavelength band of 13 to 1.8 .mu.m used for single mode optical fiber communication, good optical switching characteristics can be obtained by making the liquid crystal layer thicker to about 5 .mu.7 nm. In order to form an extremely thin gap between two substrates that holds the liquid crystal, the bonding method previously shown by the present inventor (Japanese Patent Application No. 54-59944, Method of Bonding Piezoelectric Transducers, Japanese Patent Application No. 55-98587, Adhesion method)
In other words, a low melting point metal film is provided on one substrate to be bonded by vapor deposition, etc., a thin film of another metal such as gold is provided on the other substrate, and then the film is heated or laser irradiated to form a layer between the two thin films. By using a method that causes a solid phase reaction, it is possible to perform bonding with high precision in gap spacing.

以上の説明の如く本発明による光スイッチはガラス材料
を用いており安価であり、直線導波路だけで構成さイ1
、多チャンネルの切換が可能であり、光ファイバとの接
続が容易な低光挿入損失、液晶を使用していることによ
る低駆動K HE 、、ヒいう特長を有する。
As explained above, the optical switch according to the present invention uses a glass material, is inexpensive, and is composed of only a straight waveguide.
It has the following features: multi-channel switching is possible, low optical insertion loss that allows easy connection with optical fibers, and low drive KHE due to the use of liquid crystal.

以上の説明ではガラス基板上への導波路の形成方法とし
てイオン交換法を用いる場合を述べたが、CVD法、 
スパッタ法等による基板とは異なる誘電体層を形成して
導波路とするなど、他の導波路形成法を用いることがで
きる。
In the above explanation, the ion exchange method was used as a method for forming a waveguide on a glass substrate, but the CVD method,
Other waveguide forming methods can be used, such as forming a waveguide by forming a dielectric layer different from the substrate by sputtering or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構造を示す上面因で1.2
は基板、3,4はチャンネル光導波路である。 第2図は第1図における導波路交叉部を拡大して表わし
た図で10 、11はチャンネル導波路12 、13は
それぞれの導波路上に設けた透明電極である。第3図は
導波路交叉部の断面図を示し、101,102は基板、
103,104は光導波路、105は液晶層である。
Figure 1 is a top view showing the structure of one embodiment of the present invention.
is a substrate, and 3 and 4 are channel optical waveguides. FIG. 2 is an enlarged view of the waveguide intersection in FIG. 1, and 10 and 11 are channel waveguides 12 and 13 are transparent electrodes provided on the respective waveguides. FIG. 3 shows a cross-sectional view of the waveguide crossing part, and 101 and 102 are substrates,
103 and 104 are optical waveguides, and 105 is a liquid crystal layer.

Claims (1)

【特許請求の範囲】[Claims] 平面内で交わらない複数本からなる直線状単一モードチ
ャンネル光導波路群を表面に有する2枚の誘電体基板と
、前記光導波路群を設けた面が向い合せとなり、前記2
つの光導波路群が交叉し合うように設置せられた前記2
枚の誘電体基板の間隙に充填された液晶と、前記2枚の
誘電体基板上の前記光導波路が交叉して重なり合う部位
において前記液晶層に電界を印加するために、前記光導
波路の上に該導波路に沿って形成された光学的に透明な
電極とからなることを特徴とする光スィッチ。
Two dielectric substrates each having a plurality of linear single mode channel optical waveguides on their surfaces that do not intersect in a plane and the surfaces on which the optical waveguide groups are provided face each other, and the two
The above two optical waveguide groups are installed so that they intersect with each other.
In order to apply an electric field to the liquid crystal layer at a portion where the liquid crystal filled in the gap between the two dielectric substrates and the optical waveguide on the two dielectric substrates intersect and overlap, An optical switch comprising an optically transparent electrode formed along the waveguide.
JP218384A 1984-01-10 1984-01-10 Optical switch Pending JPS60146230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP218384A JPS60146230A (en) 1984-01-10 1984-01-10 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP218384A JPS60146230A (en) 1984-01-10 1984-01-10 Optical switch

Publications (1)

Publication Number Publication Date
JPS60146230A true JPS60146230A (en) 1985-08-01

Family

ID=11522245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP218384A Pending JPS60146230A (en) 1984-01-10 1984-01-10 Optical switch

Country Status (1)

Country Link
JP (1) JPS60146230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538169A (en) * 2014-11-06 2017-12-21 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Waveguide polarization rotator and configuration method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147618A (en) * 1981-03-10 1982-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical switch matrix

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147618A (en) * 1981-03-10 1982-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical switch matrix

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538169A (en) * 2014-11-06 2017-12-21 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Waveguide polarization rotator and configuration method thereof

Similar Documents

Publication Publication Date Title
US5630004A (en) Controllable beam director using poled structure
US5488681A (en) Method for controllable optical power splitting
US5581642A (en) Optical frequency channel selection filter with electronically-controlled grating structures
US6393172B1 (en) Method of manipulating optical wave energy using patterned electro-optic structures
US5586206A (en) Optical power splitter with electrically-controlled switching structures
US4201442A (en) Liquid crystal switching coupler matrix
US5491762A (en) ATM switch with electrically-controlled waveguide-routing
US4143941A (en) Low loss optical data terminal device for multimode fiber guide optical communication systems
EP0078454B1 (en) Interferometric multimode fiber optic switch and modulator
JPS59808B2 (en) Improved liquid crystal matrix
US5044712A (en) Waveguided electrooptic switches using ferroelectric liquid crystals
US3967877A (en) Coupler for coupling optical energy transmitted by optical fiber to optical waveguide and method of manufacture
US4836657A (en) Optical change-over switch utilizing ferroelectric liquid crystal material
US4184738A (en) Light coupling and modulating means
JP2005222056A (en) One-by-n optical switch and optical switch module
US6337931B1 (en) Effective optical path length compensable optical device
JPS5855485B2 (en) LCD switching matrix
JPS62182726A (en) Liquid crystal swiching unit with optical fiber
US6711315B1 (en) 3-D electro optical switch
US6819818B2 (en) Optical switches having a common waveguide for improved switch performance
JPS60146230A (en) Optical switch
JP2001350046A (en) Integrated optical waveguide element
JPS60154237A (en) Optical switch
JPH0750284B2 (en) Optical path switch
JPH01201628A (en) Optical switch