JPS61137126A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS61137126A
JPS61137126A JP25857184A JP25857184A JPS61137126A JP S61137126 A JPS61137126 A JP S61137126A JP 25857184 A JP25857184 A JP 25857184A JP 25857184 A JP25857184 A JP 25857184A JP S61137126 A JPS61137126 A JP S61137126A
Authority
JP
Japan
Prior art keywords
refractive index
optical switch
transparent
luminous flux
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25857184A
Other languages
Japanese (ja)
Inventor
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25857184A priority Critical patent/JPS61137126A/en
Priority to US06/782,558 priority patent/US4729640A/en
Priority to DE19853535391 priority patent/DE3535391A1/en
Priority to GB8524445A priority patent/GB2166562B/en
Publication of JPS61137126A publication Critical patent/JPS61137126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the constitution of a total reflection type optical switch and to reduce its size and thickness by arranging a medium which has a variable refractive index between transparent substrates of specific-shape structure, and controlling the transmission and reflection of incident luminous flux. CONSTITUTION:The medium 2 having a variable refractive index is arranged between the transparent substrates 1 of plural-triangle structure which has pitch smaller than the diameter of luminous flux and is of such size that incident luminous flux is not refracted across transparent electrodes 3, and the transmission and reflection of luminous flux are controlled from total reflection to total transmission according to variation in the refractive index of the medium corresponding to feeding to electrodes and the tilt angle of triangle structure parts. Consequently, the constitution of the total reflection type optical switch array is simplified and reduced in size and thickness.

Description

【発明の詳細な説明】 (1)技術分野 本発明は光スィッチに関する。[Detailed description of the invention] (1) Technical field The present invention relates to optical switches.

(2)従来技術 従来、光スィッチとしてLiNbO3等の結晶の電気光
学効果、熱光学効果及び磁気光学効果、あるいは液晶の
電気光学効果や熱光学効果を利用したものなどがある。
(2) Prior Art Conventionally, there have been optical switches that utilize the electro-optic effect, thermo-optic effect, and magneto-optic effect of crystals such as LiNbO3, or the electro-optic effect and thermo-optic effect of liquid crystals.

結晶を用いた光スィッチは、応答速度が優れている反面
、光束利用効率、コントラスト比及び駆動電圧に問題が
あり、又、液晶を用いた光スィッチは、構成が簡便でコ
ントラスト比が優れている反面、応答特性や光束利用効
率に問題があった。
Although optical switches using crystals have excellent response speed, they have problems with luminous flux utilization efficiency, contrast ratio, and drive voltage, while optical switches using liquid crystals have a simple configuration and excellent contrast ratio. On the other hand, there were problems with response characteristics and luminous flux utilization efficiency.

技術研究報告0QE81−116 、オプティカル・ソ
サイエティー・オプ・アメリカ1980春号P、147
などに示されているように、ラビング処理やSiO,M
gFz等の斜方蒸着処理などの配向処理を施した電極間
に液晶を充填し、液晶の配向方向を電界で制御すること
により、入射光が感じる屈折率を変化させて光束の全反
射、全透過のスイッチングを行なうものがある。
Technical Research Report 0QE81-116, Optical Society Op America Spring 1980 Issue P, 147
As shown in
By filling liquid crystal between electrodes that have been subjected to orientation treatment such as oblique evaporation treatment such as gFz, and controlling the orientation direction of the liquid crystal using an electric field, the refractive index perceived by the incident light is changed, resulting in total reflection and total reflection of the luminous flux. There are some that perform transmission switching.

させる必要があり、台形状の基板の使用や光ファイバー
との結合もしくは別個の入出射用プリズムを密着させる
等の方法を用いていた。従って、通常のファイバー間の
光スィッチ等に使用範囲は限られ、ディスプレイや液晶
プリンター等の光シヤツターアレイに全反射型の光スィ
ッチは用いる事ができなかった。
Therefore, methods such as using a trapezoidal substrate, coupling with an optical fiber, or attaching separate input/output prisms have been used. Therefore, the scope of use is limited to ordinary optical switches between fibers, etc., and total reflection type optical switches cannot be used in optical shutter arrays for displays, liquid crystal printers, etc.

(3)発明の概要 本発明の目的は、上記従来例の欠点を除去し、簡便且つ
薄板化が可能で広い用途に用いる小ができる全反射型の
光スィッチを提供する事にある0 上記目的を達成するために、本発明に係る光スィッチは
少なくとも一方が複数の三角形状構造を有する透明基板
間に屈折率可変媒体を配置した構成からなり、前記三角
形状構造のピッチを入射光束径より小さくする事により
、複数のいる。従って、入射光束を微小なる斜面で反射
でき、且つ基板に対して光束を垂直入射させる事が可能
であり、装置の薄板化を達成し得る。
(3) Summary of the invention The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional examples, and to provide a total internal reflection type optical switch that is simple, can be made thin, and can be used in a wide range of applications. In order to achieve this, the optical switch according to the present invention has a configuration in which a variable refractive index medium is arranged between transparent substrates, at least one of which has a plurality of triangular structures, and the pitch of the triangular structures is smaller than the diameter of the incident light beam. Depending on what you do, there may be more than one. Therefore, it is possible to reflect the incident light beam on a minute slope, and also to make the light beam perpendicularly incident on the substrate, thereby achieving a thinner device.

但し、前記三角形状構造は入射光束が回折を受けない程
度の大きさがなければならない。前記透明基板は、使用
する屈折率可変媒体の屈折率を制御する手段によって各
種構成が考えられる。
However, the triangular structure must be large enough to prevent the incident light beam from being diffracted. The transparent substrate may have various configurations depending on the means for controlling the refractive index of the variable refractive index medium used.

例えば、該屈折率可変媒体として液晶を使用する際、該
透明基板は透明電極もしくは透明電極と透明絶縁体によ
り構成できる。液晶以外の屈折率可変媒体としては、0
074,02H50H。
For example, when a liquid crystal is used as the variable refractive index medium, the transparent substrate can be composed of a transparent electrode or a transparent electrode and a transparent insulator. As a variable refractive index medium other than liquid crystal, 0
074,02H50H.

P MMA 、 T 101等の熱により変化するもの
、LiNb01.LiTaO5,KDP 、ADP 、
PLZT 。
PMMA, those that change with heat such as T101, LiNb01. LiTaO5, KDP, ADP,
PLZT.

Zllo 、BaTits + B50r Ba2Na
Nbsets等の電界により変化するもの、MnB1.
EuO等の磁界により変化するもの、O8! 、ニトロ
ベンゼン等の光により変化するものが挙げられる0 上記屈折率可変媒体の屈折率を制御する事により、本光
スィッチに入射する光は所定の傾斜角を有する斜面と屈
折率可変媒体との界面で、全透過から全反射までの光量
変調を受ける。
Zllo, BaTits + B50r Ba2Na
Those that change due to electric field such as Nbsets, MnB1.
Things that change due to magnetic fields such as EuO, O8! By controlling the refractive index of the variable refractive index medium, the light incident on the optical switch is directed to the interface between the slope having a predetermined inclination angle and the variable refractive index medium. The light intensity is modulated from total transmission to total reflection.

する面とヒーター4の同に熱により屈折率を制御できる
屈折率可変媒体2を配置したものである。又、第1図(
B)の光スィッチは側基板1の斜面構造をより微小化し
たもので、側基板1は各々複数の三角形状の構造を成し
、透明電極3が蒸着等により形成されて両店板間に屈折
率可変媒体2が配置しである。又、三角形の傾斜角はス
ネルの法則から導き出される全反射の条r1:式を考慮
しで、適尚に所定の角度を成すように製作する。
A variable refractive index medium 2 whose refractive index can be controlled by heat is placed on the same surface as the heater 4. Also, Figure 1 (
The optical switch B) is a miniaturized version of the sloped structure of the side substrates 1. Each side substrate 1 has a plurality of triangular structures, and a transparent electrode 3 is formed by vapor deposition etc. between the two side plates. A variable refractive index medium 2 is arranged. Further, the angle of inclination of the triangle is made to form an appropriate predetermined angle by considering the total reflection rule r1: formula derived from Snell's law.

第2図は電界制御凰光スイッチとその・機能を示し、基
本構成は第1図(0)の素子と同様であるが、透明電極
3の上部に更に透明絶縁体5を設け、屈折率可変媒体に
は液晶6を使用している。同、透明電極3としては、■
TO,5n02゜In、0.等の材料、透明絶縁体51
こは、ガラスS i02 、 SiO、MgF22 A
120m > TiO2等の材料、及び透明基板1には
各種光学ガラスや光学プラスチックが適用できる。又、
液晶6としては、正誘電性を有するネマチック液晶9強
誘電性を有するスメクチック液晶等が騒げられる0 以下、第2図に示される光スィッチを用いて、本発明に
係る光スィッチの機能を説明する。第2図において、7
は入射光、8は反射光、9は透過光、10は電源を示す
。同、液晶6にはネマチック液晶を使用し、第2図1こ
おける鋸歯状波面は、その溝方向に液晶6が配向するよ
うにラビング処理、あるいは斜方蒸着処理等の表面処理
が施されている。
Figure 2 shows an electric field controlled optical switch and its functions.The basic configuration is the same as the element in Figure 1 (0), but a transparent insulator 5 is further provided on top of the transparent electrode 3, and the refractive index is variable. Liquid crystal 6 is used as the medium. Similarly, as the transparent electrode 3, ■
TO, 5n02°In, 0. transparent insulator 51
This is glass Si02, SiO, MgF22 A
120m> Materials such as TiO2 and various optical glasses and optical plastics can be used for the transparent substrate 1. or,
As the liquid crystal 6, nematic liquid crystals having positive dielectric properties, 9 smectic liquid crystals having ferroelectric properties, etc. are widely used.Hereinafter, the functions of the optical switch according to the present invention will be explained using the optical switch shown in FIG. . In Figure 2, 7
8 represents incident light, 8 represents reflected light, 9 represents transmitted light, and 10 represents power source. Similarly, a nematic liquid crystal is used for the liquid crystal 6, and the sawtooth wavefront shown in FIG. There is.

本光スィッチに、鋸歯状波面溝方向(入射面に垂直)に
偏光した光束を垂直入射させた時、静的状態では、入射
光7の偏光方向は液晶6の配向方向つまり鋸歯状波面溝
方向と一致して、入射光7に対する液晶6の実効屈折率
は異常屈折率n6となる。ここで、透明基板1.透明°
電極3.透明絶縁体5の屈折率及び液晶6の異常屈折率
n6を一致させておく事により、第2図(A)のように
、入射光7は全て透過光9となり出射する。次に、透明
電極3の間に電界を印゛加すると、液晶6は電界方向へ
と傾き始めて、電界量が所定の値に達すると、液晶6は
電界方向(入射面に平行)に配向され、入射光7に対す
る液晶6の屈折率は常屈折率noとなる。この時、入射
光7は液晶6に複数の斜面の傾き角θで入射することに
なり、次の(1)式を満足すれば、第2図(B)のよう
に、入射光7は透明絶縁体5と液晶6との界面で全反射
さn′C反射光8となる。
When a light flux polarized in the sawtooth wavefront groove direction (perpendicular to the incident surface) is perpendicularly incident on this optical switch, in a static state, the polarization direction of the incident light 7 is in the alignment direction of the liquid crystal 6, that is, in the sawtooth wavefront groove direction. Consistent with this, the effective refractive index of the liquid crystal 6 with respect to the incident light 7 becomes the extraordinary refractive index n6. Here, transparent substrate 1. transparent °
Electrode 3. By matching the refractive index of the transparent insulator 5 and the extraordinary refractive index n6 of the liquid crystal 6, all of the incident light 7 becomes transmitted light 9 and is emitted as shown in FIG. 2(A). Next, when an electric field is applied between the transparent electrodes 3, the liquid crystal 6 begins to tilt in the direction of the electric field, and when the amount of electric field reaches a predetermined value, the liquid crystal 6 is aligned in the direction of the electric field (parallel to the plane of incidence). , the refractive index of the liquid crystal 6 with respect to the incident light 7 is the ordinary refractive index no. At this time, the incident light 7 will be incident on the liquid crystal 6 at the tilt angle θ of the plurality of slopes, and if the following equation (1) is satisfied, the incident light 7 will be transparent as shown in Figure 2 (B). It is totally reflected at the interface between the insulator 5 and the liquid crystal 6 and becomes n'C reflected light 8.

sin  θ > n 6/n g    ””・・”
・(1)ここで、透明絶縁体5.透明電極3.透明基板
1の屈折率はngに統一されている。但し、透明1極3
.透明絶縁体5の膜厚が入射光7の波長と比較して充分
小さい場合は、透明電極3及び透明絶縁体5の屈折軍は
無視することができる。この時、全透過、全反射の条件
は、主に透明基板1と液晶6の屈折率及び複数の斜面の
傾き角によって決定される。又、電界印加量を適当に調
節する事により、透過光量の制御が可能となる。同、光
束利用効率及びゴースト元防止を考慮して、透明基板1
の光束人出射面には反射防止膜を設けた方が良い。
sin θ > n 6/n g ””・・”
- (1) Here, transparent insulator 5. Transparent electrode 3. The refractive index of the transparent substrate 1 is unified to ng. However, transparent 1 pole 3
.. If the thickness of the transparent insulator 5 is sufficiently small compared to the wavelength of the incident light 7, the refractive forces of the transparent electrode 3 and the transparent insulator 5 can be ignored. At this time, the conditions for total transmission and total reflection are mainly determined by the refractive index of the transparent substrate 1 and the liquid crystal 6 and the inclination angles of the plurality of slopes. Furthermore, by appropriately adjusting the amount of applied electric field, it is possible to control the amount of transmitted light. In the same way, in consideration of luminous flux utilization efficiency and prevention of ghost sources,
It is better to provide an anti-reflection film on the light output surface.

以下本光スィッチの作成過程と性能評価の結果を示す。The process of creating this optical switch and the results of performance evaluation are shown below.

第3図は本光スィッチの立体図であり、11は引き出し
電極、12は斜面構造領域を示し、他の番号は第2図と
同様である。
FIG. 3 is a three-dimensional view of the present optical switch, in which 11 indicates an extraction electrode, 12 indicates a slope structure region, and other numbers are the same as in FIG. 2.

La5FO3ガラス(不凍光学硝子製作所製。La5FO3 glass (manufactured by Antifreeze Optical Glass Manufacturing Co., Ltd.)

20 X 30 X 2 mm”、a−63281に対
して屈折率1.80 )の両面をニー−トンリング数本
以内の平面度に研磨した後、メタノール、トリクレン、
アセトン、純水により超音波洗浄を行ない、窒素ガスζ
こより乾燥させて窒素中120°Cl2O分間のベーキ
ングを行なった。続いて、片面の光入射領域(10X1
0mffl)にルーリングマシンを用いて頂角60’、
ピッチ0.5 mmの鋸歯状波面を形成し、イオンブレ
ーティング法によりITO膜を200 o、lの厚さに
成膜した。該IT’O膜の面抵抗は16Ω/sqで、波
長6328人の先番こ対する屈折率は1.80であった
。該ITO膜にエツチングを行ない電極形状とした後、
電子ビーム蒸着法ζこより、引き出し電極部を除いてA
J*Os膜を100 OAの厚さに斜方蒸着し、対向電
極面との電気的絶縁及び液晶の配向残塊を行なった。引
き出し電極部上に膜厚5000.(のAl′tIL極を
形成し、該透明基板の裏面に反射防止用MgFM膜を1
146人の膜厚で成膜した。
20 x 30 x 2 mm", refractive index 1.80 for A-63281). After polishing both sides to a flatness within a few knee-ton rings, methanol, trichlene,
Ultrasonic cleaning with acetone and pure water, followed by nitrogen gas ζ
After drying, baking was performed in nitrogen at 120° C. Cl2O for minutes. Next, one side of the light incident area (10X1
0mffl) using a ruling machine to set the apex angle 60',
A sawtooth wavefront with a pitch of 0.5 mm was formed, and an ITO film was formed to a thickness of 200°, 1 by ion blating. The IT'O film had a sheet resistance of 16 Ω/sq and a refractive index of 1.80 at a wavelength of 6328. After etching the ITO film to form an electrode shape,
From the electron beam evaporation method ζ, except for the extraction electrode part A
A J*Os film was obliquely deposited to a thickness of 100 OA to provide electrical insulation from the counter electrode surface and to provide a remaining mass for alignment of the liquid crystal. The film thickness is 5000mm on the extraction electrode part. (An Al'tIL pole is formed, and an anti-reflection MgFM film is coated on the back surface of the transparent substrate.)
A film was formed to a thickness of 146 people.

続いて、La5F03ガラスを用いて上記同様の鋸歯状
波面を有する基板を製作した。但し、二枚の基板を第2
図のようIこ噛み合わせるため、片方の鋸歯状波面は凹
状であり、一方は凸状である。又、片面ζこスペーサー
として810雪f1%を7μmの厚さに鋸歯状波面の周
囲に形成した。
Subsequently, a substrate having a sawtooth wavefront similar to that described above was manufactured using La5F03 glass. However, if the two boards are
As shown in the figure, one sawtooth wave surface is concave and the other is convex in order to engage with each other. Further, as a single-sided ζ spacer, 810 snow f1% was formed to a thickness of 7 μm around the sawtooth wave front.

上記二枚の基板を、@歯状波面領域12で相対させて液
晶を充填し、シールした。使用した液晶は正誘電性液晶
R,0−TN200 (ロシ具製。
The two substrates were placed opposite each other at the toothed wavefront region 12, filled with liquid crystal, and sealed. The liquid crystal used was a positive dielectric liquid crystal R,0-TN200 (manufactured by Rossi Gu).

波長6328人に対してn 6 = 1.53 * n
 e −1、80)である。@恢に、リード線を引き出
しIll極11にボンディングし、電源8と接続して第
4図に示す光スィッチを作成した。
Wavelength: n 6 = 1.53 * n for 6328 people
e −1, 80). Finally, the lead wire was pulled out and bonded to the Ill pole 11, and connected to the power source 8 to create the optical switch shown in FIG. 4.

本光スィッチに対して、鋸歯状波面の溝方向に偏光した
He−Neレーザー光(J −63281)を基板面に
垂直入射させた時、静的状態で、入射光は該光スィッチ
を素通りして透過光9となり、入射光に対する透過光の
割合は95q6以上に達した。又、10 Vppt I
 K)iz  の矩形状AC電界を印加した場合、入射
光は全反射されて、入射光7に対する透過光9の割合は
0.5%以下であった。同、光源としてはレーザーに限
らず、LED、ハロゲンランプ、螢光燈等の白色光源も
使用可能である。
When a He-Ne laser beam (J-63281) polarized in the groove direction of the sawtooth wavefront is perpendicularly incident on the substrate surface of this optical switch, the incident light passes through the optical switch in a static state. The transmitted light was 9, and the ratio of the transmitted light to the incident light reached 95q6 or more. Also, 10 Vppt I
When a rectangular AC electric field of K)iz was applied, the incident light was totally reflected, and the ratio of transmitted light 9 to incident light 7 was 0.5% or less. Similarly, the light source is not limited to lasers, and white light sources such as LEDs, halogen lamps, and fluorescent lights can also be used.

(5)発明の詳細 な説明したよ゛うに、本発明に係る光スィッチは構成が
簡便であり、コンパクト且つ各揮装置と接続が容易な、
高度な機能を有する光スィッチである。
(5) As described in detail, the optical switch according to the present invention has a simple configuration, is compact, and is easy to connect to each volatile device.
It is an optical switch with advanced functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光スィッチの基本構成例を示ず図
。第2図は電界制#型光スイッチとその機能を示した図
。第3図は第2図の光スィッチの立体図。
FIG. 1 is a diagram showing an example of the basic configuration of an optical switch according to the present invention. Figure 2 is a diagram showing an electric field type optical switch and its functions. FIG. 3 is a three-dimensional view of the optical switch shown in FIG. 2.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一方の基板が複数の三角形状構造を有し、且
つ該三角形状構造のピッチが入射光束径より小さい透明
基板間に屈折率可変媒体を配置し、該屈折率可変媒体の
屈折率を制御する事により前記三角形状構造の複数斜面
と該屈折率可変媒体との界面で入射光束の透過および反
射制御を行なう事を特徴とする光スイッチ。
A refractive index variable medium is disposed between transparent substrates in which at least one of the substrates has a plurality of triangular structures, and the pitch of the triangular structures is smaller than the diameter of the incident light beam, and the refractive index of the refractive index variable medium is controlled. An optical switch characterized in that transmission and reflection of an incident light beam is controlled at an interface between the plurality of slopes of the triangular structure and the refractive index variable medium.
JP25857184A 1984-10-03 1984-12-07 Optical switch Pending JPS61137126A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25857184A JPS61137126A (en) 1984-12-07 1984-12-07 Optical switch
US06/782,558 US4729640A (en) 1984-10-03 1985-10-01 Liquid crystal light modulation device
DE19853535391 DE3535391A1 (en) 1984-10-03 1985-10-03 LIQUID CRYSTAL LIGHT MODULATION DEVICE
GB8524445A GB2166562B (en) 1984-10-03 1985-10-03 Liquid crystal light modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25857184A JPS61137126A (en) 1984-12-07 1984-12-07 Optical switch

Publications (1)

Publication Number Publication Date
JPS61137126A true JPS61137126A (en) 1986-06-24

Family

ID=17322089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25857184A Pending JPS61137126A (en) 1984-10-03 1984-12-07 Optical switch

Country Status (1)

Country Link
JP (1) JPS61137126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384518A (en) * 1989-08-29 1991-04-10 Ngk Insulators Ltd Optical parts and production thereof
JP2014119760A (en) * 2012-12-13 2014-06-30 Boe Technology Group Co Ltd Optical element and display device having optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384518A (en) * 1989-08-29 1991-04-10 Ngk Insulators Ltd Optical parts and production thereof
JP2014119760A (en) * 2012-12-13 2014-06-30 Boe Technology Group Co Ltd Optical element and display device having optical element

Similar Documents

Publication Publication Date Title
US10551716B2 (en) Lens device
Yamada et al. Electric‐field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals
US5013141A (en) Liquid crystal light modulation device
CN108761946B (en) Transparent display panel and transparent display device
US6879431B2 (en) Optical deflection apparatus and optical deflection method
JP2003172912A (en) Liquid crystal variable wavelength filter device and driving method therefor
TW201821878A (en) Electrically tunable optical phase modulation element
CN109407420B (en) Terahertz blue-phase liquid crystal grating and manufacturing method thereof
JP2010540983A (en) Beam forming equipment
JPS6212894B2 (en)
CN110869836B (en) High-speed optical switch engine
JPS61137126A (en) Optical switch
JP5150992B2 (en) Liquid crystal device and optical attenuator
JPS6186727A (en) Optical controlling element
JPH1090730A (en) Optical element, its drive method and display device
JPH0525096B2 (en)
JP2000171813A (en) Liquid crystal optical switching element and manufacture of liquid crystal optical switching element and picture display device
JPH06208142A (en) Liquid crystal light deflecting element
JPH0750284B2 (en) Optical path switch
JPS6279418A (en) Optical shutter array and its production
JP3313936B2 (en) Optical writing type spatial light modulator and projection display device
JPH0228852B2 (en)
JP3067189B2 (en) Liquid crystal electro-optical device
JPH06130351A (en) Liquid crystal lens
JPS6186728A (en) Optical switch