JPH042172B2 - - Google Patents

Info

Publication number
JPH042172B2
JPH042172B2 JP59068984A JP6898484A JPH042172B2 JP H042172 B2 JPH042172 B2 JP H042172B2 JP 59068984 A JP59068984 A JP 59068984A JP 6898484 A JP6898484 A JP 6898484A JP H042172 B2 JPH042172 B2 JP H042172B2
Authority
JP
Japan
Prior art keywords
crystal
electro
optic
optical
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59068984A
Other languages
Japanese (ja)
Other versions
JPS60212743A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6898484A priority Critical patent/JPS60212743A/en
Publication of JPS60212743A publication Critical patent/JPS60212743A/en
Publication of JPH042172B2 publication Critical patent/JPH042172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、電気光学結晶を用いて電気光学的に
光ビームを偏向させる電気光学光偏向器、特に、
複数個の電気光学結晶を組合わせて良好な光偏向
性能が得られるようにした結晶複合型電気光学光
偏向器に関し、製作容易に安定な性能が得られ、
帯域利用効率よく高速の光偏向を行ない得るよう
にしたものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an electro-optic optical deflector that electro-optically deflects a light beam using an electro-optic crystal.
Regarding a crystal composite electro-optic optical deflector that combines multiple electro-optic crystals to obtain good optical deflection performance, it is easy to manufacture and provides stable performance.
This allows for high-speed optical deflection with efficient band usage.

従来技術 一般に、光偏向器としては、上述した電気光学
光偏向器の他に機械的光偏向器および音響光学光
偏向器に大別される。かかる3種類の光偏向器の
うち、実用化の域に達しているのは、ポリゴンに
代表される機械的光偏向器および超音波を利用し
て誘電体材料面に回折格子を形成させる音響光学
光偏向器であり、電気光学光偏向器は未だ研究室
段階を脱していない。
Prior Art In general, optical deflectors are broadly classified into mechanical optical deflectors and acousto-optic optical deflectors in addition to the electro-optic optical deflectors mentioned above. Of these three types of optical deflectors, the ones that have reached the stage of practical use are mechanical optical deflectors represented by polygons, and acousto-optic devices that use ultrasonic waves to form a diffraction grating on a dielectric material surface. The electro-optical optical deflector has not yet left the laboratory stage.

しかしながら、それぞれ一長一短がある上述し
た3種類の光偏向器のうちで原理的に最も高速性
を期待し得るのはかかる研究段階にある電気光学
光偏向器に他ならず、したがつて、従来に比して
格段に高速の光偏向器の実用化を目途とする本発
明に関連した従来技術についても、専らこの電気
光学光偏向器に限定して述べることとする。
However, among the three types of optical deflectors mentioned above, each of which has its own advantages and disadvantages, the electro-optic optical deflector that is currently at the research stage is the one that can theoretically be expected to have the highest speed. Conventional technology related to the present invention, which aims to put into practical use an optical deflector that is much faster than the conventional art, will also be described exclusively with respect to this electro-optical optical deflector.

しかして、ある種の結晶や物質においては、電
界の印加によつて屈折率が変化するという効果が
得られる。一般に、かかる効果を電気光学効果と
称し、かかる効果が得られる結晶あるいは物質を
電気光学結晶あるいは電気光学物質と称する。上
述した電気光学光偏向器はこの電気光学効果を利
用した光偏向器の総称であり、一般に、電気光学
結晶など電気光学効果を呈する材料に電極を被着
して電圧乃至電界を印加すれば、その材料あるい
は電極の形状に応じた適切な態様の屈折率変化を
生じさせることができ、その結果、その材料を透
過する光の進行方向を変化させていわゆる偏向を
施し、光偏向器を構成することができる。
Therefore, in certain types of crystals and substances, the effect of changing the refractive index by applying an electric field can be obtained. Generally, such an effect is referred to as an electro-optic effect, and a crystal or substance that provides such an effect is referred to as an electro-optic crystal or an electro-optic substance. The above-mentioned electro-optic light deflector is a general term for optical deflectors that utilize this electro-optic effect, and generally, if an electrode is attached to a material exhibiting an electro-optic effect such as an electro-optic crystal and a voltage or electric field is applied, It is possible to cause a change in the refractive index in an appropriate manner depending on the material or the shape of the electrode, and as a result, the traveling direction of light passing through the material is changed to perform so-called deflection, thereby forming an optical deflector. be able to.

かかる基本的構成による電気光学光偏向器の代
表的な従来構成を列挙して第1図乃至第5図にそ
れぞれ示す。
Typical conventional configurations of electro-optic light deflectors having such basic configurations are listed and shown in FIGS. 1 to 5, respectively.

まず、第1図に示す従来の電気光学光偏向器
は、1対の櫛の歯を向き合わせて交互に入り込ま
せた形態のいわゆる櫛型電極2a,2bを平偏な
電気光学結晶1の上面に被着して交流電圧源3に
接続し、交番電界の印加により電気光学結晶1内
に位相回折格子を構成し、その回折作用によつて
光ビームを偏向させるようにしたものである。こ
の従来構成は、電気光学結晶1の片面に電界印加
用電極を集め得るので、集積化に適するという利
点を有する反面、微細構造の櫛型電極2a,2b
の製作に高度の技術を要するほか、特定の方向に
しか光ビームを偏向させ得ないので、偏向スイツ
チとしては使用し得るも、連続的なアナログ偏向
による光ビームの掃引は不可能、という重大な欠
点を有している。
First, the conventional electro-optic optical deflector shown in FIG. A phase diffraction grating is formed within the electro-optic crystal 1 by application of an alternating electric field, and the light beam is deflected by its diffraction action. This conventional configuration has the advantage that it is suitable for integration because the electrodes for applying an electric field can be gathered on one side of the electro-optic crystal 1.
In addition to requiring advanced technology to manufacture, the light beam can only be deflected in a specific direction, so although it can be used as a deflection switch, it is impossible to sweep the light beam with continuous analog deflection. It has its drawbacks.

つぎに、第2図に示す従来の電気光学光偏向器
は、方形断面を有する電気光学結晶1の対向側面
に同一極性の電極を配置するようにして4側面に
配設した4重極電極棒2a〜2bを交流電圧源3
に接続することにより、電圧の印加に応じ、結晶
断面内に、直線的に変化する電界分布を発生さ
せ、その結果、直線的に変化する屈折率分布を生
じさせて、屈折率の大きい方へ光ビームを偏向さ
せるようにしたものである。この従来構成は、電
極の構造上高周波電圧の印加が難しいので、高速
偏向が行なえず、また、電極棒の近傍に強い電界
が集中して結晶歪みが生じ易い、などの欠点を有
している。
Next, the conventional electro-optic light deflector shown in FIG. 2 consists of quadrupole electrode rods arranged on four sides of an electro-optic crystal 1 having a rectangular cross section, with electrodes of the same polarity arranged on opposite sides. 2a to 2b as AC voltage source 3
By connecting to , a linearly changing electric field distribution is generated within the crystal cross section according to the applied voltage, and as a result, a linearly changing refractive index distribution is generated, and the refractive index is shifted toward the side with a larger refractive index. It is designed to deflect a light beam. This conventional configuration has drawbacks such as the difficulty of applying high-frequency voltage due to the structure of the electrode, making it impossible to perform high-speed deflection, and the strong electric field concentrating near the electrode rod, which tends to cause crystal distortion. .

つぎに、第3図a〜cにそれぞれ示す従来の電
気光学光偏向器は、いずれも、偏平な電気光学結
晶1の上下両面に互いに対向させて、極めて簡単
な形状の電極板2a,2b、すなわち、例えば図
示のような三角形状、あるいは、三角形状と等価
に作用する台形状乃至ホームベース状の電極板を
被着した最も単純な構造からなつており、それら
の電極板2a,2bを接続した交流電圧源3によ
る電圧の印加に応じ、電極板下の結晶1内に他の
部分とは屈折率を異にする三角プリズムを形成
し、その三角プリズムを透過する光ビームが偏向
されるようにしたものである。この従来構成にお
いては、電圧の印加によつて光ビームを偏向させ
る際に、位置によつて大きさは相違するがつねに
同じ向きの光位相シフトが光ビーム全体に生じ、
その結果、偏向と同時に余分な位相変調が光ビー
ムに加わる。したがつて、この従来構成による光
偏向器を高速偏向や高速変調に用いる場合には、
上述した余分な位相変調成分を通すための余分な
光周波数帯域を設ける必要が生ずるので、光信号
の帯域利用効率が低下する、という欠点があつ
た。
Next, the conventional electro-optic optical deflectors shown in FIGS. 3a to 3-c each have extremely simple-shaped electrode plates 2a, 2b, That is, it has the simplest structure in which electrode plates 2a and 2b are attached, for example, in a triangular shape as shown in the figure, or a trapezoidal or home base shape that acts equivalently to a triangular shape, and these electrode plates 2a and 2b are connected. In response to the voltage applied by the AC voltage source 3, a triangular prism having a refractive index different from other parts is formed in the crystal 1 under the electrode plate, so that the light beam passing through the triangular prism is deflected. This is what I did. In this conventional configuration, when a light beam is deflected by applying a voltage, an optical phase shift occurs in the entire light beam, which varies in magnitude depending on the position but always in the same direction.
As a result, an extra phase modulation is added to the light beam simultaneously with the deflection. Therefore, when using an optical deflector with this conventional configuration for high-speed deflection or high-speed modulation,
Since it becomes necessary to provide an extra optical frequency band for passing the above-mentioned extra phase modulation component, there is a drawback that the band utilization efficiency of the optical signal is reduced.

つぎに、第4図a,bに示す電気光学光偏向器
は、第3図示の従来構成による上述した欠点を除
去するように改良したものであり、三角形状ある
いは三角形状と等価に作用する台形状の相似形の
電気光学結晶1aと1bとをその光学軸を互いに
逆極性になるように反転させて接合し、全体とし
て偏平な長方形となるようにし、その上下両面の
全面に亘つて被着したともに長方形の電極板2
a,2bを交流電圧源3に接続したものである。
したがつて、個々の電気光学結晶は第3図示の電
気工学結晶と同一条件に構成してあり、ただ、光
学軸が互いに逆極性になつている。すなわち、電
圧印加時に光ビームがかかる構成の電気光学結晶
対を透過すれば、光ビーム断面内において直線的
な光学長変化乃至光位相変化を呈するのは第3図
示の従来構成におけると全く同様であり、光学長
の長い方に光ビームが偏向される。しかしなが
ら、かかる光学長の変化が1対の電気光学結晶1
aと1bとにおいて差動的に作用するために、光
ビーム断面内における光学長の変化の正負の極性
が左右で反転し、中央部においては零となる。し
たがつて、光ビーム全体としては位相変調が生ぜ
ず、余分な光周波数帯域を必要とせず、帯域利用
効率が向上する。また、、偏向感度の点からすれ
ば光軸に沿つた方向の結晶長が長い方がよいが、
第4図a,bに示した構成の電気光学結晶1a,
1bについて光軸方向の結晶長を長くすると、結
晶1a,1b間の接合面がなす三角形状斜辺が著
しく鋭角をなし、結晶1a,1bの貼り合わせ面
に対する光ビームの入射角が90゜に近くなり、そ
の貼り合わせ面に平行に近い状態で入射すること
になる。したがつて、結晶1a,1bの貼り合わ
せ面間に多少の間隙、あるいは、両者間の屈折率
の差の影響を緩和するための光学整合剤の整合不
備による屈折率の相違が作用する場合には、入射
光ビームがその貼り合わせ面で全反射してしま
い、光偏向器を透過し得なくなる。かかる事態の
発生を防止するために、従来は、光学整合剤を用
いることなく、高度・高価な製作技術ではあるが
屈折率の不整合を生ずるおそれのないいわゆるオ
プテイカル・コンタクト、すなわち、高度に平滑
な鏡面に仕上げた接合面を単に密着させるだけで
自己保持させるようにした貼り合わせを行なつて
いた。しかしながら、電気光学結晶は、一般に、
ピエゾ結晶でもあり、電界印加により、屈折率が
変化するとともに、結晶の物理的寸法にも変化が
生ずる。その結果、第4図示の構成においては、
電圧印加によつて2個の結晶1a,1bに互いに
逆極性の寸法変化、すなわち、伸びと縮みとが相
反的に生じ、貼り合わせ面が剥れ易くなる。
Next, the electro-optic optical deflector shown in FIGS. 4a and 4b is an improved version that eliminates the above-mentioned drawbacks of the conventional configuration shown in FIG. Electro-optic crystals 1a and 1b having similar shapes are joined together with their optical axes reversed to have opposite polarities to form a flat rectangle as a whole, and the entire top and bottom surfaces of the electro-optic crystals 1a and 1b are adhered. Both rectangular electrode plates 2
a and 2b are connected to an AC voltage source 3.
Therefore, each electro-optic crystal is constructed under the same conditions as the electro-optic crystal shown in FIG. 3, except that the optical axes are of opposite polarity. That is, when a light beam passes through an electro-optic crystal pair having such a configuration when a voltage is applied, a linear optical length change or optical phase change is exhibited within the cross section of the light beam, just as in the conventional configuration shown in FIG. The light beam is deflected to the side with the longer optical length. However, such a change in optical length is caused by a pair of electro-optic crystals 1
Since it acts differentially between a and 1b, the polarity of the change in optical length within the cross section of the light beam is reversed on the left and right, and becomes zero at the center. Therefore, no phase modulation occurs in the optical beam as a whole, no extra optical frequency band is required, and band utilization efficiency is improved. Also, from the point of view of deflection sensitivity, the longer the crystal length in the direction along the optical axis, the better.
Electro-optic crystal 1a having the configuration shown in FIGS. 4a and 4b,
When the crystal length of 1b in the optical axis direction is increased, the triangular hypotenuse formed by the bonding surface between crystals 1a and 1b becomes a significantly acute angle, and the incident angle of the light beam to the bonding surface of crystals 1a and 1b approaches 90°. Therefore, the light is incident almost parallel to the bonded surface. Therefore, if there is a slight gap between the bonded surfaces of the crystals 1a and 1b, or a difference in refractive index due to a misalignment of the optical matching agent used to alleviate the effect of the difference in refractive index between the two, In this case, the incident light beam is totally reflected on the bonded surface and cannot pass through the optical deflector. In order to prevent such a situation from occurring, conventionally, so-called optical contacts, which do not use an optical matching agent and which do not cause refractive index mismatch, have been developed using advanced and expensive manufacturing technology, that is, highly smooth contacts. The bonding process was carried out in such a way that the bonding surfaces, which had a mirror finish, could be self-retained simply by adhering them tightly. However, electro-optic crystals generally
It is also a piezo crystal, and when an electric field is applied, the refractive index changes and the physical dimensions of the crystal also change. As a result, in the configuration shown in FIG.
By applying a voltage, the two crystals 1a and 1b undergo dimensional changes of opposite polarity, that is, elongation and shrinkage reciprocally, and the bonded surfaces tend to peel off.

以上を要するに、第4図示のように複数個の電
気光学結晶を接合して構成した種類の従来の電気
光学光偏向器に関する問題点は、結晶相互間のオ
プテイカル・コンタクト面の技術的困難さおよび
安定性、信頼性に存する。
In summary, the problems with the conventional electro-optic optical deflector of the type constructed by bonding a plurality of electro-optic crystals as shown in Figure 4 are the technical difficulty of the optical contact surfaces between the crystals and It lies in stability and reliability.

つぎに第5図に示す電気光学光偏向器は、第4
図示の従来構成につき上述した問題を解決するた
めに、第4図示の構成による結晶対を複数段直列
に接続したものである。すなわち、複数段によつ
て第4図示の構成によると同等の偏向作用を得る
ようにしてあるので、1段当りの結晶長を短縮す
ることができ、したがつて、結晶対間の貼り合わ
せ面に対する光ビームの入射角が小さくなり、オ
プテイカル・コンタクトを用いずに、光学整合剤
を用いた状態であつても、上述したような全反射
の問題が生じないようにしてある。
Next, the electro-optic optical deflector shown in FIG.
In order to solve the problems described above with respect to the conventional configuration shown in the figure, a plurality of crystal pairs having the configuration shown in the fourth figure are connected in series. In other words, since the same deflection effect as in the configuration shown in FIG. 4 is obtained using multiple stages, the crystal length per stage can be shortened, and the bonding surface between the crystal pairs can be shortened. The incident angle of the light beam relative to the surface is small, so that the problem of total internal reflection as described above does not occur even when an optical matching agent is used without using an optical contact.

しかしながら、かかる第5図示の従来構成にお
いても、例えば図示のように5個の電気光学結晶
1a〜1eからなる電気光学結晶プリズムを多数
使用するので、単に構成が複雑かつ高価になるば
かりではなく、光路中に貼り合わせによる不連続
面が多数存在するので、光の透過損が増大する等
の幾多の欠点が残存している。
However, even in the conventional configuration shown in FIG. 5, since a large number of electro-optic crystal prisms each consisting of five electro-optic crystals 1a to 1e are used as shown in the figure, the structure is not only complicated and expensive, but also Since there are many discontinuous surfaces in the optical path due to bonding, many drawbacks remain, such as increased light transmission loss.

以上に詳述したように、従来のこの種電気光学
光偏向器は、いずれの構成によつても何らかの欠
点があり、十分に実用の域に達しているものはな
かつた。
As detailed above, all of the conventional electro-optic optical deflectors of this type have some kind of drawback, and none of them have reached the level of practical use.

発明の要点 本発明の目的は、上述した従来の欠点を除去
し、簡単な形状乃至構成、特に簡単な形状の電極
層を用い、技術的に製作等の面で困難かつ不安定
なオプテイカルコンタクトを用いることなく、光
周波数帯域の利用効率が優れた高速偏向可能の電
気光学光偏向器を提供することにある。
Summary of the Invention An object of the present invention is to eliminate the above-mentioned drawbacks of the conventional technology, use a simple shape or structure, especially an electrode layer of a simple shape, and create an optical contact that is technically difficult and unstable to manufacture. An object of the present invention is to provide an electro-optic optical deflector capable of high-speed deflection with excellent utilization efficiency of an optical frequency band without using.

本発明の他の目的は、第3図乃至第5図につき
前述した従来構成の短所を除去するとともに長所
を活かした新しい構成の電気光学光偏向器を提供
することにある。
Another object of the present invention is to provide an electro-optic optical deflector with a new structure that eliminates the disadvantages of the conventional structure described above with reference to FIGS. 3 to 5 and takes advantage of its advantages.

本発明のさらに他の目的は、光偏向器本来の機
能を有するのみならず、光パルス発生器、ストリ
ークカメラ、光ゲート、高速度カメラ、測距儀等
として応用するに好適な電気光学光偏向器を提供
することにある。
Still another object of the present invention is to provide an electro-optic optical deflector that not only has the original function of an optical deflector but also is suitable for application as an optical pulse generator, a streak camera, an optical gate, a high-speed camera, a range finder, etc. It is about providing the equipment.

すなわち、本発明結晶複合型電気光学光偏向器
は、少なくとも1対の対をなす電気光学結晶が結
晶軸の極性を互いに反転させて光軸方向に順次に
縦続接続されており、各電気光学結晶毎に、光軸
を挟んで互いに対向する結晶面に電極がそれぞれ
被着され、少なくとも一方の側の前記結晶面に各
電気光学結晶毎にそれぞれ被着された前記電極の
形状が、少なくとも、光軸に平行の平行辺と光軸
に斜交する斜交辺とをそれぞれ有する多角形状で
あり、当該多角形状が対をなす電気光学結晶にお
いて光軸に関し互いに逆対称をなすとともに、前
記斜交辺が互いに平行に対向していることを特徴
とするものである。
That is, in the crystal composite electro-optic optical deflector of the present invention, at least one pair of electro-optic crystals are sequentially connected in series in the optical axis direction with the polarities of their crystal axes reversed to each other, and each electro-optic crystal is connected in series in the optical axis direction. electrodes are respectively deposited on crystal planes facing each other across the optical axis, and the shape of the electrodes deposited on the crystal planes on at least one side for each electro-optic crystal is such that at least It is a polygonal shape having parallel sides parallel to the axis and oblique sides obliquely intersecting the optical axis, and the polygonal shapes are antisymmetrical to each other with respect to the optical axis in a pair of electro-optic crystals, and the oblique sides are opposite to each other with respect to the optical axis. are parallel to each other and face each other.

実施例 以下に図面を参照して実施例につき本発明を詳
細に説明する。
EXAMPLES The present invention will be explained in detail below using examples with reference to the drawings.

まず、本発明電気光学光偏向器の基本構成の例
を第6図に示す。図示の基本構成においては、仮
に図示のような直角座標x,y,zを設けると、
一対の直方体をなす電気光学結晶1a,1bを光
路に沿つてy軸方向に縦続配置するとともに、z
軸方向にとる光学軸を反転させて、図示のように
互いに反転させてある。なお、各結晶1aおよび
1bにおいて光ビームが通過する端面S1,S3およ
びS2,S4のうち、相互に接する端面S1,S2は密着
乃至接着してあり、接着剤乃至光学整合剤を挿
み、あるいは挿まずに端面S1,S2を圧着し、もし
くは、特に必要とはしないがオプテイカル・コン
タクトにし、あるいは、無反射コーテイングを施
すなど、所要の適切な態様にて密着させる。
First, an example of the basic configuration of the electro-optic light deflector of the present invention is shown in FIG. In the basic configuration shown, if rectangular coordinates x, y, z are provided as shown,
Electro-optic crystals 1a and 1b forming a pair of rectangular parallelepipeds are arranged cascaded in the y-axis direction along the optical path, and
The optical axes taken in the axial direction are reversed and are reversed to each other as shown. Note that among the end faces S 1 , S 3 and S 2 , S 4 through which the light beam passes in each crystal 1a and 1b, the end faces S 1 and S 2 that are in contact with each other are in close contact or adhered, and are coated with adhesive or optical matching. The end faces S 1 and S 2 are crimped with or without adhesive, or they are made into optical contacts (although this is not particularly necessary), or they are brought into close contact in an appropriate manner, such as by applying a non-reflective coating. .

かかる構成配置により全体として図示のように
直方体をなす電気光学結晶複合体の一側面、例え
ば図示のように上面に、双方の結晶1a,1bに
跨つて例えば図示のように平行四辺形の電極層2
aを被着し、個々の結晶については相似の三角形
状の電極層を互いに逆対称に被着した形態にして
ある。すなわち、例えば図示のように、結晶1a
においては三角形の底辺が結晶の右辺に接すると
ともに頂点が左辺に接し、結晶1bにおいては三
角形の底辺が左辺に接するとともに頂点が右辺に
接するように構成配置する。したがつて、図示の
例においては、結晶1aと1bとの上面上の三角
形状電極層における斜辺が光路方向にて互いに対
向している。
Due to this configuration, an electrode layer in the shape of a parallelogram as shown in the figure is formed on one side of the electro-optic crystal composite, which forms a rectangular parallelepiped as a whole as shown in the figure, for example, on the top surface as shown in the figure, spanning both crystals 1a and 1b. 2
For each crystal, similar triangular electrode layers are deposited antisymmetrically to each other. That is, for example, as shown in the figure, crystal 1a
In the case of crystal 1b, the base of the triangle is in contact with the right side of the crystal and the apex is in contact with the left side, and in the case of crystal 1b, the base of the triangle is in contact with the left side and the apex is in contact with the right side. Therefore, in the illustrated example, the oblique sides of the triangular electrode layers on the upper surfaces of crystals 1a and 1b are opposed to each other in the optical path direction.

なお、図示の電気光学結晶複合体の他方の側
面、例えば図示の下面には、上面電極層2aの直
下に同形の電極層2bを被着し、あるいは、下面
の全面に亘つて長方形の電極層2bを被着し、上
下両面の電極層2a,2bを交流電圧源3に接続
して駆動する。また、入射光ビームは結晶1aの
端面S3から入射して接合面S3,S4を介し、結晶1
bの端面S4から出射されるが、その間xy面内に
て偏向され、出射偏向光ビームとなる。
Note that on the other side of the illustrated electro-optic crystal composite, for example, on the lower surface shown in the figure, an electrode layer 2b of the same shape is deposited directly under the upper electrode layer 2a, or a rectangular electrode layer is formed over the entire lower surface. 2b is applied, and the electrode layers 2a and 2b on both the upper and lower surfaces are connected to an AC voltage source 3 and driven. In addition, the incident light beam enters from the end surface S 3 of the crystal 1a and passes through the bonding surfaces S 3 and S 4 to the crystal 1a.
It is emitted from the end surface S4 of b, but is deflected in the xy plane during that time, and becomes an emitted deflected light beam.

かかる基本構成における電気光学結晶の光学軸
の方向や入射光ビームの偏波方向は、使用する電
気光学結晶の種類乃至性質に依存して設定し、例
えば、LiTaO3あるいはLiNbO3の結晶を用いた
場合には、図示の例ではz軸方向とした電圧印加
方向や入射光ビームの偏波方向を、電気光学結晶
の複屈折性結晶軸たるc軸の方向に設定するのが
効率的である。なお、図示の基本構成における各
電気光学結晶1a,1bは、図示のように直方体
とするほか、ブリユースターカツトの形状にし
て、入射光ビームが入射端面に対しブリユースタ
ー角をなして無屈折にて入射するようにすること
もできる。
In this basic configuration, the direction of the optical axis of the electro-optic crystal and the polarization direction of the incident light beam are set depending on the type and properties of the electro-optic crystal used. For example, when using a LiTaO 3 or LiNbO 3 crystal, In this case, it is efficient to set the voltage application direction, which in the illustrated example is the z-axis direction, and the polarization direction of the incident light beam to be in the direction of the c-axis, which is the birefringent crystal axis of the electro-optic crystal. The electro-optic crystals 1a and 1b in the basic configuration shown in the figure are not only rectangular as shown in the figure, but also have a Brewster cut shape so that the incident light beam forms a Brewster angle with respect to the incident end surface. It is also possible to make the light incident by refraction.

上述のような基本構成による本発明電気光学光
偏向器においては、上下両面の電極層2a,2b
間に所望波形の交流電圧を印加することにより光
偏向を行なうことは従来構成におけると同様であ
る。しかしながら、本発明の上述した基本構成に
よれば、電気光学結晶複合体における少なくとも
一方の面、例えば上面に被着した三角形状電極層
が光路方向に関して逆対称に構成されているの
で、電極下の結晶中にはほぼ一定の電界が生じ、
かかる一定電界のもとに屈折率変化が生ずる。し
かも、相隣る結晶間においては光学軸を反転させ
て互いに逆の極性にしてあるので、例えば、結晶
1aの電極下に生ずる屈折率変化をΔnとすると、
結晶1bの電極下に生ずる屈折率変化は−Δnと
なる。
In the electro-optic light deflector of the present invention having the basic configuration as described above, the electrode layers 2a and 2b on both the upper and lower surfaces
As in the conventional configuration, optical deflection is performed by applying an AC voltage of a desired waveform between the two. However, according to the above-described basic configuration of the present invention, the triangular electrode layer deposited on at least one surface, for example, the top surface, of the electro-optic crystal composite is configured antisymmetrically with respect to the optical path direction, so that An almost constant electric field is generated in the crystal,
A refractive index change occurs under such a constant electric field. Moreover, since the optical axes between adjacent crystals are reversed and have opposite polarities, for example, if the refractive index change that occurs under the electrode of crystal 1a is Δn, then
The refractive index change occurring under the electrode of the crystal 1b is -Δn.

いま、第6図示の基本構成において結晶複合体
の上下両面に平行のxy座標面について、本発明
光偏向器の作用を表わすと、第7図に示すよう
に、x軸上の点xを通つてy軸に平行に入射した
光ビームは、結晶複合体のx方向の幅をDとする
と、結晶1a中においては長さl/D(D/2+x)の 電極下領域を通過し、結晶1b中においては長さ
l/D(D/2−x)の電極下領域を通過する。したが つて、上述した一定電界の印加によりその光ビー
ムが偏向作用を受ける全光学長ΔLopはつぎの(1)
式となる。
Now, in the basic configuration shown in Figure 6, the action of the optical deflector of the present invention on the xy coordinate plane parallel to the upper and lower surfaces of the crystal composite is as shown in Figure 7. If the width of the crystal composite in the x direction is D, the light beam incident parallel to the y-axis passes through the region under the electrode of length l/D (D/2+x) in crystal 1a, and Inside, it passes through an area under the electrode of length l/D (D/2-x). Therefore, the total optical length ΔLop where the optical beam is deflected by the application of the constant electric field mentioned above is as follows (1)
The formula becomes

ΔLop=Δn・l/D(D/2+x)−Δn ・l/D(D/2−x)=2Δn・l/2・x(1
) したがつて、x点を通る光ビームが偏向を受け
る全光学長ΔLopが光路中心から入射点までの横
方向距離xに比例し、x軸方向、すなわち、ビー
ム断面の横方向に関しては、光路中心からの距離
に対して全光学長ΔLopが直線状に変化すること
になる。なお、上式中におけるlは各電気光学結
晶1a,1bの光進行方向、すなわち、図示のy
軸方向における各全長である。
ΔLop=Δn・l/D(D/2+x)−Δn・l/D(D/2−x)=2Δn・l/2・x(1
) Therefore, the total optical length ΔLop through which a light beam passing through point x is deflected is proportional to the lateral distance x from the center of the optical path to the point of incidence; The total optical length ΔLop changes linearly with the distance from the center. Note that l in the above formula is the light traveling direction of each electro-optic crystal 1a, 1b, that is, y in the figure.
This is each total length in the axial direction.

しかして、電気光学結晶に入射した光ビームは
光学長の長い側に偏向される性質を有しているの
であるから、屈折率変化Δnの値が正であれば座
標xの値が正となる側に偏向され、これとは逆
に、屈折率変化Δnの値が負であれば座標xの値
が負となる側に偏向される。なお、その際の偏向
角θはつぎの(2)式となる。
Therefore, since the light beam incident on the electro-optic crystal has the property of being deflected to the side with a longer optical length, if the value of the refractive index change Δn is positive, the value of the coordinate x will be positive. Conversely, if the value of the refractive index change Δn is negative, the beam is deflected to the side where the value of the coordinate x is negative. Note that the deflection angle θ at that time is expressed by the following equation (2).

θ=2・Δn・l/D (2) したがつて、第6図示の基本構成における結晶
1a,1bの横幅Dにほぼ等しい横幅の線状光ビ
ームを入射させたときに、偏向出力光ビームがな
す回折広がり角Δθが最小となつて、つぎの(3)式
による程度の大きさとなる。
θ=2・Δn・l/D (2) Therefore, when a linear light beam having a width approximately equal to the width D of the crystals 1a and 1b in the basic configuration shown in FIG. 6 is incident, the deflected output light beam The diffraction spread angle Δθ formed by

Δθ=0.886λ/D (3) ここに、λは入射光の波長である。 Δθ=0.886λ/D (3) Here, λ is the wavelength of the incident light.

しかして、偏向角θは、入射光ビーム・スポツ
トが有するビーム広がり角に対して、(3)式による
最小値の何倍までの回折広がり角が許容されるか
によつて決まるのであるから、(2)式による偏向角
θは、ビームスポツト分の2.26・Δn・l/λ倍、す なわち、(2)式の右辺を(3)式の右辺で割つた値だけ
倍したものに相当することになる。
Therefore, the deflection angle θ is determined by how many times the minimum value of the diffraction spread angle according to equation (3) is allowed relative to the beam spread angle of the incident light beam spot. The deflection angle θ according to equation (2) is equivalent to 2.26·Δn·l/λ times the beam spot, that is, the value obtained by dividing the right-hand side of equation (2) by the right-hand side of equation (3). become.

また、(2)式によれば、結晶断面の中心点、すな
わち、座標x=0の点においては光学長変化が生
ぜず、このx=0の中心点の左右においては反対
称の光学長変化が生じていることが判る。したが
つて、x=0を中心軸にして左右対称に広がる線
状光ビームを入射させると、線状光ビーム全体で
の平均的光学長変化は、左右で相殺されて余分な
位相変調が生じなくなり、光周波数帯域利用効率
が著しく向上する。
Furthermore, according to equation (2), no optical length change occurs at the center point of the crystal cross section, that is, the point at the coordinate x = 0, and the optical length changes symmetrically on the left and right of this center point at x = 0. It can be seen that this is occurring. Therefore, when a linear light beam that spreads symmetrically with x=0 as the central axis is incident, the average optical length change in the entire linear light beam is canceled out on the left and right sides, resulting in extra phase modulation. This significantly improves the efficiency of optical frequency band use.

また、従来、特に問題の多かつた結晶間の接合
面については、本発明による構成の電気光学光偏
向器においては、結晶間接合端面に対して光ビー
ムの入射角が0であつて、接合端面が光進行方向
に直交しているので、少なくとも全反射は全く生
じない。なお、屈折率の不整合に基づく反射は若
干残存するが、かかる残存反射も接合面間に光学
整合剤を介挿すれば数%程度以下に抑圧すること
は容易である。また、オプテイカル・コンタクト
を用いれば、接合面の問題は全く解消されるが、
不可欠ではないので、本発明によれば、製作容易
で電圧印加時に安定に動作する優れた性能の光偏
向器が得られる。すなわち、本発明による電気光
学光偏向器は、従来装置のうち最良の特性乃至性
能を有すると認められている第4図示の構成によ
る光偏向器とほぼ同等の特性乃至性能を有し、し
かも、この従来構成に伴う前述した欠点、特にオ
プテイカル・コンタクトを不可欠とする結晶間接
合端面の問題がすべて解決された状態に匹敵する
ものである。
Furthermore, in the electro-optic optical deflector configured according to the present invention, the angle of incidence of the light beam with respect to the end face of the intercrystalline junction is 0, and the junction surface between the crystals, which has been particularly problematic in the past, has a structure according to the present invention. Since the end face is perpendicular to the light traveling direction, at least no total reflection occurs. Note that although some reflections due to mismatching of refractive indexes remain, such residual reflections can be easily suppressed to a few percent or less by interposing an optical matching agent between the bonded surfaces. Also, if optical contacts are used, the problem of the bonding surface is completely eliminated, but
Since it is not essential, the present invention provides an optical deflector with excellent performance that is easy to manufacture and operates stably when a voltage is applied. That is, the electro-optic optical deflector according to the present invention has characteristics and performance that are almost equivalent to those of the optical deflector having the configuration shown in FIG. 4, which is recognized as having the best characteristics and performance among conventional devices, and furthermore, This is comparable to a state in which all of the above-mentioned drawbacks associated with this conventional configuration, particularly the problem of intercrystalline bonding end faces that require optical contact, have been solved.

なお、第6図示の本発明による基本構成と第3
図示の従来構成とを対比すれば判るように、本発
明光偏向器は、例えば第3図示の従来構成による
2個の光偏向器を、光学軸の極性を互いに反転さ
せて、プシユプル動作をするように縦続配置して
接合したものと見做すこともできる。
Note that the basic configuration according to the present invention shown in the sixth figure and the third figure
As can be seen by comparing the conventional configuration shown in the figure, the optical deflector of the present invention performs a push-pull operation by reversing the polarities of the optical axes of the two optical deflectors according to the conventional configuration shown in the third figure, for example. It can also be considered that they are connected in a cascade arrangement.

以上に詳述した本発明電気光学光偏向器の基本
構成については、その特徴とするところを逸脱し
ない範囲で幾多の変更を加えて構成することがで
きる。かかる本発明光偏向器の他の構成例を第8
図a〜c、第9図a,bおよび第10図にそれぞ
れ示す。
The basic structure of the electro-optic light deflector of the present invention described in detail above can be modified in many ways without departing from its characteristics. Another example of the structure of the optical deflector of the present invention is shown in the eighth section.
They are shown in Figures a to c, Figures 9a and b, and Figure 10, respectively.

第8図a〜cにそれぞれ示す他の構成例は、第
6図示の基本構成における個々の電気光学結晶1
a,1bの上面あるいは上下両面に被着した三角
形状電極層2aあるいは2a,2bを台形、もし
くは、長方形に三角形乃至直角三角形を組合わせ
た形状にしたもの、あるいは、それらの形状の電
極層を結晶1a,1b上で一体に連通させたもの
である。第6図示の基本構成における電極層2a
あるいは2a,2bは、その三角形状について電
極下領域の光学長が変化する斜辺が結晶の横幅一
杯に延在しているので、偏向スポツト数、すなわ
ち、偏向角をビーム広がり角で割つた数を最大に
して偏向角を拡げるには、結晶の側縁まで偏向範
囲を拡げなければならないので、側縁の近傍では
偏向作用に乱れが生ずるために出力ビームの断面
形状に乱れが生ずる。これに対し、第8図a〜c
に示す構成例においては、結晶の側縁近傍の電極
形状が長方形をなし、電極下領域の光学長が一定
であるために、結晶の側縁近傍領域は光ビームの
偏向に寄与せず、したがつて、偏向スポツト数を
最大にするにも、結晶中央領域の斜辺部分一杯に
拡げれば足りるので、出力ビームの断面形状に乱
れが生ずるおそれがなくなる。
Other configuration examples shown in FIGS. 8a to 8c are individual electro-optic crystals 1 in the basic configuration shown in FIG.
The triangular electrode layer 2a or 2a, 2b deposited on the upper surface or both upper and lower surfaces of a, 1b is shaped into a trapezoid, or a combination of a triangle or a right triangle in a rectangle, or an electrode layer having such a shape. The crystals 1a and 1b are integrally connected to each other. Electrode layer 2a in the basic configuration shown in FIG. 6
Alternatively, in 2a and 2b, since the hypotenuse where the optical length of the region under the electrode changes extends across the entire width of the crystal in the triangular shape, the number of deflection spots, that is, the number obtained by dividing the deflection angle by the beam spread angle, is In order to maximize the deflection angle and widen it, it is necessary to extend the deflection range to the side edges of the crystal, which causes disturbances in the deflection action near the side edges, resulting in disturbances in the cross-sectional shape of the output beam. On the other hand, Fig. 8 a to c
In the configuration example shown in , the shape of the electrode near the side edge of the crystal is rectangular, and the optical length of the area under the electrode is constant, so the area near the side edge of the crystal does not contribute to the deflection of the light beam. Therefore, in order to maximize the number of deflection spots, it is sufficient to extend the deflection spots to the full extent of the oblique side of the central region of the crystal, so there is no possibility that the cross-sectional shape of the output beam will be disturbed.

一方、第9図a,bおよび第10図にそれぞれ
示す他の構成例は、第6図あるいは第8図a〜c
に示した構成における結晶対を多段直列に縦続接
続するとともに、上下両面の電極層2a,2bを
かかる結晶複合体の全体に連続させたものであ
る。そのうち、第9図a示の構成例においては光
学軸が逆極性の結晶対間にて、隣接結晶間の光学
軸極性を同じにして組合わせてあり、また、第9
図b示の構成例においては隣接結晶間の光学軸極
性を逆にして組合わせてある。さらに、第10図
示の構成例においては、各結晶対を分離して、光
学軸極性が同じ結晶複合体の前後に分けてそれぞ
れ集めた形態に組合わせてある。
On the other hand, other configuration examples shown in FIGS. 9a, b and 10, respectively, are shown in FIGS.
The crystal pairs having the structure shown in 2 are connected in series in multiple stages, and the electrode layers 2a and 2b on both the upper and lower surfaces are continuous throughout the crystal composite. Among them, in the configuration example shown in FIG. 9a, a pair of crystals whose optical axes have opposite polarities are combined with adjacent crystals having the same optical axis polarity.
In the configuration example shown in Figure b, adjacent crystals are combined with their optical axis polarities reversed. Furthermore, in the configuration example shown in FIG. 10, each crystal pair is separated and combined into the front and rear parts of a crystal composite having the same optical axis polarity.

なお、本発明電気光学光偏向器においては、第
4図示の従来構成とは異なり、本質的には多段構
成にせずとも結晶複合体全体の光学長を長くして
偏向感度を増大させ得るが、単体として長い寸法
の電気光学結晶を入手し難い場合には、短かい寸
法の電気光学結晶を多段に組合わせて等価に作用
させ得るので、極めて有効である。
Note that in the electro-optical optical deflector of the present invention, unlike the conventional configuration shown in FIG. 4, the optical length of the entire crystal composite can be increased to increase the deflection sensitivity without essentially using a multi-stage configuration. When it is difficult to obtain a long electro-optic crystal as a single unit, it is extremely effective because short-sized electro-optic crystals can be combined in multiple stages to function equivalently.

効 果 以上の説明から明らかなとおり、本発明によれ
ば、簡単な形状の電気光学結晶を適切に組合わせ
てその上下両面に簡単な形状の電極層を被着する
ことにより、技術的に困難で不安定なオプテイカ
ル・コンタクトを用いることなく、極めて容易に
製作し得る光周波数帯域利用効率の優れた高速動
作可能の電気光学光偏向器を実現することができ
る、という格別の効果が得られる。
Effects As is clear from the above explanation, according to the present invention, electro-optic crystals of simple shapes are appropriately combined and electrode layers of simple shapes are deposited on both the upper and lower surfaces of the electro-optic crystals. A special effect can be obtained in that it is possible to realize an electro-optic optical deflector that can be manufactured extremely easily, has excellent optical frequency band usage efficiency, and can operate at high speed without using unstable optical contacts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図a〜c、第4図a,b
および第5図は従来の電気光学光偏向器の代表的
構成をそれぞれ示す斜視図、第6図は本発明電気
光学光偏向器の基本構成の例を示す斜視図、第7
図は同じくその光偏向動作の態様の例を示す上面
図、第8図a〜c、第9図a,bおよび第10図
は同じくその具体的構成の例をそれぞれ示す斜視
図である。 1,1a〜1e…電気光学結晶、2a,2a
1,2a2,2b,2b1,2b2…電極、3…
交流電圧源、S1〜S4…結晶端面。
Figure 1, Figure 2, Figure 3 a-c, Figure 4 a, b
5 is a perspective view showing a typical structure of a conventional electro-optic light deflector, FIG. 6 is a perspective view showing an example of the basic structure of an electro-optic light deflector of the present invention, and FIG.
The figure is a top view showing an example of the light deflection operation, and FIGS. 8a to 8c, 9a and 9b, and 10 are perspective views showing examples of the specific structure. 1, 1a to 1e...electro-optic crystal, 2a, 2a
1, 2a2, 2b, 2b1, 2b2... electrode, 3...
AC voltage source, S 1 to S 4 ...crystal end face.

Claims (1)

【特許請求の範囲】 1 少なくとも1対の対をなす電気光学結晶が結
晶軸の極性を互いに反転させて光軸方向に順次に
縦続接続されており、各電気光学結晶毎に、光軸
を挟んで互いに対向する結晶面に電極がそれぞれ
被着され、少なくとも一方の側の前記結晶面に各
電気光学結晶毎にそれぞれ被着された前記電極の
形状が、少なくとも、光軸に平行の平行辺と光軸
に斜交する斜交辺とをそれぞれ有する多角形状で
あり、当該多角形状が対をなす電気光学結晶にお
いて光軸に関し互いに逆対称をなすとともに、前
記斜交辺が互いに平行に対向していることを特徴
とする結晶複合型電気光学光偏向器。 2 特許請求の範囲第1項記載の光偏向器におい
て、継続接続された順次の前記電気光学結晶の光
軸に交叉する端面が、直接に、もしくは、屈折率
整合剤を介挿して、もしくは、無反射コーテイン
グを施して、もしくは、オプテイカルコンタクト
を構成して、互いに面接触していることを特徴と
する結晶複合型電気光学光偏向器。 3 特許請求の範囲第1項または第2項記載の光
偏向器において、各電気光学結晶毎に、前記一方
の側の結晶面に対向する他方の側の結晶面に、前
記一方の側の結晶面に被着された前記電極が投影
された形状をなして、もしくは、その結晶面の全
面に亘つて、電極が被着されていることを特徴と
する結晶複合型電気光学光偏向器。
[Claims] 1. At least one pair of electro-optic crystals are sequentially connected in cascade in the optical axis direction with the polarities of their crystal axes reversed to each other, and each electro-optic crystal is connected with the optical axis on both sides. electrodes are respectively deposited on crystal planes facing each other, and the shape of the electrodes deposited on each electro-optic crystal on at least one side of the crystal plane is at least parallel to the optical axis. It is a polygonal shape having oblique sides obliquely intersecting the optical axis, and the polygonal shapes are antisymmetrical to each other with respect to the optical axis in a pair of electro-optic crystals, and the oblique sides are parallel and opposite to each other. A crystal composite electro-optic optical deflector characterized by: 2. In the optical deflector according to claim 1, the end faces of the sequentially connected electro-optic crystals that intersect with the optical axis are formed directly, or with a refractive index matching agent interposed therebetween, or A crystal composite electro-optic optical deflector characterized by being in surface contact with each other by being coated with a non-reflective coating or by forming an optical contact. 3. In the optical deflector according to claim 1 or 2, for each electro-optic crystal, a crystal on the one side is attached to a crystal plane on the other side opposite to the crystal plane on the one side. 1. A crystal composite type electro-optic optical deflector, characterized in that the electrodes are deposited on a surface in a projected shape or over the entire surface of the crystal surface.
JP6898484A 1984-04-09 1984-04-09 Crystal composite type electro-optical optical deflector Granted JPS60212743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6898484A JPS60212743A (en) 1984-04-09 1984-04-09 Crystal composite type electro-optical optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6898484A JPS60212743A (en) 1984-04-09 1984-04-09 Crystal composite type electro-optical optical deflector

Publications (2)

Publication Number Publication Date
JPS60212743A JPS60212743A (en) 1985-10-25
JPH042172B2 true JPH042172B2 (en) 1992-01-16

Family

ID=13389432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6898484A Granted JPS60212743A (en) 1984-04-09 1984-04-09 Crystal composite type electro-optical optical deflector

Country Status (1)

Country Link
JP (1) JPS60212743A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317446A (en) * 1992-09-29 1994-05-31 Eastman Kodak Company Electrooptic device for scanning using domain reversed regions
JP5344730B2 (en) * 2006-05-22 2013-11-20 株式会社ブイ・テクノロジー Exposure equipment
JP2013171081A (en) * 2012-02-17 2013-09-02 V Technology Co Ltd Light deflecting element
JP5613713B2 (en) * 2012-03-27 2014-10-29 株式会社東芝 Optical deflection element
JP2020008317A (en) * 2018-07-03 2020-01-16 新日本無線株式会社 Ion sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245244U (en) * 1975-09-26 1977-03-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245244U (en) * 1975-09-26 1977-03-30

Also Published As

Publication number Publication date
JPS60212743A (en) 1985-10-25

Similar Documents

Publication Publication Date Title
JP2003172912A5 (en)
JPH05232417A (en) Optical modulator
US4000937A (en) Planar waveguide electrooptic prism deflector
JPH042172B2 (en)
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
CN116540468A (en) Two-dimensional beam deflection device and method based on lithium tantalate crystal
US3650602A (en) Parallel array light beam deflector with variable phase plate
JPH03163534A (en) Optical deflecting element
JPS6278501A (en) Optical device having antireflection film
US4299449A (en) Acoustooptic modulator
JP5991911B2 (en) Optical deflector
JPS61264325A (en) Optical deflecting element
JPH045174B2 (en)
US3764196A (en) Reentrant acousto-optic light modulators and deflectors
JP2661968B2 (en) Light switch
JPS63141021A (en) Mach-zehnder type optical waveguide modulator
JPS60263505A (en) Elastic surface wave reflector and resonator having positive and negative reflection coefficients
JPH0361932B2 (en)
JPH0713685B2 (en) Crossed-waveguide optical switch
JPH0727145B2 (en) Optical switch matrix
JPS5865422A (en) Electrooptic deflecting element
JPH01191831A (en) Optical deflector
JPH0682842A (en) Optical deflector
JPH063508B2 (en) Optical switch device
JP2718952B2 (en) Acousto-optic element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term