JP2656476B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2656476B2
JP2656476B2 JP23458386A JP23458386A JP2656476B2 JP 2656476 B2 JP2656476 B2 JP 2656476B2 JP 23458386 A JP23458386 A JP 23458386A JP 23458386 A JP23458386 A JP 23458386A JP 2656476 B2 JP2656476 B2 JP 2656476B2
Authority
JP
Japan
Prior art keywords
layer
quantum well
inp
well
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23458386A
Other languages
Japanese (ja)
Other versions
JPS6390180A (en
Inventor
崇郎 黒田
明禎 渡辺
伸治 坂野
隆雄 宮崎
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23458386A priority Critical patent/JP2656476B2/en
Publication of JPS6390180A publication Critical patent/JPS6390180A/en
Application granted granted Critical
Publication of JP2656476B2 publication Critical patent/JP2656476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体のヘテロ接合により形成される
量子井戸構造を有する半導体装置に関する。特に、該構
造の井戸層内にドナー及びアクセプタが空間的に不均一
にドーピングされた構造に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor device having a quantum well structure formed by a heterojunction of a compound semiconductor. In particular, the present invention relates to a structure in which donors and acceptors are spatially non-uniformly doped in the well layer of the structure.

〔従来の技術〕[Conventional technology]

化合物半導体の量子井戸構造は、多重量子井戸型半導
体レーザの活性層や、電界による複素屈折率の高速変調
を利用した光スイッチ等に応用されている(「半導体超
格子の物理と応用」日本物理学会編,培風館昭和59
年)。これらに用いられた構造は第3図(a)に示した
ように、バンドギャップで差の異なる化合物半導体のヘ
テロ接合からなり、伝導帯のバンド不連続ΔEc及び価電
子帯のバンド不連続ΔEvがそれぞれ伝導帯の電子と、価
電子帯の正孔に対するポテンシャル障壁を形成してい
る。第3図(b)は同一の半導体に周期的にドナーとア
クセプタをドーピングしたいわゆるドーピング超格子
で、第3図に模式的に示した如く、電子と正孔が空間的
に分離されている。この系では、光吸収によって伝導帯
の電子数及び価電子帯の正孔数が変化すると、電気的中
性条件をみたすべくホテンシャル障壁の形がセルフコン
システントに変化する。そのため、量子レベルが入射励
起光の強度により順次変化するために、L.L.Chang他
「シンセティック・モジュレーテッド ストラクチャ
ー」,アカデミック プレス刊,1985年,第241頁(“Sy
nthetic Modulated Stracture",Academic Press,(198
5)p.241)に示されるように光吸収係数発光スペクトル
が外部光でチューニングできることになる。第3図
(c)は、同図(b)において電子,正孔に対するポケ
ット量子井戸をつけ加えた例である。
The compound semiconductor quantum well structure has been applied to the active layer of a multiple quantum well semiconductor laser, an optical switch using high-speed modulation of the complex refractive index by an electric field, etc. ("Physics and Applications of Semiconductor Superlattices" Society edition, Baifukan Showa 59
Year). As shown in FIG. 3 (a), the structures used for these structures consist of heterojunctions of compound semiconductors having different band gaps, and have a conduction band discontinuity ΔEc and a valence band discontinuity ΔEv. Each forms a potential barrier for electrons in the conduction band and holes in the valence band. FIG. 3 (b) shows a so-called doping superlattice in which the same semiconductor is periodically doped with a donor and an acceptor. As schematically shown in FIG. 3, electrons and holes are spatially separated. In this system, when the number of electrons in the conduction band and the number of holes in the valence band change due to light absorption, the shape of the potential barrier changes to self-consistent in order to satisfy the electrical neutral condition. Therefore, since the quantum level changes sequentially according to the intensity of the incident excitation light, LLChang et al., "Synthetic Modulated Structure", Academic Press, 1985, p. 241 (“Sy
nthetic Modulated Stracture ", Academic Press, (198
5) As shown in p.241), the light absorption coefficient emission spectrum can be tuned by external light. FIG. 3C shows an example in which pocket quantum wells for electrons and holes are added to FIG.

第3図(a)の例では、量子井戸全体に外部電界を印
加すると、同図(a)の右側に示されるように電子波動
関数と正孔の波動関数が逆方向にシフトして、外部光に
対する複素屈折率応答が変化するが、第3図(b)の例
に比べると井戸内に閉じこめられている電子正孔の量子
レベルは余り変化しないために、波長のチューニング特
性といえるほどの変化はない。
In the example of FIG. 3A, when an external electric field is applied to the entire quantum well, the electron wave function and the hole wave function shift in opposite directions as shown on the right side of FIG. Although the complex refractive index response to light changes, the quantum level of electron holes confined in the well does not change much compared to the example of FIG. 3 (b), so that it can be said to be a wavelength tuning characteristic. No change.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の目的は、従来の組成型量子井戸とドーピング
型量子井戸の特徴をかねそなえた、すなわち、空間的に
不均一にドープされた半導体結晶を、この結晶よりも禁
制帯幅が大きくかつ、伝導帯および価電子帯でのバンド
不連続性が該結晶内に障壁を形成するような第2の半導
体ではさんだ新しい量子井戸構造を導入することにより
達成される。
An object of the present invention is to combine the characteristics of the conventional composition type quantum well and doping type quantum well, i.e., a semiconductor crystal which is spatially non-uniformly doped, has a larger band gap than this crystal, and Band discontinuities in the conduction and valence bands are achieved by introducing a new quantum well structure sandwiched by a second semiconductor that forms a barrier in the crystal.

〔作用〕[Action]

本発明の基本的作用を説明する概念図を第1図(a)
に示した。ここに示した例では、井戸層が1コのp/n接
合からなりたっており、両側がΔEc,ΔEvの大きいアン
ドープヘテロ障壁層ではさまれている。伝導帯の電子
は、井戸層のn型ドープ領域に、価電子帯の正孔は、井
戸層のp型ドープ領域に、それぞれ量子レベルをつくっ
て閉じこめられることになる。井戸内の電気的中性条件
は同図に示したイオン化ドナー,アクセプターと自由電
子,正孔のバランスで満たされ、井戸層のポテンシャル
はポアソン方程式とシュレジンガー方程式をセルフコン
システントに解くことにより求められる。多重量子井戸
の場合の近似的なポテンシャル分布を第1図(b)に示
した。ここで、エネルギーE1の光の入射により、正孔の
基底準位から伝導帯に上がった電子は、電子の基底準位
に緩和するが、このレベルから価電子帯に発光遷移(エ
ネルギーE2>E1)しようとしても価電子帯がつまってい
るために遷移できず、その結果井戸層内には大量の電子
と正孔が空間的に分離された状態でたまることになる。
それによって井戸層内のポテンシャルは再び電気的条件
をみたすようセルフコンシステントに変化し、電子,正
孔の量子レベルも大きく変化することになる。
FIG. 1 (a) is a conceptual diagram illustrating the basic operation of the present invention.
It was shown to. In the example shown here, the well layer is composed of one p / n junction, and is sandwiched on both sides by undoped hetero barrier layers having large ΔEc and ΔEv. Electrons in the conduction band are confined in the n-type doped region of the well layer and holes in the valence band are confined in the p-type doped region of the well layer by creating quantum levels. The electric neutral condition in the well is satisfied by the balance of ionized donor, acceptor, free electron and hole shown in the figure, and the potential of the well layer is obtained by solving Poisson equation and Schlesinger equation in a self-consistent manner. Can be FIG. 1B shows an approximate potential distribution in the case of a multiple quantum well. Here, the electrons that have risen from the ground level of holes to the conduction band due to the incidence of light of energy E 1 are relaxed to the ground level of electrons, but the luminescence transition from this level to the valence band (energy E 2 > E 1 ) The transition is not possible because the valence band is full, and as a result, a large amount of electrons and holes are accumulated in the well layer in a spatially separated state.
As a result, the potential in the well layer changes self-consistently so as to satisfy the electrical conditions again, and the quantum levels of electrons and holes also change greatly.

このように、本発明の量子井戸では、第3図に示した
2つのタイプの量子井戸の特徴が共にとりこまれた結
果、より設計自由度が、拡大された非線形光−光相互作
用機能を実現できるようになる。
As described above, in the quantum well of the present invention, as a result of incorporating the features of the two types of quantum wells shown in FIG. 3, a nonlinear optical-optical interaction function with an increased design freedom is realized. become able to.

〔実施例〕〔Example〕

以下、本発明の内容を実施例に基づいて説明する。第
1図(a)の量子井戸構造の1例として、InPを障壁層
とし、井戸層に、InPに格子整合したIn0.53Ga0.47Asのp
/n接合を用いた例を、InGaAsPの4元系を作製可能な減
圧MOCVD装置で結晶成長した。さらに、InPに格子整合し
たIn0.52Al0.48Asを障壁層とし、井戸層に同じくIn0.53
Ga0.47Asのp/n接合を用いた例を、MBE装置で作製した。
どちらの場合も第2図(a)に示したような光−光変調
検出器の作製を目標とし、n−Inp基板上にアンドープI
nP(又はInAlAs)のクラッド2を1μm、本発明の量子
井戸構造3:InP/(p/n)InGaAs/InP又はInAlAs/(p/n)I
nGaAs/InAlAsを1μm、アンドープInP(又はInAlAs)
のクラッド4を1μm成長したのち、基板のInPの一部
を除去した。量子井戸層に対して、垂直方向又は平行方
向に入射光(波長λ)モニター検出光(波長λ)を
入射させる配置で、λの入射光強度をかえながら、λ
の光の透過強度及び位相シフトを観測した。位相検出
はマイケルソン型の干渉検出方式を用いた。(第2図
(a)の下の模式図参照)波長λとして、第1図
(b)に示した井戸内p型領域中の正孔基底準位から伝
導帯への励起エネルギーE1に等しいものを選び、検出光
の波長λとして第1図(b)の井戸内n型領域中の電
子基底準位から価電子帯への遷移エネルギーECに等しい
ものを選んでおいた。入射光強度の増大と共に、井戸内
に電子,正孔が空間分離されて蓄積される結果,量子準
位がシフトして、波長λでみた量子井戸の複素屈折率
は連続的に変化してゆき、透過光の減衰率でみても、位
相シフトでみても同様の高感度で入射光の有無を検出で
きることがわかった。入射光をパルスレーザとしたとき
の応答速度は、従来のGaAs/GaAlAs系量子井戸に電界を
印加したタイプの光スイッチの速度と同等以上であっ
た。これは、本発明の量子井戸においては、λの光で
伝導帯に励起された電子が、高濃度のイオン化不純物の
散乱と、内部電界勾配により速やかに基底準位に緩和す
ることを示している。
Hereinafter, the contents of the present invention will be described based on examples. As an example of the quantum well structure shown in FIG. 1 (a), p of In 0.53 Ga 0.47 As lattice-matched to InP is added to the well layer using InP as a barrier layer.
In the example using the / n junction, crystal growth was performed by a reduced-pressure MOCVD apparatus capable of producing a quaternary system of InGaAsP. Further, In 0.52 Al 0.48 As lattice-matched to InP is used as a barrier layer, and In 0.53 Al
An example using a Ga 0.47 As p / n junction was produced by an MBE apparatus.
In both cases, the aim was to fabricate a light-to-light modulation detector as shown in FIG.
The nP (or InAlAs) cladding 2 is 1 μm, and the quantum well structure of the present invention 3: InP / (p / n) InGaAs / InP or InAlAs / (p / n) I
1 μm nGaAs / InAlAs, undoped InP (or InAlAs)
After growing the cladding 4 of 1 μm, a part of InP of the substrate was removed. In the arrangement in which incident light (wavelength λ 1 ) and monitor detection light (wavelength λ C ) are incident on the quantum well layer in the vertical direction or the parallel direction, while changing the incident light intensity of λ 1 ,
The transmission intensity and phase shift of C light were observed. A Michelson-type interference detection method was used for phase detection. As the wavelength lambda 1 (schematic view references under the second diagram (a)), the hole ground level in the well in the p-type region shown in FIG. 1 (b) to the excitation energy E 1 to the conduction band A wavelength equal to the detection light wavelength λ 2 was selected to be equal to the transition energy E C from the electronic ground level to the valence band in the n-type region in the well in FIG. 1B. As the incident light intensity increases, electrons and holes are spatially separated and accumulated in the well. As a result, the quantum level shifts, and the complex refractive index of the quantum well viewed at the wavelength λ 2 changes continuously. As a result, it was found that the presence or absence of the incident light could be detected with the same high sensitivity by the attenuation factor of the transmitted light and the phase shift. The response speed when a pulse laser was used as the incident light was equal to or higher than the speed of a conventional optical switch in which an electric field was applied to a GaAs / GaAlAs-based quantum well. This is because, in the quantum well of the present invention, electrons excited in the conduction band at lambda 1 light, and scattering of high concentrations of ionized impurities, shows that relaxed to rapidly ground level by the internal electric field gradient I have.

この他第2図(b)のように、従来のドーピング超格
子の例と同様に、量子井戸内のn・p層に独立にp・n
型オーミック電極をとることによって、光検出層を作成
できることを確認した。
In addition, as shown in FIG. 2 (b), similarly to the example of the conventional doping superlattice, the pn layer in the quantum well is independently pn layer.
It was confirmed that a photodetection layer could be formed by using a type ohmic electrode.

以上はInP基板上のInP,InGaAs,InAlAsを用いた量子井
戸の例を示したが、本発明の内容は材料については何ら
制限を設けていないことは明らかである。
In the above, an example of a quantum well using InP, InGaAs, and InAlAs on an InP substrate has been shown, but it is clear that the content of the present invention does not impose any limitation on the material.

また、井戸内も単一のp/n接合だけでなく、必要に応
じてp,n,i層等を一部に付け加えることにより、より微
妙な量子準位変調効果を期待できる。場合によっては、
井戸内にごく低いヘテロ障壁層をつくることにより、電
子正孔の空間分離をより効果的にすることも可能であ
る。
Further, not only a single p / n junction but also a p, n, i layer or the like may be added to a part of the well as needed, so that a more subtle quantum level modulation effect can be expected. In some cases,
By creating a very low hetero-barrier layer in the well, the spatial separation of electron holes can be made more effective.

〔発明の効果〕〔The invention's effect〕

本発明によれば、正孔と電子を分離した状態で量子井
戸層内に閉じこめられるので、強い非線形性を有する新
機能光素子を得ることができる。
According to the present invention, since a hole and an electron are separated and confined in the quantum well layer, a new functional optical device having strong nonlinearity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の量子井戸構造を示す図、第2図は、本
発明の実施例としてのInP/(p/n)InGaAs/InP構造を示
す図、第3図は従来の代表的な2種の量子井戸構造を示
す図である。
FIG. 1 is a diagram showing a quantum well structure of the present invention, FIG. 2 is a diagram showing an InP / (p / n) InGaAs / InP structure as an embodiment of the present invention, and FIG. It is a figure which shows two types of quantum well structures.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 隆雄 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (72)発明者 松村 宏善 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (56)参考文献 特開 昭62−85227(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takao Miyazaki 1-280 Higashi-Koigabo, Kokubunji-shi, Hitachi, Ltd. Central Research Laboratory Co., Ltd. (56) References JP-A-62-285227 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の半導体層を該第1の半導体層より禁
制帯幅の大きい第2の半導体層で第1の半導体層を挟ん
で構成される量子井戸構造を少なくとも1つ含み、上記
第1の半導体層は第1の導電型の第1領域層と第2の導
電型の第2領域層を含むことを特徴とする半導体装置。
A first semiconductor layer including at least one quantum well structure formed by sandwiching the first semiconductor layer with a second semiconductor layer having a larger forbidden band width than the first semiconductor layer; A semiconductor device, wherein the first semiconductor layer includes a first region layer of a first conductivity type and a second region layer of a second conductivity type.
【請求項2】上記第1領域層と第2領域層はpn接合を形
成することを特徴とする特許請求の範囲第1項記載の半
導体装置。
2. The semiconductor device according to claim 1, wherein said first region layer and said second region layer form a pn junction.
【請求項3】上記第1の半導体層をGa0.47In0.53Asと
し、第2の半導体層をInP又はInPに格子整合したAl0.48
In0.52Asとすることを特徴とする特許請求の範囲第1項
記載の半導体装置。
3. The method according to claim 1, wherein the first semiconductor layer is Ga 0.47 In 0.53 As, and the second semiconductor layer is InP or Al 0.48 lattice-matched to InP.
2. The semiconductor device according to claim 1, wherein In 0.52 As is set.
JP23458386A 1986-10-03 1986-10-03 Semiconductor device Expired - Fee Related JP2656476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23458386A JP2656476B2 (en) 1986-10-03 1986-10-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23458386A JP2656476B2 (en) 1986-10-03 1986-10-03 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6390180A JPS6390180A (en) 1988-04-21
JP2656476B2 true JP2656476B2 (en) 1997-09-24

Family

ID=16973293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23458386A Expired - Fee Related JP2656476B2 (en) 1986-10-03 1986-10-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2656476B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758472B2 (en) * 1990-01-11 1998-05-28 三菱電機株式会社 Light modulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285227A (en) * 1985-10-09 1987-04-18 Tokyo Inst Of Technol Optical circuit function element

Also Published As

Publication number Publication date
JPS6390180A (en) 1988-04-21

Similar Documents

Publication Publication Date Title
JP2942285B2 (en) Semiconductor light receiving element
JPS62190780A (en) Phototransistor
Odoh et al. A review of semiconductor quantum well devices
US4904859A (en) Self electrooptic effect device employing asymmetric quantum wells
US5210428A (en) Semiconductor device having shallow quantum well region
JPH0821727B2 (en) Avalanche photodiode
US5608230A (en) Strained superlattice semiconductor photodetector having a side contact structure
JPH08111541A (en) Semiconductor device
JP2656476B2 (en) Semiconductor device
JPH0493088A (en) Avalanche photodiode
US4729004A (en) Semiconductor photo device
JPH08274366A (en) Semiconductor light receiving device
US5130690A (en) Photoconductor
CA1182200A (en) High sensitivity photon feedback photodetectors
JPH0473310B2 (en)
JP2712724B2 (en) Quantum well structure
JP2962069B2 (en) Waveguide structure semiconductor photodetector
JPS59107588A (en) Optical semiconductor device
US5539762A (en) Article comprising a semiconductor laser with carrier stopper layer
JP2000124493A (en) Semiconductor light receiving element
JPH06204549A (en) Waveguide type photodetector, manufacture thereof and driving method thereof
JP4158866B2 (en) Variable sensitivity waveguide type semiconductor light receiving element
JPS6225484A (en) Semiconductor laser element
JPS6130085A (en) Photoconductivity detecting element
JPH07131116A (en) Semiconductor laser element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees