JPH043012A - Method for driving semiconductor optical device - Google Patents

Method for driving semiconductor optical device

Info

Publication number
JPH043012A
JPH043012A JP10458190A JP10458190A JPH043012A JP H043012 A JPH043012 A JP H043012A JP 10458190 A JP10458190 A JP 10458190A JP 10458190 A JP10458190 A JP 10458190A JP H043012 A JPH043012 A JP H043012A
Authority
JP
Japan
Prior art keywords
light
quantum well
electric field
well layer
semiconductor quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10458190A
Other languages
Japanese (ja)
Other versions
JP2908511B2 (en
Inventor
Shunji Nojima
野島 俊司
Osamu Mitomi
三富 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2104581A priority Critical patent/JP2908511B2/en
Publication of JPH043012A publication Critical patent/JPH043012A/en
Application granted granted Critical
Publication of JP2908511B2 publication Critical patent/JP2908511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enhance the performance of the optical device by adjusting the width of semiconductor quantum well layers thereby setting the light absorption end by the excitons based on the light holes in the semiconductor quantum well layers near an operating wavelength. CONSTITUTION:The light absorption end by the excitons based on the light holes in the semiconductor quantum well layers 3 is set near the operating wavelength by adjusting the width of the quantum well layers. A change in the absorption coefft. of the semiconductor quantum well layers 3 arising from the impression of voltage between two electrodes 5 and 6 and the control of light by a change in refractive index is executed with respect to the light having the electric field component perpendicular to the semiconductor quantum well layers 3. Namely, this device is driven by utilizing the electric field shift effect at the exciton resonance absorption end by the light holes when TM polarized light is made incident. The performance of the semiconductor device is enhanced in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光変調器、光スィッチ等の半導体光デバイス
の駆動方法に関し、半導体量子井戸構造において、量子
井戸層に垂直な電界成分をもつ光を入射し、かつ動作波
長の近傍に軽い正孔による励起子共鳴吸収端を設定する
ことにより、当該デバイスの高変調度、低電圧動作等の
性能向上を図るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for driving semiconductor optical devices such as optical modulators and optical switches, and relates to a method for driving semiconductor optical devices such as optical modulators and optical switches. By inputting light and setting an exciton resonance absorption edge due to light holes in the vicinity of the operating wavelength, it is possible to improve the performance of the device, such as high modulation degree and low voltage operation.

〔従来の技術〕[Conventional technology]

半導体への光照射により発生する電子および正札はクー
ロン引力により結合し励起子を形成する。
Electrons generated by light irradiation on the semiconductor and the regular tag combine by Coulomb attraction to form excitons.

この励起子が量子井戸内で形成されると障壁層の高いポ
テンシャルのために強い束縛状態を生し、励起子は室温
でも安定に存在するようになる。この室温励起子はこれ
まで次のように利用されてきた。第6図(a)はこの励
起子に伴う量子井戸層に平行な電界成分をもつTE偏光
光に対する吸収係数スペクトラムである。この吸収係数
スペクトラムは外部電界により低エネルギ側にシフトす
る(量子閉じ込めシュタルク効果という)。たとえば入
射光の波長を図中のλ1とすると、電界印加後の光吸収
ピーク波長がλ1に一致するようにデバイス構造パラメ
ータを設定すれば、電界により光強度を制御しうる光強
度変調器を構成することができる。第6図(b)にデバ
イス構造を同図(C)にその変調特性を示す。すなわち
この場合、電界を印加した時の光吸収ピーク波長を、量
子井戸層幅を調節して動作波長λ1に設定することによ
り大きな0n10ff比(第6図(C))を得ることが
できる。第6図(alに示すように一般に励起子吸収ス
ペクトラムは2つのピークより成っている。低エネルギ
側のピークは重い正孔と電子により構成される励起子(
Heavy−Hole:HHと略記)に対応し、一方高
エネルギ側の励起子は軽い正孔と電子により構成される
励起子(Light−Hole:Lt(と略記)に対す
る。従来技術ではこのうちHHに起因する光吸収端の電
界変化を利用してきた。このHH吸収の利用は、半導体
レーザからの出射光がTE偏光光であることを想定して
いる。
When these excitons are formed within the quantum well, they create a strongly bound state due to the high potential of the barrier layer, and the excitons become stable even at room temperature. These room-temperature excitons have been used in the following ways. FIG. 6(a) is an absorption coefficient spectrum for TE polarized light having an electric field component parallel to the quantum well layer accompanying this exciton. This absorption coefficient spectrum is shifted to the lower energy side by an external electric field (referred to as the quantum confined Stark effect). For example, if the wavelength of the incident light is λ1 in the figure, if the device structure parameters are set so that the light absorption peak wavelength after applying an electric field matches λ1, a light intensity modulator that can control the light intensity by the electric field can be configured. can do. FIG. 6(b) shows the device structure, and FIG. 6(C) shows its modulation characteristics. That is, in this case, a large On10ff ratio (FIG. 6(C)) can be obtained by setting the optical absorption peak wavelength when an electric field is applied to the operating wavelength λ1 by adjusting the quantum well layer width. As shown in Figure 6 (al), the exciton absorption spectrum generally consists of two peaks. The peak on the lower energy side is the exciton (
The exciton on the high energy side corresponds to the exciton (Lt) (abbreviated as Heavy-Hole: HH), which is composed of light holes and electrons. The electric field change at the optical absorption edge caused by this has been utilized.The utilization of this HH absorption assumes that the light emitted from the semiconductor laser is TE polarized light.

(発明が解決しようとする課題〕 上述した、従来のTE偏光光入射にもとづく重い正札に
よる励起子吸収を用いた駆動方法では光変調器、光スィ
ッチ等の励起子利用光デバイスの高変調度、低電圧動作
等の高性能化が十分に達成できないという問題点があっ
た。実際、TE偏光光入射にこだわる必要はなく、もう
ひとつの量子井戸層に垂直な電界成分をもつ7M偏光光
の入射にもとすく駆動方法により光デバイスの高性能化
が実現できれば後者の利用価値の方が高くなる。
(Problems to be Solved by the Invention) The conventional driving method using exciton absorption by a heavy tag based on the incidence of TE polarized light as described above has a high modulation degree of exciton-based optical devices such as optical modulators and optical switches. There was a problem that high performance such as low voltage operation could not be achieved sufficiently.In fact, there is no need to insist on the incidence of TE polarized light; instead, it is possible to input 7M polarized light with an electric field component perpendicular to the other quantum well layer. If it is possible to improve the performance of optical devices by using a driving method, the latter method will have higher utility value.

しかしこれまで、7M偏光光を用いた励起子利用光デバ
イスの高性能化の提案はなかった。
However, until now, there has been no proposal to improve the performance of exciton-based optical devices using 7M polarized light.

本発明は、従来の問題を解決するため半導体量子井戸構
造において、7M偏光光を入射した場合の軽い正孔によ
る励起子共鳴吸収端の電界シフト効果を利用した駆動方
法を用いることで当該構造を有する半導体デバイスの高
性能化を図ることを目的とする。
In order to solve the conventional problems, the present invention has developed a semiconductor quantum well structure by using a driving method that utilizes the electric field shift effect of the exciton resonance absorption edge due to light holes when 7M polarized light is incident. The purpose of this research is to improve the performance of semiconductor devices.

〔課題を解決するための手段) 上記目的を達成するため、本発明による半導体光デバイ
スの駆動方法では、半導体量子井戸層と、該半導体量子
井戸層に電界を印加させるべく設置された二つの電極を
有する構造において、量子井戸層幅を調整することで、
前記半導体量子井戸層中の軽い正札に基づく励起子によ
る光吸収端を与えられた動作波長の近傍に設定し、前記
二つの電極間への電圧印加に伴う前記半導体量子井戸層
の吸収係数変化もしくは屈折率変化による光の制御を前
記半導体量子井戸層に垂直な電界成分をもつ光に対して
行うことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, a method for driving a semiconductor optical device according to the present invention includes a semiconductor quantum well layer and two electrodes installed to apply an electric field to the semiconductor quantum well layer. By adjusting the quantum well layer width in a structure with
The light absorption edge due to excitons based on the light weight in the semiconductor quantum well layer is set near a given operating wavelength, and the absorption coefficient of the semiconductor quantum well layer changes with the application of voltage between the two electrodes. The present invention is characterized in that light having an electric field component perpendicular to the semiconductor quantum well layer is controlled by changing the refractive index.

〔発明の原理及び作用〕[Principle and operation of the invention]

量子井戸における励起子共鳴吸収の吸収端近傍では、2
つの吸収ピーク(HHおよびLH)が光変調器、光スィ
ッチ等への応用を考えると、重要である。光遷移過程の
理論検討から、これらの励起子による光吸収係数は遷移
の行列要素を通して照射光の偏光方向に強く依存する。
Near the absorption edge of exciton resonance absorption in a quantum well, 2
The two absorption peaks (HH and LH) are important when considering applications to optical modulators, optical switches, etc. From the theoretical study of the optical transition process, the optical absorption coefficient due to these excitons strongly depends on the polarization direction of the irradiated light through the transition matrix elements.

第1図(a)は遷移の行列要素の二乗M2の偏光方向依
存性を示す。
FIG. 1(a) shows the dependence of the square M2 of the transition matrix element on the polarization direction.

角度θは偏光方向が量子井戸に垂直な方向となす角度で
ある。Mtはθ=906のHHO値を1として表してい
る。TEモード光(θ=90’ )ではLHのM2はH
Hのそれの1/3倍となっている。
The angle θ is the angle that the polarization direction makes with the direction perpendicular to the quantum well. Mt is expressed with the HHO value of θ=906 as 1. In TE mode light (θ=90'), M2 of LH is H
It is 1/3 times that of H.

これに対して7Mモード光(θ=0°)ではLHのM2
は4/3倍に増加し、しかもHHのM2は0となる。と
ころで、吸収係数ピークα9は次式%式% ここにAは材料に固をの定数、aは励起子半径(電子・
正孔間の平均距離)、「は吸収のエネルギ線幅である。
On the other hand, in 7M mode light (θ=0°), M2 of LH
increases by 4/3 times, and M2 of HH becomes 0. By the way, the absorption coefficient peak α9 is expressed by the following formula % where A is a constant specific to the material and a is the exciton radius (electron/
average distance between holes), is the energy linewidth of absorption.

第1図(a)のようなθ依存性のためにTE偏光に対す
る吸収係数スペクトラムは第1図(b)のようになる。
Due to the θ dependence as shown in FIG. 1(a), the absorption coefficient spectrum for TE polarized light becomes as shown in FIG. 1(b).

即ちTE偏光に対して観測されていたHHは7M偏光で
は消滅し、代りにLHはHHよりも大きな吸収係数のピ
ーク値を示す。
That is, the HH observed for TE polarized light disappears for 7M polarized light, and instead, LH shows a peak value of absorption coefficient larger than HH.

よって、この7M偏光と増強されたLH吸収を組合せる
ことによって、光デバイスの性能向上を実現できるよう
になる。この組合せ(TM光とLH吸収)を用いる利点
は、上記M2の増強の他にも幾つかある。以下これにつ
いて説明する。
Therefore, by combining this 7M polarized light and enhanced LH absorption, it becomes possible to improve the performance of optical devices. There are several advantages of using this combination (TM light and LH absorption) in addition to the above-mentioned enhancement of M2. This will be explained below.

第1図(b)より明らかなようにLH吸収端はHH吸収
端よりも高エネルギ側にある。従っである動作波長、例
えば光フアイバ通信波長1.55μmが与えられた時、
TM光/LH吸収端を用いる場合(以後これをTM動作
と呼ぶ)にはTE光/f(H吸収端を用いる場合(TE
動作)と異なった量子井戸構造をデバイスにもたせなけ
ればならない。
As is clear from FIG. 1(b), the LH absorption edge is on the higher energy side than the HH absorption edge. Therefore, given a certain operating wavelength, for example an optical fiber communication wavelength of 1.55 μm,
When using the TM light/LH absorption edge (hereinafter referred to as TM operation), the TE light/f (when using the H absorption edge (TE
The device must have a quantum well structure that differs from its operation (operation).

これは量子井戸層の幅りをLTM>LTEとして、量子
準位を下げることによって実現する。デバイスをTM動
作させるためにこのように井戸層幅を増加することは、
次のような優れた効果をもたらす((1)および(ii
))。TM動作をTE動作と比較した場合のその他の利
点(上記したM2増強(iv)を含む)も併せて以下に
記す。
This is achieved by setting the width of the quantum well layer to LTM>LTE and lowering the quantum level. Increasing the well layer width in this way for TM operation of the device
It brings about the following excellent effects ((1) and (ii)
)). Other advantages of TM operation compared to TE operation (including the M2 enhancement (iv) discussed above) are also described below.

(i)井戸層幅が大きいほど吸収のエネルギ線幅Fは小
さくなるため吸収端はシャープになり同時に弐(1)に
よって吸収ビークα2は増加する。「の減少およびα、
の増加は大きなon10ff比をもたらす。
(i) The larger the well layer width, the smaller the absorption energy line width F becomes, so the absorption edge becomes sharper, and at the same time, the absorption peak α2 increases due to 2(1). ``decrease in and α,
An increase in will result in a large on10ff ratio.

(ii)井戸層幅が大きいほど電界印加に伴うピークの
位置のシフトは大きくなり低電界動作が可能になる。
(ii) The larger the well layer width, the larger the shift in the peak position due to the application of an electric field, which enables low electric field operation.

(山)励起子半径aはLHとHHとではaLHくaHH
であるため式(1)によってLHを利用する方がα2は
大きくなる。
(Mountain) The exciton radius a is aLH × aHH for LH and HH.
Therefore, α2 becomes larger when LH is used according to equation (1).

(iv)TM動作時のM2の増強によるα2の増加。(iv) Increase in α2 due to enhancement of M2 during TM operation.

[実施例:・ 以下に本発明の実施例を図面を用いて詳細に説明する。[Example:· Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図(a)により、第1の実施例であるInGaAs
/fnAIAs量子井戸構造を用いた光強度変調器に対
する駆動方法を説明する。第2図(a)に示す光強度変
調器は以下のようにして製作される。まず、分子線エピ
タキシャル法によりn型1nP基板1上にn゛型InG
aAs層2を成長する。この上にすでに述べた井戸層幅
101 人1障壁層幅100人を有するアンドープIn
GaAs/InAlAs量子井戸層3を成長し次にp°
型1nGaAs−層4を成長した後、図のように加工し
電極金属5および6を取り付ける。このように製作され
た素子の電極5−6間に逆バイアスを印加すると量子井
戸N3に電界が印加され、第2[m(b)に示すように
この領域の吸収係数が変化する。ここで、TE動作に関
しては、電界F=160 kV・crrV’が印加され
た時HH吸収ピーク位置が動作波長λ、 =  1.5
5μmと一致するように井戸層幅L−76人を決めた。
As shown in FIG. 2(a), the InGaAs of the first embodiment
A driving method for an optical intensity modulator using a /fnAIAs quantum well structure will be described. The optical intensity modulator shown in FIG. 2(a) is manufactured as follows. First, by molecular beam epitaxial method, n-type InG was deposited on an n-type 1nP substrate 1.
Grow aAs layer 2. On top of this, an undoped In with a well layer width of 101 layers and a barrier layer width of 100 layers as described above.
GaAs/InAlAs quantum well layer 3 is grown and then p°
After growing the type 1nGaAs layer 4, it is processed as shown in the figure and electrode metals 5 and 6 are attached. When a reverse bias is applied between the electrodes 5 and 6 of the device manufactured in this manner, an electric field is applied to the quantum well N3, and the absorption coefficient of this region changes as shown in the second [m(b)]. Here, regarding TE operation, when electric field F = 160 kV crrV' is applied, the HH absorption peak position is at the operating wavelength λ, = 1.5
The well layer width L-76 was determined to match 5 μm.

図には破線でF=Oおよび160 kV −an−’に
対する吸収係数スペクトラムα(F)が記しである。
In the figure, the absorption coefficient spectrum α(F) for F=O and 160 kV −an−′ is indicated by a broken line.

TM動作に関しては、電界F=120kV  −c+n
−’が印加された時LH吸収ピーク位置が動作波長zI
=  1.55μmと一致するように井戸層幅L=10
1人を決めた。第2図(b)には実線でF=Oおよび1
20 kV−11に対する吸収係数スペクトラムα(F
)が記しである。動作波長λ、においてα□1(F)と
α0(F)を比較するとα7M(120)=1゜37X
10’cm−’> αtt(160) =0.67X1
0’cm−’であり、またaTl、I(0) =20c
m−’<αyE(0) =35cmとTM動作の方が有
利な結果となる。しかもTM動作の方が低電界(120
kVゴ「1)でこれを実現している。
For TM operation, electric field F=120kV -c+n
-' is applied, the LH absorption peak position is at the operating wavelength zI
Well layer width L = 10 to match = 1.55 μm
I decided on one person. In Fig. 2(b), solid lines indicate F=O and 1.
Absorption coefficient spectrum α (F
) is the notation. Comparing α□1(F) and α0(F) at the operating wavelength λ, α7M(120)=1°37X
10'cm-'> αtt(160) =0.67X1
0'cm-' and aTl, I(0) = 20c
m-'<αyE(0) = 35 cm, and the TM operation has a more advantageous result. Moreover, TM operation has a lower electric field (120
This is achieved with kVgo ``1).

ただし、TM動作の方が大きな井戸幅L (101人)
を用いているので動作電圧で比較した場合には、優劣は
これだけから分らない。そこで、つぎのような性能指数
を導入する。
However, TM operation has a larger well width L (101 people)
is used, so when comparing operating voltages, it is not possible to determine superiority or inferiority from this alone. Therefore, we introduce the following performance index.

ζ−(α (F)  −α (0))/α (0)/(
F(L+W))    (2) ここにWは障壁層幅である。弐(2)中αに関係した項
は電界印加に伴う吸収係数の変化の効率を表しこれが大
きいほど高性能といえる。F (L+W)は1周期に印
加される電圧に対応しておりこれは小さいことが望まし
い。W = 100人としてζを見積もってみるとぐ1
.4/ζ↑E = 4 、2となり性能指数にして約4
倍の性能向上があることが分かる。
ζ−(α (F) −α (0))/α (0)/(
F(L+W)) (2) Here, W is the barrier layer width. The term related to α in (2) represents the efficiency of change in the absorption coefficient due to the application of an electric field, and the larger this value, the higher the performance. F (L+W) corresponds to the voltage applied in one period, and it is desirable that this is small. If we estimate ζ assuming W = 100 people, we get 1
.. 4/ζ↑E = 4, 2, which makes the figure of merit approximately 4
It can be seen that the performance is doubled.

波長1.55μmのTM入射光7の強度を一定とした時
の出射光8の強度の時間変化を第2図(c)に示す。印
加する電界に応して出射光強度が変調をうけているのが
分る。従来のTE動作型(井戸層幅76人)と比較する
とTM動作型では変調の効率η= (11−Io) /
l+が約2倍となることが分る。
FIG. 2(c) shows the temporal change in the intensity of the emitted light 8 when the intensity of the TM incident light 7 with a wavelength of 1.55 μm is kept constant. It can be seen that the intensity of the emitted light is modulated depending on the applied electric field. Compared to the conventional TE operation type (well layer width of 76 people), the modulation efficiency of the TM operation type is η = (11-Io) /
It can be seen that l+ is approximately doubled.

第3図(a)は、第2の実施例である光位相変調器の駆
動方法を説明する図である。同図に示す位相変調器の製
作方法は第1の実施例で用いた光強度変調器と同様であ
るが、井戸層幅はTE動作およびTM動作に対しそれぞ
れ、64人および83人である。このように製作された
素子は以下のようにして動作する。波長1.55μmの
TM入射光7は量子井戸領域を!遇する際電界印加に伴
う屈折率の変化をうけてその位相を変化する。このとき
、屈折率変化が大きいことが望ましいが、光は電界印加
前後の媒質中を伝搬するので、電界印加前後での吸収係
数が非常に小さいことが要求される。電界=0では吸収
係数が小さいことは明らかなので、電界印加後の吸収係
数の値が問題となる。
FIG. 3(a) is a diagram illustrating a method for driving an optical phase modulator according to a second embodiment. The manufacturing method of the phase modulator shown in the figure is the same as that of the optical intensity modulator used in the first embodiment, but the well layer widths are 64 and 83 for the TE operation and TM operation, respectively. The device thus fabricated operates as follows. TM incident light 7 with a wavelength of 1.55 μm enters the quantum well region! When an electric field is applied, the phase changes due to changes in the refractive index caused by the application of an electric field. At this time, it is desirable that the refractive index change is large, but since light propagates in the medium before and after the electric field is applied, it is required that the absorption coefficient before and after the electric field is applied is very small. Since it is clear that the absorption coefficient is small when the electric field is 0, the value of the absorption coefficient after application of the electric field becomes a problem.

そこで、電界160 kV −cm−’を印加した場合
の動作波長λ+、=1.55μmでの吸収係数が100
 c「(比較的小さな値)となるよう上記の井戸層幅(
TEおよびTM動作に対してそれぞれ64人および83
人)を決めた。第3図(b)はこのような井戸層幅の量
子井戸構造における電界印加による屈折率変化スペクト
ラムΔn (F)を記している。屈折率は吸収係数をク
ラマース・クローニッヒ変換することによって得られる
ので、第2図(b)と同様に屈折率の増強効果がある。
Therefore, when an electric field of 160 kV-cm-' is applied, the absorption coefficient at the operating wavelength λ+ = 1.55 μm is 100
The above well layer width (
64 and 83 for TE and TM operations, respectively.
person) was decided. FIG. 3(b) shows the refractive index change spectrum Δn (F) due to application of an electric field in a quantum well structure having such a well layer width. Since the refractive index is obtained by subjecting the absorption coefficient to Kramers-Kronig transformation, there is an effect of enhancing the refractive index as in FIG. 2(b).

図より明らかなようにλ1において1Δnter(16
0)  l =1.72X10−”>Δn TE(16
0)  l =0.737 X 10−”とTM動作の
方が有利な結果となる。
As is clear from the figure, 1Δnter(16
0) l = 1.72X10-”>ΔnTE(16
0) l =0.737 x 10-'', the TM operation has a more advantageous result.

ただし、TM動作の方が大きな井戸幅L(83人)を用
いているので動作電圧における優劣はこれだけからは分
らない。そこでつぎのような性能指数を導入する。
However, since the TM operation uses a larger well width L (83 wells), the superiority or inferiority of the operating voltage cannot be determined from this alone. Therefore, we introduce the following performance index.

η=1Δn (F)i/α(F)/ (F (L+W) )  (3) ここにWは障壁層幅である。式(3)中1Δn(F)1
が大きいほど高性能といえる。α(F)は電界印加後の
吸収係数、またF (L+W)は1周期に印加される電
圧に対応しており、これらは小さいことが望ましい。W
=100人としてηを見積もってみるとη0.4/ηt
t=2.3となり性能指数にして約2倍の性能向上があ
ることが分る。
η=1Δn (F)i/α(F)/(F(L+W)) (3) where W is the barrier layer width. 1Δn(F)1 in formula (3)
It can be said that the larger the value, the higher the performance. α(F) corresponds to the absorption coefficient after application of an electric field, and F (L+W) corresponds to the voltage applied in one cycle, and these are preferably small. W
Estimating η assuming = 100 people, η0.4/ηt
It can be seen that t=2.3, which means that the performance index is about twice as good.

第3図(c)は電界印加に伴う出射光の位相の変化を示
している。TM動作では第3図(b)の結果を反映して
同一駆動電圧に対して約2倍の位相変化が観測されてい
る。
FIG. 3(c) shows a change in the phase of the emitted light due to the application of an electric field. In the TM operation, a phase change approximately twice as large as that for the same driving voltage is observed, reflecting the results shown in FIG. 3(b).

第4図(a)は、第3の実施例である交差導波路型光ス
イッチの駆動方法を説明する図である。同図に示す光ス
ィッチは以下のような手順で製作される。まず分子線エ
ピタキシャル法によりn型■nP型基板11上全面に能
動領域の構成要素である井戸層幅113人、障壁層幅1
00人のアンドープInGaAs/InAlAs多重量
子井戸層12aおよびP型InP層12bを結晶成長さ
せた後、この矩形の能動領域12のみを残してメサエッ
チする。さらにその上全面に受動領域14の構成要素で
ある他の半導体材料(n型1nP層)を結晶成長し、次
にこの成長層を受動領域14を残すように交差型にメサ
エッチした復電極付して素子を完成する。
FIG. 4(a) is a diagram illustrating a method for driving a crossed waveguide type optical switch according to the third embodiment. The optical switch shown in the figure is manufactured by the following procedure. First, by molecular beam epitaxial method, a well layer, which is a component of the active region, has a width of 113 layers and a barrier layer has a width of 1 layer on the entire surface of an n-type and nP-type substrate 11.
After crystal growth of the undoped InGaAs/InAlAs multiple quantum well layer 12a and the P-type InP layer 12b, mesa etching is performed leaving only the rectangular active region 12. Furthermore, another semiconductor material (n-type 1nP layer) which is a component of the passive region 14 is crystal-grown on the entire surface, and then this grown layer is mesa-etched in a cross-shaped manner so as to leave the passive region 14 with a restoring electrode. to complete the element.

このように製作された素子は以下のようにして動作する
。光入射ボー)PIから入射したTM入射光7は受動領
域14−3中を導波し能動領域12aに達する。能動領
域12aに電圧が印加されていない時光はこの領域を素
通りし受動領域14−2中を導波されて光出射ボートP
2に達する。能動領域12に設けられた電橋金属13.
13に電圧を印加すると、この領域の屈折率が変化し、
光は能動領域12と受動領域14の交差部との界面で全
反射を起こし、今度は受動領域14−1中を導波し、光
出射ボートP3に達する。ただし、電圧印加後の屈折率
値に対して全反射が起きるように受動領域14の交差角
が決められている。即ち、光入射ボー1−Plから入射
した波長1.55μmの光は電界の印加に応じて光出射
ボートP2および光出射ボー1−P3に振り分けられ光
スィッチを構成する。
The device thus fabricated operates as follows. TM incident light 7 incident from the PI is guided through the passive region 14-3 and reaches the active region 12a. When no voltage is applied to the active region 12a, light passes through this region and is guided through the passive region 14-2 to the light output boat P.
Reach 2. Bridge metal 13 provided in the active region 12.
When a voltage is applied to 13, the refractive index of this region changes,
The light undergoes total reflection at the interface between the active region 12 and the passive region 14, and is now guided through the passive region 14-1, reaching the light output boat P3. However, the crossing angle of the passive region 14 is determined so that total reflection occurs for the refractive index value after voltage application. That is, the light having a wavelength of 1.55 μm that is incident from the light input port 1-Pl is distributed to the light output port P2 and the light output port 1-P3 according to the application of an electric field, thereby forming an optical switch.

上記の電界印加による能動領域12の屈折率変化につい
て第5図を用いて説明する。TE動作に関しては、電界
F =160 kV −cm−’カ印加すレタ時、HH
による屈折率変化ピーク位置が動作波長λ。
The change in the refractive index of the active region 12 due to the above electric field application will be explained using FIG. 5. Regarding TE operation, when applying an electric field F = 160 kV -cm-', HH
The peak position of the refractive index change due to the operating wavelength λ.

=1.55μmと一致するように井戸層幅L=88人を
決めた。図には破線でF =160 kV −am−’
に対する屈折率変化スペクトラムΔn (F)が記しで
ある。
The well layer width L=88 was determined so as to match L=1.55 μm. In the figure, the broken line indicates F = 160 kV -am-'
The refractive index change spectrum Δn (F) for

TM動作に関しては、電界F =sokv −clm−
’が印加された時、LHによる屈折率変化ピーク位置が
動作波長λI =1.55μmと一致するように井戸層
幅L=113人を決めた。図には実線でF =80kV
・Cm−’に対する屈折率変化スペクトラムΔn(F)
が記しである。動作波長λ、においてΔnTjl(F)
とΔnti(F)を比較すると1Δn T、4(80)
=0.343> lΔnt、(160) l =0.1
96とTM動作の方が有利な結果となる。しかもTM動
作の方が低電界(80にν・cs −’ )でこれを実
現している。
For TM operation, the electric field F = sokv −clm−
The well layer width L=113 was determined so that the peak position of the refractive index change due to LH coincides with the operating wavelength λI=1.55 μm when ' is applied. In the figure, the solid line indicates F = 80kV
・Refractive index change spectrum Δn(F) for Cm-'
is the notation. ΔnTjl(F) at operating wavelength λ,
Comparing Δnti(F), 1Δn T, 4(80)
=0.343> lΔnt, (160) l =0.1
96 and TM operation have more advantageous results. Moreover, the TM operation achieves this with a lower electric field (80 to ν·cs −').

ただし、TM動作の方が大きな井戸幅L (113人)
を用いているので動作電圧で比較した場合には、優劣は
これだけからは分からない。そこで、つぎのような性能
指数を導入する。
However, TM operation has a larger well width L (113 people)
is used, so when comparing operating voltages, superiority or inferiority cannot be determined from this alone. Therefore, we introduce the following performance index.

ζ=IΔn (F)  l / (F (L+W) )
 (4)ここに、Wは障壁層幅である。式(4)中1Δ
n(F)lが大きいほど高性能といえる。F (L+W
)は、1周期に印加される電圧に対応しており、これは
小さいことが望ましい。W=100人としてζを見積も
ってみるとぐア、4/ζアt=3.1となり性能指数に
して約3倍の性能向上があることが分る。
ζ=IΔn (F) l / (F (L+W))
(4) Here, W is the barrier layer width. 1Δ in formula (4)
It can be said that the larger n(F)l is, the higher the performance is. F (L+W
) corresponds to the voltage applied in one period, which is preferably small. When we estimate ζ assuming W=100 people, we get 4/ζ at=3.1, which means that the performance index is about 3 times better.

第4図(b)は光出射ポートP3において観測した出射
光強度の電界による変化を表している。TM動作を従来
のTE動作と比較してみると大きな屈折率変化を反映し
て大きな出射光強度変化が観測される。また屈折率変化
が大きいため2つの導波路の交差角は従来より大きくと
ることが可能であり、素子製作上の便宜が増加するとい
う利点である。
FIG. 4(b) shows the change in the intensity of the emitted light observed at the light emitting port P3 due to the electric field. When TM operation is compared with conventional TE operation, a large change in output light intensity is observed reflecting a large change in refractive index. Furthermore, since the refractive index change is large, the intersection angle between the two waveguides can be made larger than in the past, which has the advantage of increasing the convenience in manufacturing the device.

以上3つの実施例をInGaAs/InAlAs量子井
戸を例にとって説明したが、本発明は他の半導体材料系
に対しても同様に通用することができる。
Although the above three embodiments have been described using InGaAs/InAlAs quantum wells as an example, the present invention can be similarly applied to other semiconductor material systems.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は半導体量子井戸において
、従来から実施されていた重い正孔による励起子共鳴吸
収端のTE偏光に対する電界効果ではなく、軽い正孔に
よる励起子共鳴吸収端のTM偏光に対する電界効果を利
用する半導体光デバイスの駆動方法であるから、軽い正
孔の励起子に特有の優れた効果によって吸収係数および
屈折率の大きな電界シフトを得ることが可能であり、よ
って本方法による励起子を利用した光変調器および光ス
ィッチ等の光デバイスにおいて大きな変調効率を得るこ
とができるという利点がある。
As explained above, in a semiconductor quantum well, the present invention is based on the TM polarization of the exciton resonance absorption edge due to light holes, rather than the conventional electric field effect on TE polarization of the exciton resonance absorption edge due to heavy holes. Since this is a driving method for semiconductor optical devices that utilizes the electric field effect on light holes, it is possible to obtain a large electric field shift in the absorption coefficient and refractive index due to the excellent effect unique to light hole excitons. There is an advantage that large modulation efficiency can be obtained in optical devices such as optical modulators and optical switches that utilize excitons.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は本発明の詳細な説明するための
図であり、第1図(a)は光遷移の行列要素の二乗(M
2)の偏光方向依存性を示す図、第1図(b)はTE偏
光およびTM偏光に対する吸収係数スペクトラムを示す
図、 第2図(a) (b) (c)は第1の実施例を説明す
る図であり、第2図(a)は光強度変調器の構造とその
駆動方法を示す図、第2図(b)はTE動作およびTM
動作に対応する2つの量子井戸(井戸層幅はそれぞれ7
6人および101人)に対する吸収係数スペクトラムと
その電界による変化の様子を示す図、第2図(c)は変
調特性を示す図、 第3図(a) (b) (c)は第2の実施例を説明す
る図であり、第3図(a)は光位相変調器の構造とその
駆動方法を示す図、第3図(b)はTE動作およびTM
動作に対応する2つの量子井戸(井戸層幅はそれぞれ6
4人および83人)に対する屈折率の電界による変化を
示す図、第3図(c)は変調特性を示す図、 第4図(a) (b) 、第5図は第3の実施例を説明
する図であり、第4図(a)は光スィッチの構造とその
駆動方法を示す図、第4図(b)はスイッチ特性を示す
図、第5図はTE動作およびTM動作に対応する2つの
量子井戸(井戸層幅はそれぞれ88人および113人)
に対する屈折率の電界による変化を示す図、 第6図(a) (b) (c)は従来の技術である重い
正孔の励起子による吸収端とTE偏光光を用いた光強度
変調器の駆動方法を説明する図であり、第6図(a)は
TE偏光光に対する吸収係数スペクトラムとその電界に
よる変化を示す図、第6図(b)は光強度変調器の構造
とその駆動方法を示す図、および第6図(C)は電界に
よる透過光の制御を示す図である。 1・・・・・・n−1nP基板 2−− n ” −1nGaAs 3・・・・・・アンドープInGaAs/In^IAs
量子井戸層4−−・−p ” −1nGaAs 5・・・・・・電極金属 6・・・・・・電極金属 7・・・・・・TM入射光 8・・・・・・出射光 9・・・・・・TE入射光 10・・・・・・出射光 Pl・・・・・・光入射ボート P2・・・・・・光出射ボート P3・・・・・・光出射ボート P4・・・・・・光ボート 11  ・・・・・・n−rnP基板 12  ・・・・・・能動領域 13  ・・・・・・電極金属 14  ・・・・・・受動領域
FIGS. 1(a) and 1(b) are diagrams for explaining the present invention in detail, and FIG. 1(a) shows the square of the matrix element of optical transition (M
Figure 1(b) is a diagram showing the absorption coefficient spectrum for TE polarized light and TM polarized light. Figure 2(a), (b), and (c) are diagrams showing the polarization direction dependence of 2). FIG. 2(a) is a diagram showing the structure of the optical intensity modulator and its driving method, and FIG. 2(b) is a diagram showing the TE operation and TM operation.
Two quantum wells (each well layer width is 7 mm) correspond to the operation.
Figure 2 (c) is a diagram showing the modulation characteristics, Figure 3 (a) (b) (c) is a diagram showing the absorption coefficient spectrum for 6 people and 101 people) and how it changes due to the electric field. 3(a) is a diagram illustrating the structure of an optical phase modulator and its driving method, and FIG. 3(b) is a diagram illustrating the TE operation and TM operation.
Two quantum wells corresponding to the operation (each well layer width is 6
Figure 3 (c) is a diagram showing the modulation characteristics, Figures 4 (a) and (b), and Figure 5 are diagrams showing the change in refractive index due to the electric field for 4 people and 83 people. FIG. 4(a) is a diagram showing the structure of an optical switch and its driving method, FIG. 4(b) is a diagram showing switch characteristics, and FIG. 5 corresponds to TE operation and TM operation. Two quantum wells (well layer widths of 88 and 113, respectively)
Figures 6(a), 6(b), and 6(c) show the changes in the refractive index due to the electric field. Figures 6(a), 6(b), and 6(c) show the conventional technology of an optical intensity modulator using an absorption edge due to the exciton of a heavy hole and TE polarized light. FIG. 6(a) is a diagram showing the absorption coefficient spectrum for TE polarized light and its change due to electric field, and FIG. 6(b) is a diagram explaining the structure of the light intensity modulator and its driving method. This figure and FIG. 6(C) are diagrams showing control of transmitted light by an electric field. 1...n-1nP substrate 2--n''-1nGaAs 3...Undoped InGaAs/In^IAs
Quantum well layer 4 ---p''-1nGaAs 5... Electrode metal 6... Electrode metal 7... TM incident light 8... Outgoing light 9 ...TE incident light 10 ... Output light Pl ... Light input boat P2 ... Light output boat P3 ... Light output boat P4. ..... Optical boat 11 .....n-rnP substrate 12 ..... Active region 13 ..... Electrode metal 14 ..... Passive region

Claims (1)

【特許請求の範囲】[Claims]  半導体量子井戸層と、該半導体量子井戸層に電界を印
加させるべく設置された二つの電極を有する構造におい
て、半導体量子井戸層幅を調節することで、前記半導体
量子井戸層中の軽い正孔に基づく励起子による光吸収端
を与えられた動作波長の近傍に設定し、前記二つの電極
間への電圧印加に伴う前記半導体量子井戸層の吸収係数
変化もしくは屈折率変化による光の制御を前記半導体量
子井戸層に垂直な電界成分をもつ光に対して行うことを
特徴とする半導体光デバイスの駆動方法。
In a structure having a semiconductor quantum well layer and two electrodes installed to apply an electric field to the semiconductor quantum well layer, by adjusting the width of the semiconductor quantum well layer, light holes in the semiconductor quantum well layer can be The light absorption edge due to excitons based on the semiconductor quantum well layer is set in the vicinity of a given operating wavelength, and the light is controlled by a change in the absorption coefficient or a change in the refractive index of the semiconductor quantum well layer due to the application of a voltage between the two electrodes. A method for driving a semiconductor optical device characterized in that the method is performed using light having an electric field component perpendicular to a quantum well layer.
JP2104581A 1990-04-20 1990-04-20 Driving method of semiconductor optical device Expired - Fee Related JP2908511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104581A JP2908511B2 (en) 1990-04-20 1990-04-20 Driving method of semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104581A JP2908511B2 (en) 1990-04-20 1990-04-20 Driving method of semiconductor optical device

Publications (2)

Publication Number Publication Date
JPH043012A true JPH043012A (en) 1992-01-08
JP2908511B2 JP2908511B2 (en) 1999-06-21

Family

ID=14384403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104581A Expired - Fee Related JP2908511B2 (en) 1990-04-20 1990-04-20 Driving method of semiconductor optical device

Country Status (1)

Country Link
JP (1) JP2908511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528178B2 (en) 2012-07-24 2016-12-27 Ykk Corporation Fastener element for slide fasteners

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528178B2 (en) 2012-07-24 2016-12-27 Ykk Corporation Fastener element for slide fasteners

Also Published As

Publication number Publication date
JP2908511B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US7263251B2 (en) Optical switch having photonic crystal structure
US5825525A (en) Electro-optic modulator with voltage tunable quantum well waveguide cladding layer
JPH0293523A (en) Nonlinear optical element
US20030138178A1 (en) Light modulation using the Franz-Keldysh effect
JPH02103021A (en) Quantum well optical device
WO1988005555A1 (en) Nipi refractive index modulation apparatus and method
JP3033604B2 (en) Semiconductor optical function device
JP2634825B2 (en) Optical semiconductor device
JPH06125141A (en) Semiconductor quantum well optical element
JPH043012A (en) Method for driving semiconductor optical device
US5249075A (en) Quantum well wave modulator and optical detector
JPS61212823A (en) Optical modulator
Chelles et al. High performance polarization insensitive electroabsorption modulator based on strained GaInAs–AlInAs multiple quantum wells
JPS62284331A (en) Optical modulator
JPS623221A (en) Optical modulator
WO2023238184A1 (en) Optical modulator
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
JP2737821B2 (en) Semiconductor optical function device
WO2021001918A1 (en) Optical modulator
JP3437372B2 (en) Reflective multilayer film for semiconductor spatial light modulator
JP2735274B2 (en) Optical property modulator and optical element
CN117742017A (en) Electroabsorption modulator
JPS63269119A (en) Multiple quantum well structure
JPH02132415A (en) Optical modulator
JPS6358412A (en) Optical switch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees