JPH059011B2 - - Google Patents

Info

Publication number
JPH059011B2
JPH059011B2 JP61103054A JP10305486A JPH059011B2 JP H059011 B2 JPH059011 B2 JP H059011B2 JP 61103054 A JP61103054 A JP 61103054A JP 10305486 A JP10305486 A JP 10305486A JP H059011 B2 JPH059011 B2 JP H059011B2
Authority
JP
Japan
Prior art keywords
refractive index
layer
light
electro
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61103054A
Other languages
Japanese (ja)
Other versions
JPS62260126A (en
Inventor
Masatoshi Suzuki
Yukio Noda
Yukitoshi Kushiro
Shigeyuki Akiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP10305486A priority Critical patent/JPS62260126A/en
Publication of JPS62260126A publication Critical patent/JPS62260126A/en
Publication of JPH059011B2 publication Critical patent/JPH059011B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は光路を切替えるための光スイツチに係
わり、特に半導体レーザと集積化が可能な半導体
光スイツチに関するものである。 (従来技術とその問題点) 光スイツチは光通信システムにおける光路の切
替を行うものであり、光源切替器等に用いられて
いる。特に、全反射型の代表的な光スイツチとし
ては、電気光学効果の大きいLiNbO3等の強誘電
体系材料を用いたものとPLZTセラミツクスを用
いたものがある。しかし、上述の材料系は半導体
レーザと集積化できないため、近年は半導体材料
を用いた光スイツチが注目されている。 半導体材料系を用いた半導体光スイツチには、
外部印加電界によつて生じる電気光学効果による
屈折率変化を利用するものと、電流注入によつて
生ずるキヤリア効果による屈折率変化を利用する
ものとがある。しかし、キヤリア効果を利用した
半導体光スイツチは低電流でも消光比を大きくと
れるものの、キヤリアライフタイムによるスイツ
チング速度に制限があり、数百メガビツト以上で
のスイツチ動作が困難である。 一方電気光学効果による屈折率変化を用いた半
導体光スイツチは、高速スイツチ動作が可能なも
のの同一動作電圧の場合に強誘電体系材料に比べ
て電気光学効果が小さいため、出力端子間のクロ
ストークが増大し消光比が劣化する。このクロス
トークを低減するためには、2つの光導波路層の
交差角を大きくすれば良いが、交差角を大きくす
ると動作電圧が数十Vと高くなつてしまうという
欠点があつた。 以上のように、従来の半導体光スイツチでは、
消光比が大きく、かつ高速のスイツチングを低電
圧で動作させることが困難であつた。従つて、こ
れらの条件を満足する半導体光スイツチが強く望
まれていた。 (発明の目的及び特徴) 本発明は、上述した従来技術の欠点に鑑みなさ
れたもので、消光比が大きくかつ高速のスイツチ
ングを行うことのできる半導体光スイツチを行う
ことのできる半導体光スイツチを提供することを
目的とする。 本発明の特徴は入射光の偏光モード、光反射層
の層厚もしくは禁制帯幅、光の進行方向、基板の
面方位(印加電界の方向)をそれぞれ適切な条件
に定めることにより、光反射層の電気吸収効果に
よる屈折率変化量と電気光学効果による屈折率変
化量とが互いに重畳して屈折率変化量の絶対値を
増大させたことにある。 (発明の原理) GaAsやInP等で代表される化合物半導体は、
バンドギヤツプエネルギーEgより僅かに低いフ
オトンエネルギーhνの入射光に対し、電界を印
加すると電気吸収効果が起こり、吸収係数と屈折
率との双方が変化する。例えば、バンドギヤツプ
エネルギーEgとフオトンエネルギーhνとのエネ
ルギー差ΔEg(=Eg−hν)が20meV〜70meVの
範囲においては、電気吸収効果による屈折率は電
界強度150KV/cm以下では増大し、逆に、エネ
ルギー差ΔEgが20meV以下でかつ電界強度を
150KV/cm以上とすれば減少し、その変化量は
電気光学効果により生ずる屈折率変化量の数倍に
なることが知られている。(T.E.Van Eck et al.
Appl.Phys.Lett.48、pp451〜453、Feb、1986)。 一方、電気光学効果による屈折率は、入射光の
偏波モード、電界の印加方向、入射方向に依存し
て変化する。例えば、InP等の閃亜鉛鉱形の結晶
構造(26面体を有し、点群43m結晶とも呼ばれ
ている)を有する半導体において、入射光の偏波
モードがTE波、電界の印加方向を<100>結晶軸
に平行にし、入射光の進行方向が<011>となる
ようにした場合には、入射光の主電界成分が<01
1>結晶軸に対し平行となり、電気光学効果によ
り生ずる屈折率が減少する。逆に入射光の進行方
向を<011>とした場合は屈折率が増大する。 従つて、バンド間遷移により生ずる電気吸収効
果の屈折率変化と電気光学効果による屈折率変化
とが重畳されるように入射光の偏波モード、電界
の印加方向等を定めれば、電気光学効果のみを利
用した場合に比べて同一の動作電圧で数倍の屈折
率変化を得ることができる。 本発明はこの原理を用いて半導体スイツチを構
成したものである。 以下に図面を用いて本発明を詳細に説明する。 (実施例) 第1図は本発明による実施例であり、半導体光
スイツチの模式図である。 第1図において、図aは模式図、図bは模式図
のa−a′に沿う縦断面図、図cは模式図のb−
b′に沿う縦断面図であり、1は面方位が(100)
の面n+InP基板、2はn-InGaAsP光導波路層、3
はnInPクラツド層、4はInP基板1上に形成され
たメサ部、5はn-InGaAsP光反射層、6はp+InP
層、7はp側電極、8はn側電極である。 動作を説明する。まず電極7及び8に電圧を印
加しない場合、ポート1からのTEモードの1.55μ
m帯入射光は、ストリツプ装荷型の光導波路層2
中を伝搬し、ポート2との交差点にある光反射層
5で全反射されてポート3から取り出される。こ
れは、光反射層5の膜厚が光導波路層2の膜厚よ
りも僅かに薄くなつているため、光反射領域の実
効的な屈折率は、光導波領域の実効的屈折率より
もΔnだけ小さくなつており、入射光が全反射す
ることによる。 次に、電圧を印加した場合には、入射光がTE
モードであるために入射光の主電界成分が<011
>方向とほぼ平行(厳密には、交差角θ/2だけ
ずれる)となり、電気吸収効果による屈折率と電
気光学効果による屈折率とが共に増加する。従つ
て、光反射層の実効的な屈折率が低印加電圧でも
光導波路層の実効的な屈折率と同一もしくは大き
くなるため、ポート1から入射した入射光は直進
してポート4から取り出すことができる。 例えば、波長1.55μmのTE波の入射光に対して
光導波路層2の層厚を0.4μm、禁制帯幅エネルギ
ーの波長をλg=1.48μm、ストリツプの幅を3μm
とし、メサ部4の高さを0.02μm、光反射層5の
層厚を0.038μmとすれば、光導波路部と光反射部
の実効的な屈折率差Δnは、2×10-3程度となり、
全反射の臨界角に交差角θを定めればθ4゜とな
る。この時光反射層5の長さは、90μm程度に短
くすることができる。又、光を直進させ、20dB
以上の消光比を得るために必要な電圧は9Vとな
る。この値は、電気光学効果のみを用いた場合の
約4分の1である。なお電極7,8間の接合容量
は、0.5pF以下と小さくなるため、10GHz以上の
周波数帯域が得られる。 上述の説明では、光導波路部と光反射部の実効
的な屈折率差を光導波路層2と光反射層5の層厚
を変えることにより実現しているが、これは光導
波路層2の禁制帯幅エネルギーを光反射層5の禁
制帯幅エネルギよりも僅かに大きくすることによ
つても実現することができる。又、逆に光導波路
層2の禁制帯幅エネルギーを光反射層5の禁制帯
幅エネルギーよりも僅かに小さくし、かつ光反射
層の層厚を光導波路層の層厚よりも薄くすること
によつても実現することができる。 実施例 2 第2図は本発明による第2の実施例であり、図
aは半導体光スイツチの模式図、図bは模式図の
a−a′に沿う縦断面図、図cは模式図をb−b′に
沿う縦断面図である。 実施例1は、電圧が印加されない場合に全反射
するよう設計されているが、本実施例では、電圧
が印加されない場合には、光導波路層2と光反射
層5との屈折率が等しいため、ポート1から入射
した波長1.55μmTEモードの入射光は直進しポー
ト4から取り出される。 電圧を印加すると、光反射層5の屈折率は電気
吸収効果と電気光学効果によつて増加する。ポー
ト1から入射した入射光は、n側電極8下の屈折
率が増加している光導波路層と、屈折率が変化し
ていない光導波路層との境界において全反射し、
ポート3へ出力される。従つて、本実施例でも、
実施例1と同様に低電圧で高速スイツチングが可
能となる。 なお、上述の説明では、電界印加時に電気吸収
効果により屈折率が増加する場合を示したが、よ
り高電界のもとで屈折率が減少する場合には、光
反射層5の光の進行方向を上述した方向から90゜
ずらせて設定し、電気吸収効果と電気光学効果に
よつて屈折率が共に減少するようにしても、同様
の光スイツチが構成できる。
(Technical Field of the Invention) The present invention relates to an optical switch for switching an optical path, and more particularly to a semiconductor optical switch that can be integrated with a semiconductor laser. (Prior art and its problems) Optical switches switch optical paths in optical communication systems, and are used in light source switching devices and the like. In particular, typical total reflection type optical switches include those using ferroelectric materials such as LiNbO 3 with a large electro-optic effect and those using PLZT ceramics. However, since the above-mentioned materials cannot be integrated with a semiconductor laser, optical switches using semiconductor materials have attracted attention in recent years. Semiconductor optical switches using semiconductor materials include:
There are methods that utilize refractive index changes due to electro-optic effects caused by an externally applied electric field, and methods that utilize refractive index changes due to carrier effects caused by current injection. However, although semiconductor optical switches that utilize the carrier effect can achieve a large extinction ratio even at low currents, the switching speed is limited by the carrier lifetime, making it difficult to operate the switch at a speed of several hundred megabits or more. On the other hand, semiconductor optical switches that use refractive index changes due to the electro-optic effect are capable of high-speed switching operation, but at the same operating voltage, the electro-optic effect is smaller than that of ferroelectric materials, so crosstalk between output terminals is reduced. increases and the extinction ratio deteriorates. In order to reduce this crosstalk, the crossing angle between the two optical waveguide layers can be increased, but this has the drawback that the operating voltage increases to several tens of volts when the crossing angle is increased. As mentioned above, in conventional semiconductor optical switches,
It has been difficult to operate high-speed switching with a high extinction ratio at low voltage. Therefore, a semiconductor optical switch that satisfies these conditions has been strongly desired. (Objects and Features of the Invention) The present invention was made in view of the above-mentioned drawbacks of the prior art, and provides a semiconductor optical switch that has a large extinction ratio and can perform high-speed switching. The purpose is to The feature of the present invention is that the polarization mode of the incident light, the layer thickness or forbidden band width of the light reflective layer, the traveling direction of light, and the surface orientation of the substrate (direction of the applied electric field) are set to appropriate conditions. The reason is that the amount of change in refractive index due to the electro-absorption effect and the amount of change in refractive index due to the electro-optic effect are superimposed on each other, increasing the absolute value of the amount of change in refractive index. (Principle of the invention) Compound semiconductors represented by GaAs, InP, etc.
When an electric field is applied to incident light with a photon energy hν slightly lower than the band gap energy Eg, an electric absorption effect occurs, and both the absorption coefficient and the refractive index change. For example, when the energy difference ΔEg (=Eg - hν) between the band gap energy Eg and the photon energy hν is in the range of 20 meV to 70 meV, the refractive index due to the electric absorption effect increases when the electric field strength is 150 KV/cm or less, Conversely, if the energy difference ΔEg is 20 meV or less and the electric field strength is
It is known that if the refractive index is set to 150 KV/cm or more, it decreases, and the amount of change in the refractive index is several times the amount of change in the refractive index caused by the electro-optic effect. (TEVan Eck et al.
Appl.Phys.Lett.48, pp451-453, Feb, 1986). On the other hand, the refractive index due to the electro-optic effect changes depending on the polarization mode of the incident light, the direction of application of the electric field, and the direction of incidence. For example, in a semiconductor with a zincblende crystal structure (having icosahedrons and also called a point group 43m crystal) such as InP, the polarization mode of incident light is a TE wave, and the direction of electric field application is <100> parallel to the crystal axis and the traveling direction of the incident light is <011>, the main electric field component of the incident light is <01>.
1> parallel to the crystal axis, and the refractive index caused by the electro-optic effect decreases. Conversely, when the traveling direction of the incident light is set to <011>, the refractive index increases. Therefore, if the polarization mode of the incident light, the direction of application of the electric field, etc. are determined so that the refractive index change due to the electro-absorption effect caused by the interband transition and the refractive index change due to the electro-optic effect are determined, the electro-optic effect can be obtained. A refractive index change several times larger can be obtained with the same operating voltage compared to the case where only the 100% refractive index is used. The present invention uses this principle to construct a semiconductor switch. The present invention will be explained in detail below using the drawings. (Embodiment) FIG. 1 is an embodiment according to the present invention, and is a schematic diagram of a semiconductor optical switch. In Fig. 1, figure a is a schematic diagram, figure b is a vertical sectional view along a-a' of the schematic diagram, and figure c is a schematic diagram taken along line b-a' of the schematic diagram.
It is a longitudinal cross-sectional view along b′, and 1 is a plane orientation of (100).
surface n + InP substrate, 2 is n - InGaAsP optical waveguide layer, 3
is an nInP cladding layer, 4 is a mesa portion formed on the InP substrate 1, 5 is an n - InGaAsP light reflection layer, and 6 is a p + InP
The layer 7 is a p-side electrode, and 8 is an n-side electrode. Explain the operation. First, if no voltage is applied to electrodes 7 and 8, 1.55μ in TE mode from port 1.
The m-band incident light passes through a strip-loaded optical waveguide layer 2.
The light propagates inside, is totally reflected by the light reflection layer 5 at the intersection with the port 2, and is taken out from the port 3. This is because the film thickness of the light reflection layer 5 is slightly thinner than the film thickness of the optical waveguide layer 2, so the effective refractive index of the light reflection region is smaller than the effective refractive index of the optical waveguide region by Δn. This is due to total internal reflection of the incident light. Next, when a voltage is applied, the incident light is TE
mode, the main electric field component of the incident light is <011
> direction (strictly speaking, shifted by the intersection angle θ/2), and both the refractive index due to the electro-absorption effect and the refractive index due to the electro-optic effect increase. Therefore, since the effective refractive index of the light reflective layer is the same as or larger than the effective refractive index of the optical waveguide layer even at a low applied voltage, the incident light that enters from port 1 can go straight and be extracted from port 4. can. For example, for an incident TE wave with a wavelength of 1.55 μm, the layer thickness of the optical waveguide layer 2 is 0.4 μm, the wavelength of the forbidden band energy is λg = 1.48 μm, and the strip width is 3 μm.
If the height of the mesa portion 4 is 0.02 μm and the layer thickness of the light reflecting layer 5 is 0.038 μm, then the effective refractive index difference Δn between the optical waveguide portion and the light reflecting portion is approximately 2 × 10 -3 . ,
If we set the intersection angle θ to the critical angle of total reflection, it becomes θ4°. At this time, the length of the light reflecting layer 5 can be shortened to about 90 μm. Also, the light goes straight and the 20dB
The voltage required to obtain the above extinction ratio is 9V. This value is about one-fourth of the value when only the electro-optic effect is used. Note that since the junction capacitance between the electrodes 7 and 8 is as small as 0.5 pF or less, a frequency band of 10 GHz or more can be obtained. In the above explanation, the effective refractive index difference between the optical waveguide part and the light reflection part is realized by changing the layer thicknesses of the optical waveguide layer 2 and the light reflection layer 5, but this is prohibited due to the prohibition of the optical waveguide layer 2. This can also be achieved by making the band width energy slightly larger than the forbidden band width energy of the light reflective layer 5. In addition, conversely, the bandgap energy of the optical waveguide layer 2 is made slightly smaller than the bandgap energy of the optical reflection layer 5, and the layer thickness of the optical reflection layer is made thinner than that of the optical waveguide layer. It can be realized even if it is difficult. Embodiment 2 FIG. 2 shows a second embodiment of the present invention, in which figure a is a schematic diagram of a semiconductor optical switch, figure b is a longitudinal sectional view taken along a-a' of the schematic diagram, and figure c is a schematic diagram of a semiconductor optical switch. FIG. Example 1 is designed to cause total reflection when no voltage is applied, but in this example, when no voltage is applied, the refractive index of the optical waveguide layer 2 and the optical reflective layer 5 are equal, so , TE mode light with a wavelength of 1.55 μm enters from port 1 and is taken out from port 4. When a voltage is applied, the refractive index of the light reflecting layer 5 increases due to the electro-absorption effect and the electro-optic effect. The incident light entering from the port 1 is totally reflected at the boundary between the optical waveguide layer under the n-side electrode 8 where the refractive index is increasing and the optical waveguide layer where the refractive index is unchanged.
Output to port 3. Therefore, also in this example,
As in the first embodiment, high-speed switching is possible with low voltage. In addition, in the above explanation, the case where the refractive index increases due to the electric absorption effect when an electric field is applied is shown, but when the refractive index decreases under a higher electric field, the traveling direction of light in the light reflective layer 5 A similar optical switch can be constructed by setting the angle 90° from the above-mentioned direction so that both the refractive index decreases due to the electro-absorption effect and the electro-optic effect.

【表】【table】

【表】【table】

【表】【table】

【表】 表1〜表4は本発明が適用できる範囲を示した
ものである。表1及び表2は電気吸収効果と電気
光学効果とが正の値をとつて互いに重畳する場合
を示したもので、表2は表1の基板の面方位が
(100)である場合と同等な面方位を有するもの、
すなわち<111>に沿つて3回回転対称性を有す
る面方位における各関係を示したものである。同
様に表1の(111)面方位については<100>に沿
つて4回回転反像性を有する面方位に全て適用で
きる。 表3及び表4は表1(表2)とは逆に電気吸収
効果と電気光学効果とが負の値をとつて互いに重
畳する場合を示したもので、特に表4は表3の基
板の面方位が(100)の時と同等な面方位、すな
わち<111>に沿つて3回回転対称性を有する面
方位の各関係を示したものである。 なお、(111)面方位と同等な面方位を持つ基板
に対しても同様に適用できる。 上述の説明ではストリツプ装荷型の光導波路層
2を例にとり説明したが、埋め込み型光導波路層
やリブ型光導波路層でも良い。又、光導波路層、
光反射層はMQW構造としても良い。またInP系
の材料に限定されることなく、GaAs系等の閃亜
鉛鉱結晶構造の他の半導体にも適用できる。 (発明の効果) 以上のように本発明は、基板の面方位や入射波
の偏波モード等を定めることにより、電気吸収効
果と電気光学効果との屈折率変化を重畳してその
絶対値を増加させることができるため、消光比が
大きく、かつ高速のスイツチングを低電圧で動作
する半導体光スイツチが実現でき、その工業的価
値は極めて大である。
[Table] Tables 1 to 4 show the range to which the present invention is applicable. Tables 1 and 2 show cases where the electro-absorption effect and the electro-optic effect take positive values and overlap with each other, and Table 2 is equivalent to the case where the plane orientation of the substrate is (100) in Table 1. having a plane orientation,
That is, each relationship in the plane orientation having three-fold rotational symmetry along <111> is shown. Similarly, the (111) plane orientation in Table 1 can be applied to all plane orientations that have a four-fold rotation antiimage property along <100>. Tables 3 and 4 show cases where the electro-absorption effect and the electro-optic effect take negative values and overlap with each other, contrary to Table 1 (Table 2). This figure shows the relationships between plane orientations that are equivalent to those when the plane orientation is (100), that is, plane orientations that have three-fold rotational symmetry along <111>. Note that this method can be similarly applied to a substrate having a plane orientation equivalent to the (111) plane orientation. In the above description, the strip-loaded optical waveguide layer 2 was used as an example, but a buried optical waveguide layer or a rib-type optical waveguide layer may also be used. Also, an optical waveguide layer,
The light reflecting layer may have an MQW structure. Furthermore, the present invention is not limited to InP-based materials, but can also be applied to other semiconductors with a zinc blende crystal structure such as GaAs-based materials. (Effects of the Invention) As described above, the present invention superimposes the refractive index changes due to the electro-absorption effect and the electro-optic effect by determining the plane orientation of the substrate, the polarization mode of the incident wave, etc., and calculates the absolute value thereof. As a result, it is possible to realize a semiconductor optical switch that has a large extinction ratio and operates at low voltage with high-speed switching, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明による実施例の構成図
であり、各図においてaは半導体光スイツチの模
式図、bは模式図aのa−a′に沿う縦断面図、c
は模式図aのb−b′に沿う縦断面図である。 1……(100)面n+InP基板、2……
n-InGaAsP光導波路層、3……nInP上部クラツ
ド層、4……n+InP基板上のメサ部、5……
n-InGaAsP光反射層、6……p+InP層、7……p
側電極、8……n側電極。
FIGS. 1 and 2 are configuration diagrams of an embodiment according to the present invention, and in each figure, a is a schematic diagram of a semiconductor optical switch, b is a vertical cross-sectional view along a-a' of the schematic diagram a, and c is a schematic diagram of a semiconductor optical switch.
is a vertical sectional view taken along line b-b' of schematic diagram a. 1... (100) plane n + InP substrate, 2...
n - InGaAsP optical waveguide layer, 3... nInP upper cladding layer, 4... n + mesa portion on InP substrate, 5...
n - InGaAsP light reflection layer, 6...p + InP layer, 7...p
side electrode, 8...n side electrode.

Claims (1)

【特許請求の範囲】 1 鋭角に交差する2つの半導体光導波路層と、
該光導波路層の交差部に配置されかつ前記光導波
路層の屈折率と相等しいか又は該屈折率よりも小
なる実効的な屈折率を有する半導体反射層とを基
板上に備え、該光反射層に外部電界を印加するこ
とにより該光反射層の屈折率を変化させて入射光
の進行方向を変えるようにした半導体光スイツチ
において、 該外部電界印加を行つたときに電気吸収効果に
よつて該光反射層の屈折率が大きくなるように該
光反射層のバンドギヤツプエネルギーとフオトン
エネルギーとの差を20meV〜70meVとしかつ該
外部電界印加の強度を150KV/cm以下とした構
成にし、 該基板と該光反射層の結晶構造を閃亜鉛鉱形と
し該基板の結晶構造の面方位と該光反射層の結晶
軸方向と入射光の進行方向と偏波モードとを該外
部電界印加を行つたときに電気光学効果によつて
該光反射層の屈折率が大きくなり、前記電気吸収
効果による屈折率変化量と前記電気光学効果によ
る屈折率変化量とが互いに重畳して屈折率変化量
の絶対値が著しく増大するように構成したことを
特徴とする半導体光スイツチ。 2 鋭角に交差する2つの半導体光導波路層と、
該光導波路層の交差部に配置されかつ前記光導波
路層の屈折率と相等しいか又は該屈折率よりも小
なる実効的な屈折率を有する半導体反射層とを基
板上に備え、該光反射層に外部電界を印加するこ
とにより該光反射層の屈折率を変化させて入射光
の進行方向を変えるようにした半導体光スイツチ
において、 該外部電界印加を行つたときに電気吸収効果に
よつて該光反射層の屈折率が小さくなるように該
光反射層のバンドギヤツプエネルギーとフオトン
エネルギーとの差を20meV以下としかつ該外部
電界印加の強度を150KV/cm以上とした構成に
し、 該基板と該光反射層の結晶構造を閃亜鉛鉱形と
し該基板の結晶構造の面方位と該光反射層の結晶
軸方向と入射光の進行方向と偏波モードとを該外
部電界印加を行つたときに電気光学効果によつて
該光反射層の屈折率が小さくなり、前記電気吸収
効果による屈折率変化量と前記電気光学効果によ
る屈折率変化量とが互いに重畳して屈折率変化量
の絶対値が著しく増大するように構成したことを
特徴とする半導体光スイツチ。
[Claims] 1. Two semiconductor optical waveguide layers intersecting at an acute angle,
a semiconductor reflective layer disposed at the intersection of the optical waveguide layer and having an effective refractive index equal to or smaller than the refractive index of the optical waveguide layer; In a semiconductor optical switch in which the traveling direction of incident light is changed by changing the refractive index of the light reflecting layer by applying an external electric field to the layer, when the external electric field is applied, In order to increase the refractive index of the light reflecting layer, the difference between the band gap energy and the photon energy of the light reflecting layer is set to 20 meV to 70 meV, and the intensity of the external electric field application is set to 150 KV/cm or less. , the crystal structure of the substrate and the light reflective layer is zincblende type, and the external electric field is applied to adjust the plane orientation of the crystal structure of the substrate, the crystal axis direction of the light reflective layer, the traveling direction of the incident light, and the polarization mode. When performing this, the refractive index of the light reflecting layer increases due to the electro-optic effect, and the refractive index change amount due to the electro-absorption effect and the refractive index change amount due to the electro-optic effect are superimposed on each other, resulting in a refractive index change. 1. A semiconductor optical switch characterized by being configured such that the absolute value of the amount increases significantly. 2. Two semiconductor optical waveguide layers intersecting at an acute angle,
a semiconductor reflective layer disposed at the intersection of the optical waveguide layer and having an effective refractive index equal to or smaller than the refractive index of the optical waveguide layer; In a semiconductor optical switch in which the traveling direction of incident light is changed by changing the refractive index of the light reflecting layer by applying an external electric field to the layer, when the external electric field is applied, The structure is such that the difference between the band gap energy and photon energy of the light reflective layer is 20 meV or less so that the refractive index of the light reflective layer is small, and the intensity of the applied external electric field is 150 KV/cm or more, The crystal structure of the substrate and the light-reflecting layer is zinc blende type, and the plane orientation of the crystal structure of the substrate, the crystal axis direction of the light-reflecting layer, the traveling direction of the incident light, and the polarization mode are determined by applying the external electric field. When the electro-optic effect occurs, the refractive index of the light reflecting layer becomes smaller, and the refractive index change amount due to the electro-absorption effect and the refractive index change amount due to the electro-optic effect are superimposed on each other, resulting in a refractive index change amount. 1. A semiconductor optical switch characterized by being configured such that the absolute value of is significantly increased.
JP10305486A 1986-05-07 1986-05-07 Semiconductor optical switch Granted JPS62260126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10305486A JPS62260126A (en) 1986-05-07 1986-05-07 Semiconductor optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10305486A JPS62260126A (en) 1986-05-07 1986-05-07 Semiconductor optical switch

Publications (2)

Publication Number Publication Date
JPS62260126A JPS62260126A (en) 1987-11-12
JPH059011B2 true JPH059011B2 (en) 1993-02-03

Family

ID=14343955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10305486A Granted JPS62260126A (en) 1986-05-07 1986-05-07 Semiconductor optical switch

Country Status (1)

Country Link
JP (1) JPS62260126A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353225A (en) * 1989-07-21 1991-03-07 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical modulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134219A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Optical switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134219A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Optical switch

Also Published As

Publication number Publication date
JPS62260126A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
US4837526A (en) Semiconductor external optical modulator
JP3839710B2 (en) Semiconductor optical modulator, Mach-Zehnder optical modulator, and optical modulator integrated semiconductor laser
US4746183A (en) Electrically controlled integrated optical switch
US6278170B1 (en) Semiconductor multiple quantum well mach-zehnder optical modulator and method for fabricating the same
US5191630A (en) Nonlinear optical device for controlling a signal light by a control light
US5012474A (en) Polarization switching in active devices
JP2817602B2 (en) Semiconductor Mach-Zehnder modulator and method of manufacturing the same
JPH02226232A (en) Directional coupler type optical switch
JPH059011B2 (en)
JPS61212823A (en) Optical modulator
JPH07113711B2 (en) Semiconductor waveguide type optical switch
JPH06177473A (en) Semiconductor optical control device
JP3001365B2 (en) Optical semiconductor element and optical communication device
JP2760276B2 (en) Selectively grown waveguide type optical control device
JP2907890B2 (en) Light modulator
JP2706315B2 (en) Optical waveguide phase modulator
JPH0646272B2 (en) Waveguide type optical gate switch
JPS60173519A (en) Semiconductor optical switch
JPH04291780A (en) Semiconductor light emitting apparatus
JP2538567B2 (en) Light switch
CN117092837A (en) Groove waveguide-based photoelectric modulator for optical network-on-chip interconnection
JPH03294826A (en) Optical switch
JPH09101491A (en) Semiconductor mach-zehnder modulator and its production
JPH09246639A (en) Optical semiconductor device
JP2713898B2 (en) Optical element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees