JPS60173519A - Semiconductor optical switch - Google Patents

Semiconductor optical switch

Info

Publication number
JPS60173519A
JPS60173519A JP59020359A JP2035984A JPS60173519A JP S60173519 A JPS60173519 A JP S60173519A JP 59020359 A JP59020359 A JP 59020359A JP 2035984 A JP2035984 A JP 2035984A JP S60173519 A JPS60173519 A JP S60173519A
Authority
JP
Japan
Prior art keywords
layer
waveguide
optical
switch
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59020359A
Other languages
Japanese (ja)
Inventor
Osamu Mikami
修 三上
Hiroshi Nakagome
弘 中込
Tadashi Saito
正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59020359A priority Critical patent/JPS60173519A/en
Publication of JPS60173519A publication Critical patent/JPS60173519A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the refractive index
    • G02F1/0152Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the refractive index using free carrier effects, e.g. plasma effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
    • G02F1/3138Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions the optical waveguides being made of semiconducting materials

Abstract

PURPOSE:To employ a large crossing angle of an optical waveguide, and to obtain a large extinction ratio by providing a power source for injecting a current to a switch part, and an optical incident means for making waveguide light incident at an angle THETA to the switch part through a waveguide layer. CONSTITUTION:An InGaAsP layer 22 of non-dope is brought to epitaxial growth on an n-InP substrate 21, and InGaAsP waveguides 11, 12 of a rib structure are formed by executing an etching in a shape of a pattern to its opitaxial layer 22. Subsequently, an SiO2 film 31 is formed on the whole surface on the epitaxial layer 22 by spattering, and thereafter, a crystal surface of the InGaAsP layer is exposed by making a window 32 on one half part 18 of a crossing part of the optical waveguides 11, 12. On the InGaAsP layer exposed by a selected liquid phase epitaxial growth, a P-InP clad layer 23 and a P-InGaAsP electrode layer 24 are grown successively and continuously and a double hetero-structure is realized. Thereafter, electrodes 25, 26 are formed and alloyed.

Description

【発明の詳細な説明】 この発明は半導体光導波路から構成された光スィッチに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical switch constructed from a semiconductor optical waveguide.

〈従来技術〉 光集積回路において二つの光路を電気的に選択できる機
能をもつ光スィッチは光のマトリックス回路を構成する
上で不可欠々回路要素である。このような光スィッチの
一つとして全反射光スイツチが知られている。第1図に
示すように2本の光導波路11.12が角度2θで交差
している場合を考える。先導波路11の一端のポート1
3から入った光は光導波路11の他端のポート14へ進
行し、光導波路12の一端のポート15から入った光は
光導波路12の他端のポート16へ進行する。この二つ
の光導波路11.12が交差した領域において第1図に
斜線を施して示すように両光導波路の交差角2θの2等
分線17の一方の側の領域18の屈折率を局所的に減少
し、その屈折率変化量を△nとすると、 θ〈90°−aif’ (1+△n/n)(ここでnは
光導波路の屈折率である)の関係を満足する時、ポート
13から入射した光は屈折率変化領域18の境界で全反
射条件を満足し、光はポート14の方向には進行せずポ
ート16へ進む。
<Prior Art> An optical switch that has the function of electrically selecting between two optical paths in an optical integrated circuit is an essential circuit element in constructing an optical matrix circuit. A total internal reflection optical switch is known as one such optical switch. Consider the case where two optical waveguides 11 and 12 intersect at an angle of 2θ as shown in FIG. Port 1 at one end of the leading waveguide 11
Light entering from port 3 travels to port 14 at the other end of optical waveguide 11, and light entering from port 15 at one end of optical waveguide 12 travels to port 16 at the other end of optical waveguide 12. In the area where these two optical waveguides 11 and 12 intersect, the refractive index of the area 18 on one side of the bisector 17 of the intersection angle 2θ of both optical waveguides is locally determined as indicated by diagonal lines in FIG. When the relationship θ〈90°−aif' (1+△n/n) (where n is the refractive index of the optical waveguide) is satisfied, the refractive index change amount is △n. The light incident from 13 satisfies the total internal reflection condition at the boundary of the refractive index changing region 18, and the light does not proceed in the direction of port 14 but proceeds to port 16.

即ちこの光は光スイツチ作用を受けることになる。In other words, this light is subjected to a light switch action.

以上のような原理で全反射光スイッチが構成されている
。通常このような局所的な屈折率変化を生じさせるため
に、LiNb0aなどの強誘電体に高電界を印加する電
気光学効果を利用したり、あるいはGaAS * ■n
 Pなどの半導体に逆バイアス電圧を印加する電気光学
効果が主として採用されている。
A total internal reflection optical switch is constructed based on the principle described above. Usually, in order to produce such a local refractive index change, the electro-optic effect of applying a high electric field to a ferroelectric material such as LiNb0a is used, or the electro-optic effect of applying a high electric field to a ferroelectric material such as LiNb0a, or GaAS
The electro-optic effect, which applies a reverse bias voltage to a semiconductor such as P, is mainly employed.

しかし電気光学効果によって生じる屈折率変化量は通常
10−4台と極めて小さい。このため全反射条件を満足
する交差角度2θは1°程度以下となりスイッチオンの
状態とスイッチオンの状態との消光比が極めて悪くなる
問題があった。また交差角度2θが小さいためこのスイ
ッチ素子を多数波べてマトリックス回路を構成すること
が困難であった。また電気光学効果の場合は、入射光の
偏波方向により屈折率変化が大きく変化するため、特定
の偏波面を有する光を入射する必要があった。
However, the amount of change in refractive index caused by the electro-optic effect is usually extremely small, on the order of 10<-4 >. For this reason, the intersection angle 2θ that satisfies the total reflection condition is about 1° or less, and there is a problem that the extinction ratio between the switch-on state and the switch-on state becomes extremely poor. Furthermore, since the intersection angle 2θ is small, it is difficult to construct a matrix circuit by arranging a large number of these switching elements. Furthermore, in the case of the electro-optic effect, since the refractive index changes greatly depending on the polarization direction of incident light, it is necessary to input light having a specific polarization plane.

〈発明の目的〉 この発明はこれらの問題を解決するために、半導体固有
のプラズマ効果によって生じる電気光学効果より、従来
よりも2桁程度大きい屈折率変化を生じさせ、光導波路
の交差角を大きくとることができ、大きな消光比が得ら
れる導波形光スイッチを提供するものである。
<Purpose of the Invention> In order to solve these problems, the present invention creates a change in refractive index that is about two orders of magnitude larger than the conventional one than the electro-optic effect caused by the plasma effect inherent in semiconductors, and increases the crossing angle of optical waveguides. The purpose of the present invention is to provide a waveguide type optical switch that can be used to obtain a large extinction ratio.

(3) 〈実施例〉 第2図及び第3図はこの発明の一実施例を示し、n形I
nP基板21上にこれと同一導電形で、かつ基板21の
禁止帯(バンドギャップ)よりも小さいエピタキシャル
層、即ち基板21と格子整合した層22が形成される。
(3) <Embodiment> FIGS. 2 and 3 show an embodiment of the present invention.
An epitaxial layer 22 having the same conductivity type and smaller than the forbidden band (band gap) of the substrate 21 is formed on the nP substrate 21, that is, a layer 22 that is lattice matched to the substrate 21.

この層22は例えばノンドープの■nGaA、P層のエ
ピタキシャル層である。
This layer 22 is, for example, an epitaxial layer of non-doped nGaA or P layer.

このエピタキシャル層22をパターン状にエツチングし
てリプ構造の光導波路11.12が20の角度で交差し
て形成される。例えばエピタキシャル層22の厚みdは
約1μm、光導波路11.12の谷幅Wは8μm、その
高さhは5000大とされる。このようにしてInPを
基板とし、禁止帯波長1.2μmの■nG、A5P四元
属からなる光導波路11.12が構成され、IoGaA
sP層22に対して透明な波長(〉13μm)の光は先
導波路11゜12に沿って伝搬することが可能となる。
This epitaxial layer 22 is etched in a pattern to form lip-structured optical waveguides 11 and 12 that intersect at an angle of 20 degrees. For example, the thickness d of the epitaxial layer 22 is approximately 1 μm, the valley width W of the optical waveguide 11.12 is 8 μm, and the height h thereof is approximately 5000 μm. In this way, an optical waveguide 11.12 made of nG and A5P quaternary elements with a forbidden band wavelength of 1.2 μm is constructed using InP as a substrate, and IoGaA
Light having a wavelength (>13 μm) that is transparent to the sP layer 22 can be propagated along the leading wavepaths 11 and 12.

光導波路11.12の交差領域の一半部is(第2図に
斜線を施して示しである。)に第4図Aに示すような層
構造とされる。即ち光導波路11゜(4) 12の交差部の一半部上に光導波路11.12と逆導電
形で禁止帯が光導波路よりも大きいエピタキシャル層の
クラッド層、この例ではP彫工。Pクラッド層23が形
成され、その上に金層電極、例えばピ形■nG、AsP
電極層24が形成され、P十形InGaA3P電極層2
4上にP形電極25が形成される。n −InP基板2
1のエピタキシャル層22と反対の而にn電極26が形
成される。電極25゜26間に順方向電流を流すことが
できる電源27が接続される。このようにしてバンドギ
ヤラフ波長が長い(禁止帯が小さい)ノンドープのIn
GaAsP層22がこれ上22禁止帯が大きいn形■n
P層21P形InP層23にはさまれた、いわゆるダブ
ルへテロ構造のスイッチ部28が構成される。
One half is (indicated by diagonal lines in FIG. 2) of the intersecting region of the optical waveguides 11 and 12 has a layer structure as shown in FIG. 4A. That is, on one half of the intersection of the optical waveguides 11 and 12, there is a cladding layer of an epitaxial layer having a conductivity opposite to that of the optical waveguides 11 and 12 and having a forbidden band larger than that of the optical waveguide, in this example, a P engraving. A P cladding layer 23 is formed, and a gold layer electrode, such as p-type ■nG, AsP
An electrode layer 24 is formed, and the P 10-type InGaA3P electrode layer 2
A P-type electrode 25 is formed on 4. n-InP substrate 2
An n-electrode 26 is formed on the opposite side of the first epitaxial layer 22. A power source 27 is connected between the electrodes 25 and 26, which is capable of passing a forward current. In this way, non-doped In with a long band gear rough wavelength (small forbidden band)
The GaAsP layer 22 is n-type with a large forbidden band.
A so-called double heterostructure switch section 28 is formed between the P layer 21 and the P type InP layer 23.

このようにダブルへテロ構造になっているためスイッチ
部28のp −n接合に順方向の電流を流すことによっ
て注入されたキャリアはスイッチ部28中の■nGaA
5P導波路層11.12の部分29に閉込められる。そ
の結果第4図のダブルへテロ構造のInGaAsP層部
分29でプラズマ効果によつて屈折率が減少する。この
プラズマ効果については、例えばT、’I”amir著
[■ntegrated Qptics J244頁に
説明されている。■。GaAsP層部分29内の注入キ
ャリア数ΔNと屈折率変化量△nとの関係は次式で与え
られる。
Because of this double heterostructure, carriers injected by flowing a forward current through the p-n junction of the switch section 28 are
5P waveguide layer 11.12 is confined in portion 29. As a result, the refractive index of the InGaAsP layer portion 29 of the double heterostructure shown in FIG. 4 decreases due to the plasma effect. This plasma effect is explained, for example, in T.'I'amir [■ integrated Qptics J244 page. It is given by Eq.

△n=−e”λ2△N/8π2nεm*C2ここでeは
キャリアの荷電量、λは入射光の波長、nは光導波路1
1.12の屈折率、ε0は真空の誘電率、m本はキャリ
アの有効質量、Cは光速塵である。波長λ=15μmの
入射光の場合、△N=1 xi 018.−8で△n=
5.6xlOが得られる。
△n=-e"λ2△N/8π2nεm*C2 where e is the charge amount of the carrier, λ is the wavelength of the incident light, and n is the optical waveguide 1
The refractive index is 1.12, ε0 is the permittivity of vacuum, m is the effective mass of the carrier, and C is the speed of light dust. For incident light with wavelength λ=15 μm, ΔN=1 xi 018. -8 and △n=
5.6xlO is obtained.

この屈折率変化量△nは従来のもの10−4と比較して
1桁は大きなものである。従って前記領域18の境界で
全反射となる条件が満されるように、光導波路11.1
2の交差角2θを形成しておけば全反射が生じて光スィ
ッチが実現できる。従来の光スィッチでは交差角2θは
先に述べたように最大で1°程度以下であったが、この
発明では△nを大きくすることにより交差角2θを最大
8度(・θ=4°)程度にすることが可能である。
This refractive index change amount Δn is one order of magnitude larger than that of the conventional example 10-4. Therefore, the optical waveguide 11.1
If the intersection angle 2θ of 2 is formed, total reflection will occur and an optical switch can be realized. In conventional optical switches, the crossing angle 2θ was at most about 1° or less as mentioned above, but in this invention, by increasing △n, the crossing angle 2θ can be increased to 8° at maximum (・θ=4°). It is possible to do this to a certain extent.

第4図に示したような局所的なダブルへテロ構造を形成
しておいても、実際には注入キャリアは横方向に拡散し
て、屈折率は急峻には変化しない場合がある。拡散距離
L=3μmとして、指数関数的に屈折率が変化した場合
の臨界角θ。(全反射が得られる最大角)と屈折率変化
量△nとの関係を計算した結果を第5図に示す。屈折率
が指数間 ゛数的に徐々に変化している場合(L=3μ
m)は屈折率変化が急峻な場合(L−0μm)よりも入
射臨界角θCは若干小さくなる。しかし急峻であること
が必要条件ではない。急峻な変化を得るためには第4図
に示すダブルへテロ構造領域外に、例えばプロトンイオ
ン照射を行い、半絶縁性にすればよい。
Even if a local double heterostructure as shown in FIG. 4 is formed, the injected carriers actually diffuse laterally and the refractive index may not change sharply. Critical angle θ when the refractive index changes exponentially with diffusion distance L=3 μm. FIG. 5 shows the result of calculating the relationship between (maximum angle at which total reflection can be obtained) and the amount of change in refractive index Δn. When the refractive index gradually changes numerically between indices (L=3μ
m), the critical angle of incidence θC is slightly smaller than when the refractive index change is steep (L−0 μm). However, steepness is not a necessary condition. In order to obtain a steep change, the area outside the double heterostructure region shown in FIG. 4 may be irradiated with proton ions to make it semi-insulating.

この発明の半導体光スィッチは例えば第6図に示すよう
にして作ることができる。即ち第6図Aに示すようにn
 −l。P基板21上にノンドープのInGaA、2層
22がエピタキシャル成長され、そのエピタキシャル層
22に対してパターン状にエラ(7) チングを行ってリブ構造の1゜GaA、P導波路11゜
(12)を形成する。次に第6図Bに示すように810
□膜31をスパッタによりエピタキシャル層22上の全
面に形成した後、光導波路11.12の交差部の一重部
18に窓32をあけてInGaAsP層の結晶面全露出
する。第6図Cに示すように選択液相エピタキシャル成
長によって前記露出したInGaAsP層上にP−I、
Pクラッド層23、P−InGaA8P電極層24を順
次連続成長し、ダブルへテロ構造を実現する。その後第
4図に示したように電極25.26を形成しアロイする
The semiconductor optical switch of the present invention can be manufactured, for example, as shown in FIG. That is, as shown in FIG. 6A, n
-l. A non-doped InGaA double layer 22 is epitaxially grown on a P substrate 21, and the epitaxial layer 22 is etched in a pattern (7) to form a rib-structured 1° GaA P waveguide 11° (12). Form. Next, as shown in FIG. 6B, 810
After a □ film 31 is formed on the entire surface of the epitaxial layer 22 by sputtering, a window 32 is opened in the single part 18 at the intersection of the optical waveguides 11 and 12 to expose the entire crystal plane of the InGaAsP layer. As shown in FIG. 6C, P-I,
A P cladding layer 23 and a P-InGaA8P electrode layer 24 are successively grown to realize a double heterostructure. Thereafter, electrodes 25, 26 are formed and alloyed as shown in FIG.

あるいは第7図AvC,示すようにn−InP基板21
上に、光導波路パターン状に深さ数1000′に程度の
溝33をエツチングにより形成し、その後第7図Bに示
すようにノンドープ■。GaA8Pエピタキシャル層2
2、P−I。Pクラッド@23、P±■oGaA5P電
極層24を連続的にエピタキシャル成長させる。溝33
中のノンドープ■。G、A5P層によりリブ状の光導波
路11.12が構成される。次に選択エツチングにより
第7図Cに示すように光(8) 導波路11.12の交差領域の一半部領域18外の■n
Pクラッド層23、■oGaAsP電極層24を除去す
る。このようにして限定されたダブルへテロ構造を実現
することができる。
Or as shown in Figure 7 AvC, the n-InP substrate 21
A groove 33 having a depth of several 1000' is formed in the shape of an optical waveguide pattern by etching, and then, as shown in FIG. 7B, non-doping (2) is applied. GaA8P epitaxial layer 2
2, P-I. P cladding@23 and P±■oGaA5P electrode layer 24 are epitaxially grown continuously. Groove 33
Non-dope inside■. Rib-shaped optical waveguides 11 and 12 are constituted by the G and A5P layers. Next, by selective etching, as shown in FIG.
The P cladding layer 23 and the oGaAsP electrode layer 24 are removed. In this way a limited double heterostructure can be realized.

以上のような注入キャリアによるプラズマ効果を用いた
屈折率変化を光スイツチ現象に適用する場合、キャリア
数の増加による光吸収の増加が懸念されている。しかし
E 、 pinkasらの論文IEEE。
When applying the refractive index change using the plasma effect caused by injected carriers to the optical switching phenomenon as described above, there is a concern that light absorption will increase due to an increase in the number of carriers. However, the paper by E. Pinkas et al. IEEE.

J、Quantum EIectronics QE−
9、p281(1973)によれば、キャリア数〜2 
Xl 018.1lI8以下では吸収損の顕著な増加が
認められないことが報告されている。この発明では注入
キャリア数ΔN2X10′8α−8で十分な屈折率変化
量△nを得ることができるので、吸収損の問題はない。
J, Quantum EI electronics QE-
9, p. 281 (1973), the number of carriers ~ 2
It has been reported that no significant increase in absorption loss is observed below Xl 018.1lI8. In this invention, a sufficient refractive index change Δn can be obtained with the number of injected carriers ΔN2X10'8α-8, so there is no problem of absorption loss.

さらにこの発明の場合、光はキャリアが蓄積した領域2
9(第4図)の境界で全反射するため、たとえ2x10
1 思上のキャリア数で動作する場合であっても吸収の
増加はない。
Furthermore, in the case of this invention, the light is transmitted to the region 2 where carriers have accumulated.
Since total reflection occurs at the boundary of 9 (Figure 4), even if 2x10
1. There is no increase in absorption even when operating with an imaginary number of carriers.

ここでは■。GaAsP r IMP系の半導体により
光スィッチを構成したが、GaAs系などその曲の半導
体を用いても同様構造の光スィッチを構成できる。
Here ■. Although the optical switch is constructed using a GaAsP r IMP-based semiconductor, an optical switch having a similar structure can also be constructed using a GaAs-based semiconductor or the like.

また2×2の光路切換え用の光スィッチを構成するには
、例えば第8図に示すように光導波路11゜12の交差
領域の一半部のみならず池半部にも二つの屈折率変化領
域、即ちダブルへテロ構造のスイッチ部34を形成し、
これらスイッチ部28゜34に対し独立に電流を注入で
きるようにすればよい。スイッチ部28.34の間隙部
はキャリアの拡散を防ぐため、例えばプロトン注入を行
っておくとよい。
Furthermore, in order to configure an optical switch for switching a 2×2 optical path, two refractive index changing regions are required not only in one half of the intersecting region of the optical waveguides 11 and 12 but also in the half of the pond, as shown in FIG. , that is, forming the switch part 34 with a double heterostructure,
It is sufficient if current can be independently injected into these switch sections 28 and 34. For example, protons may be injected into the gap between the switch parts 28 and 34 to prevent carrier diffusion.

また上述においてはリプ構造の光導波路11゜12を構
成し、その光導波路の延長方向をスイッチ部28.34
に対して角度θで交差させてスイッチ部28.34に対
して角度θをもって光を入射する光入射手段とした。し
かし光導波路11゜12をリプ構造とすることなく、つ
まりエピタキシャル層22を平面状光導波路とし、この
光導波路に対して光を回折格子結合具により入射し、そ
の光がスイッチ部28.34に対して角度θをもって入
射するように光入射手段を構成してもよい。
In addition, in the above description, the optical waveguides 11 and 12 having a lip structure are configured, and the extension direction of the optical waveguides is set at the switch portions 28 and 34.
The light input means is configured to intersect the light at an angle θ and enter the light at an angle θ into the switch portion 28, 34. However, the optical waveguides 11 and 12 do not have a lip structure, that is, the epitaxial layer 22 is a planar optical waveguide, and light is incident on this optical waveguide using a diffraction grating coupler, and the light is transmitted to the switch section 28.34. The light incident means may be configured so that the light enters at an angle θ.

〈効 果〉 以上説明したように、この発明は半導体固有のプラズマ
効果を用いているために、大きな屈折率変化を得ること
が可能であり、この結果交差角度が大きく、消光比(ク
ロストークが少ない)が高い光スィッチを構成すること
が可能になる。光スィッチの応答速度はキャリアの再結
合時間で決定されるが、数100 Mn2が期待される
。さらに光の偏波面の依存性が極めて小さい特徴がある
<Effects> As explained above, since this invention uses the plasma effect unique to semiconductors, it is possible to obtain a large refractive index change, and as a result, the intersection angle is large and the extinction ratio (crosstalk is It becomes possible to construct an optical switch with a high cost (low). The response speed of an optical switch is determined by the carrier recombination time, and is expected to be several hundred Mn2. Furthermore, it has an extremely small dependence on the plane of polarization of light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全反射光スイッチの基本的な構成を示す図、第
2図はこの発明の一実施例を示す平面図、第3図は第2
図のAA線断面図、第4図は第2図のBB線断面図、第
5図は注入キャリア数ΔNと臨界入射角θCとの関係を
計算した結果を示す図、第6図及び第7図はこの発明の
半導体光スィッチを製作する場合の工程例を示す断面図
、第8図はこの発明の池の実施例を示す斜視図である。 11.12,22:光導波路、26:n電極、3:屈折
率減少領域、28,34:スイッチ部、(11) 21 : InP基板、23:I、Pクララド層、24
:IoGaA、P電極層、25:P電極、26:n電極
、28,34:スイッチ部、29:屈折率減少領域。 特許出願人 日本電信電話公社 代 理 人 草 野 卓 (12) +171 図 左 20 ′;p 4 図 9 生 30 7I75 図 Δn +178 図 ia 1t(1ンノ
FIG. 1 is a diagram showing the basic configuration of a total internal reflection optical switch, FIG. 2 is a plan view showing an embodiment of the present invention, and FIG.
4 is a sectional view taken along line BB in FIG. The figure is a sectional view showing an example of the process for manufacturing the semiconductor optical switch of the invention, and FIG. 8 is a perspective view showing an embodiment of the pond of the invention. 11.12, 22: Optical waveguide, 26: N electrode, 3: Refractive index decreasing region, 28, 34: Switch section, (11) 21: InP substrate, 23: I, P clarad layer, 24
: IoGaA, P electrode layer, 25: P electrode, 26: n electrode, 28, 34: switch section, 29: refractive index decreased region. Patent applicant: Representative of Nippon Telegraph and Telephone Public Corporation Takashi Kusano (12) +171 Figure left 20';

Claims (5)

【特許請求の範囲】[Claims] (1) −面に電極が形成された一導電形の半導体基板
と、 その半導体基板の池面上に形成され、その基板と同一導
電形であり、禁止帯が上記基板のそれよシ小さいエピタ
キシャル層からなる導波路層と、その導波路層上の限定
された一部に形成され、上記基板と逆導電形であり禁止
帯が上記導波路層のそれより大きいエピタキシャル層か
らなるクラッド層及びその上部の金属電極からなり厚さ
方向に上記導波路層を含みダブルへテロ構造を有するス
イッチ部と、 そのスイッチ部に電流を注入する電源と、上記導波路層
を介して上記スイッチ部に角度θをもって導波光を入射
させる光入射手段とからなる半導体光スィッチ。
(1) A semiconductor substrate of one conductivity type with an electrode formed on the − surface, and an epitaxial substrate formed on the surface of the semiconductor substrate, which is of the same conductivity type as the substrate, and whose forbidden band is smaller than that of the substrate. a cladding layer formed on a limited part of the waveguide layer and consisting of an epitaxial layer having a conductivity type opposite to that of the substrate and having a forbidden band larger than that of the waveguide layer; A switch part having a double heterostructure consisting of an upper metal electrode and including the waveguide layer in the thickness direction, a power supply for injecting current into the switch part, and an angle θ to the switch part through the waveguide layer. 1. A semiconductor optical switch comprising a light input means for inputting guided light.
(2)上記半導体基板はn形のInPよシなり、上記導
波路層はn形の■nGaA8Pであり、上記クラッド層
はp形のIn2層であることを特徴とする特許請求の範
囲第1項記載の半導体光スィッチ。
(2) The semiconductor substrate is made of n-type InP, the waveguide layer is n-type nGaA8P, and the cladding layer is a p-type In2 layer. Semiconductor optical switch described in Section 1.
(3)上記光入射手段は上記導波路層がリブ構造の線状
光導波路として構成されてなる特許請求の範囲第1項又
は第2項記載の半導体光スィッチ。
(3) The semiconductor optical switch according to claim 1 or 2, wherein the light input means is configured as a linear optical waveguide in which the waveguide layer has a rib structure.
(4)上記角度θが4°以下であることを特徴とする特
許請求の範囲第1項、第2項又は第3項記載の半導体光
スィッチ。
(4) The semiconductor optical switch according to claim 1, 2, or 3, wherein the angle θ is 4° or less.
(5)線状光導波路が上記スイッチ部の下部で角度2θ
で交差することを特徴とする特許請求の範囲第3項又は
第4項記載の半導体光スィッチ。
(5) The linear optical waveguide is at an angle of 2θ at the bottom of the switch section.
5. The semiconductor optical switch according to claim 3, wherein the semiconductor optical switch intersects at .
JP59020359A 1984-02-06 1984-02-06 Semiconductor optical switch Pending JPS60173519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020359A JPS60173519A (en) 1984-02-06 1984-02-06 Semiconductor optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020359A JPS60173519A (en) 1984-02-06 1984-02-06 Semiconductor optical switch

Publications (1)

Publication Number Publication Date
JPS60173519A true JPS60173519A (en) 1985-09-06

Family

ID=12024899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020359A Pending JPS60173519A (en) 1984-02-06 1984-02-06 Semiconductor optical switch

Country Status (1)

Country Link
JP (1) JPS60173519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298308A (en) * 1987-05-11 1988-12-06 アメリカン テレフォン アンド テレグラフ カムパニー Semiconductor light waveguide device
US4795225A (en) * 1987-01-19 1989-01-03 Kokusai Denshin Denwa Kabushiki Kaisha Semiconductor optical switch
JPH0264604A (en) * 1988-07-05 1990-03-05 Philips Gloeilampenfab:Nv Optoelectronic integrated semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251955A (en) * 1975-10-23 1977-04-26 Mitsubishi Electric Corp Optical semiconductor device
JPS5466157A (en) * 1977-11-07 1979-05-28 Nippon Telegr & Teleph Corp <Ntt> Photo switching and branching circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251955A (en) * 1975-10-23 1977-04-26 Mitsubishi Electric Corp Optical semiconductor device
JPS5466157A (en) * 1977-11-07 1979-05-28 Nippon Telegr & Teleph Corp <Ntt> Photo switching and branching circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795225A (en) * 1987-01-19 1989-01-03 Kokusai Denshin Denwa Kabushiki Kaisha Semiconductor optical switch
JPS63298308A (en) * 1987-05-11 1988-12-06 アメリカン テレフォン アンド テレグラフ カムパニー Semiconductor light waveguide device
JPH0264604A (en) * 1988-07-05 1990-03-05 Philips Gloeilampenfab:Nv Optoelectronic integrated semiconductor device

Similar Documents

Publication Publication Date Title
EP0147195B1 (en) Optical switch
US5276748A (en) Vertically-coupled arrow modulators or switches on silicon
US4840446A (en) Photo semiconductor device having a multi-quantum well structure
JP2873062B2 (en) Optical integrated device and method of manufacturing the same
US5452383A (en) Optical switch and method for producing the optical switch
JPS62174728A (en) Optical switch
US4784451A (en) Waveguide optical switches
JPH01319986A (en) Semiconductor laser device
JPS60173519A (en) Semiconductor optical switch
JP2503558B2 (en) Optical switch
US5581108A (en) Optical Switching device
JPH05251812A (en) Distributed-feedback semiconductor laser with quantum well structured optical modulator and manufacture thereof
JP2760276B2 (en) Selectively grown waveguide type optical control device
JPS60249117A (en) Waveguide type optical element
JP7444290B2 (en) semiconductor optical device
JPH06130236A (en) Cross type optical switch
WO2021001918A1 (en) Optical modulator
JPH09105959A (en) Optical switch
JPH0548889B2 (en)
JPH02298923A (en) Semiconductor optical switch
JPH07325328A (en) Semiconductor optical modulator
JP2538567B2 (en) Light switch
JPH02228634A (en) Semiconductor optical switch and its production
JPH0646272B2 (en) Waveguide type optical gate switch
Ravikumar et al. Optical Switching in Semiconductor MQW Optical Switch Due to Field Induced Reflection