JPH0355839A - 薄膜形成方法及び光反応装置 - Google Patents

薄膜形成方法及び光反応装置

Info

Publication number
JPH0355839A
JPH0355839A JP19187289A JP19187289A JPH0355839A JP H0355839 A JPH0355839 A JP H0355839A JP 19187289 A JP19187289 A JP 19187289A JP 19187289 A JP19187289 A JP 19187289A JP H0355839 A JPH0355839 A JP H0355839A
Authority
JP
Japan
Prior art keywords
substrate
gas
light
thin film
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19187289A
Other languages
English (en)
Inventor
Junichi Sato
淳一 佐藤
Yasushi Morita
靖 森田
Tetsuo Watanabe
哲男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19187289A priority Critical patent/JPH0355839A/ja
Publication of JPH0355839A publication Critical patent/JPH0355839A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光化学反応及び表面反応により薄膜を気相戒
長させる薄膜形成方法及びその方法に使用される光反応
装置に関する。
〔発明の概要〕
本発明は、反応室内に基板を載置し、上記基板に光源か
らの光を上記反応室の光入射窓を通して照射することに
より、反応ガスの光化学反応を利用して上記基板上に薄
膜を成長させる薄膜形成方法並びに光反応装置において
、不活性ガスをその流量を変化させながら上記光入射窓
に吹き付けることにより、光入射窓への膜堆積を防止す
ると共に、基板上での反応ガスの濃度分布を変化させて
、基板上にP威される薄膜の膜厚分布を改善するように
したものである。
また、本発明は、上記薄膜形成方法並びに光反応装置に
おいて、不活性ガスを上記基板の温度以上に加熱して上
記光入射窓に吹き付けることにより、光入射窓への膜堆
積を防止すると共に、不活性ガスによる基板並びに反応
ガスの冷却を防止して基板上に膜質の良好な薄膜を形成
できるようにしたものである。
また、本発明は、上記薄膜形成方法並びに光反応装置に
おいて、不活性ガスを上記基板の温度以上に加熱すると
共に、該不活性ガスをその流量を変化させながら上記光
入射窓に吹き付けることにより、光入射窓への膜堆積を
防止すると共に、基板上に形成される薄膜の膜質及び膜
厚分布を改善するようにしたものである。
〔従来の技術〕
光CVD (光による化学気相戒長)法は、例えば特開
昭61−224318号公報により紹介されているよう
に、光子エネルギの大きな紫外線もしくは光子密度の高
い可視光あるいは赤外光を用い反応ガス分子内の結合を
直接又は間接的に励起することにより、反応ガスを活性
化し、低温で基板上に高純度の薄膜を形成する成長法で
あり、超高集積回路の製造に不可欠な技術になるものと
予測され、注目を浴びている.その理由は、単に低温成
長が可能であるのみならず、荷電粒子による損傷がなく
低ダメージであり、反応の強さを容易にコントロールす
ることができ、ひいては良好な膜質の薄膜を形成するこ
とができ、マスクとの組み合わせによって選択的に薄膜
を成長させることができるということにある。
〔発明が解決しようとする課題〕
しかしながら、光CVD法で用いられる光源からの光は
、その光路の位置によってエネルギ密度が異なる.光C
VD法は、上述したように光源がらの光を反応ガスが吸
収することによって反応が進むため、上記エネルギ密度
の変化が基板上に形成される薄膜における膜厚の分布に
も反映し、均一化した膜厚を有する薄膜を基板上に形成
することができない。即ち、第14図で示すように、反
応室(2l)内での反応ガスの濃度分布が一定(平衡状
態)と仮定すると、光源からの光(22)の光路と基板
(23)の位置関係が図示の例のとき、基板(23)上
での光(22)のエネルギ密度分布は、第15図の曲線
で示すように、光源に一番近いエンヂ部(0点)でもっ
ともエネルギ密度が高く、光源から一番遠いエッヂ部(
F点)でもっともエネルギ密度が低くなっている。一般
に、反応ガスの光による反応効率は、光のエネルギ密度
が高いほど高くなるため、上記のような光のエネルギ密
度分布下においては、基板(23)上に形成される薄膜
における膜厚の分布も上記エネルギ密度分布と対応した
ものとなってしまい、基板(23)上に膜厚の均一化し
た薄膜が形成できないという不都合があった。
また、光CVD法は、反応室内に光を照射するため、反
応室の側壁に光入射窓を設ける必要があるが、この場合
、該窓を通して入射してくる光によって窓にも膜が堆積
してしまうという不都合がある。そこで、アルゴンAr
ガスなどの不活性ガスを窓に吹き付けて窓への膜堆積を
防止している(特開昭59−194427号公報参照)
。一方、光CVD法は、反応ガスの光による反応と、基
板上での表面反応により膜形戊を行なうため、基板を約
200″Cに加熱する必要がある。ところが、上記不活
性ガスにより、基板並びに反応ガスが冷却されてしまい
、反応ガスの光による反応及び基板上での表面反応がそ
の冷却により阻害され、基板上への膜戒長が停止あるい
は膜質が劣化した薄膜が形成されてしまうという不都合
があった。
本発明は、このような点に鑑み威されたもので、その目
的とするところは、基板上に形成される薄膜の膜厚分布
を改善して膜厚が均一化した薄膜を基板上に形成するこ
とができる薄膜形成方法及び光反応装置を提供すること
にある。
また本発明は、不活性ガスによる基板並びに反応ガスの
冷却が防止でき、基板上に膜質の良好な薄膜を形成する
ことができる薄膜形成方法及び光反応装置を提供するこ
とにある。
また本発明は、膜質が良好で、基板全面に関し均一化し
た膜厚を有する薄膜を形成することができる薄膜形成方
法及び光反応装置を提供することにある。
〔課題を解決するための手段〕
本発明の薄膜形成方法及び光反応装置は、反応室(1)
内に基板(3)を載置し、基板(3)に光源(6)から
の光(7)を反応室(1)の光入射窓(5)を通して照
射することにより、反応ガスの光化学反応を利用して基
板(3)上に薄膜を成長させる薄膜形成方法あるいは光
反応装置において、まず薄膜形成方法については、光入
射窓(5)に不活性ガスをその流量を変化させながら吹
き付けるようにして膜形成を行なう。一方、光反応装置
については、不活性ガスをその流量を変化させながら光
入射窓(5)に吹き付ける手段、例えばガスボンベ(1
0)、ガス導入管(9)及びガス流量可変装置(マスフ
ローコントローラ等)(11)ヲ設けて構威する。
また、本発明の薄膜形成方法及び光反応装置は、上記薄
膜形成方法あるいは光反応装置において、まず薄膜形成
方法については、不活性ガスを基板(3)の温度以上に
加熱して光入射窓(5)に吹き付けるようにして膜形成
を行なう。一方、光反応装置については、基板(3)の
温度以上に不活性ガスを加熱する手段(4)と、加熱さ
れた不活性ガスを光入射窓(5)に吹き付ける手段、例
えばガスボンベ(10)及びガス導入管(9)を設けて
構成する。
また、本発明の薄膜形成方法及び光反応装置は、上記薄
膜形成方法あるいは光反応装置において、まず薄膜形成
方法については、不活性ガスを基板(3)の温度以上に
加熱すると共に、該不活性ガスをその流量を変化させな
がら光入射窓(5)に吹き付けるようにして膜形成を行
なう。一方、光反応装置については、不活性ガスを基板
(3)の温度以上に加熱する手段(4)と、該不活性ガ
スをその流量を変化させながら光入射窓(5)に吹き付
ける手段、例えばガスボンベ(10)、ガス導入管(9
)及びガス流量可変装置(11)を設けて構威する。
〔作用〕
上述の本発明の薄膜形成方法及び光反応装置によれば、
不活性ガスをその流量を変化させながら光入射窓(5)
に吹き付けるようにしたので、基板(3)上での反応ガ
スの濃度分布を不活性ガスの流量の変化に対応させて変
化させることができ、この反応ガスの濃度分布の変化に
より、薄膜のピーク位置hpを移動させて膜厚の分布を
改善することができる。従って、基板(3)全面に関し
、反応ガスの光(7)による反応を均一化でき、基板(
3)上に形成される薄膜の膜厚を基板(3)全面に対し
均一化させることが可能となる。
また上述の本発明の薄膜形成方法及び光反応装置によれ
ば、不活性ガスを基板(3)の温度以上に加熱するよう
にしたので、上記不活性ガスによる基板(3)並びに反
応ガスの冷却を防止することができる。従って、不活性
ガスの基板(3)並びに反応ガスへの冷却作用による反
応ガスの光(7)との反応効率の劣化及び基板(3)上
での表面反応効率の劣化を防止することができ、基板(
3)上に膜質の良好な薄膜を形成することができる。
また上述の本発明の薄膜形成方法及び光反応装置によれ
ば、不活性ガスを加熱し、かつその流量を変化させて光
入射窓(5)に吹き付けるようにしたので、基板(3)
上に形成される薄膜の膜厚を基板(3)全面に関し均一
化させることができると共に、膜質の良好な薄膜を基板
(3)上に形成することができる。
〔実施例] 以下、第1図〜第13図を参照しながら本発明の実施例
を説明する。
第1図は、第l実施例に係る薄膜形成方法並びに光反応
装置を示す構或図である。この図において、(1)は光
CVDを行なう反応室、(2)は上面に半導体ウエハ(
3)が載置されるサセブタを示す。反応室(1)は、バ
ルブ,ポンプ等より威る排気系に接続されている。また
サセプタ(2)は、ヒータ(4)によって所定温度、例
えば約100〜200゜Cに加熱される。
(5)は、反応室(1)の側壁に設けられた出窓型式の
光入射窓であり、反応室(1)の外部に設置された光源
(例えばArFレーザ)(6)から出射されたレーザ光
(7)を反応室(1)内に入射させる。(8)は、反応
室(1)内に存するウェハ(3)の上方に反応ガス、例
えばsiznb/NH,を導くガス導入部であり、噴出
ノズルが多数配設されて威る。反応ガスSiz}Ib/
NHsは、本例においては、St.Hi=100SCC
M. NH3=350SCCMとした。また反応室(1
)内は、排気系により圧力約2.OTorrに保たれて
いる。
そして、光源(6)からのレーザ光(7)を光入射窓(
5)を通して反応室(1)内のウェハ(3)上に照射す
ることにより、ガス導入部(8)を通じて反応室(1)
内に導入された反応ガスSiz}l6/NHiが上記レ
ーザ光(7)の光エネルギによって分解してウエハ(3
)上にSiNx膜を成長させるようになされる。
ところが、一定時間後、反応室(1)内で生成される反
応生戒物(本例ではSiNx膜)が光入射窓(5)の反
応室(1)側の面上にも付着し、この付着が光(7)の
透過を妨げ、ウエハ(3)上へのSiNx膜の戒長を停
止させてしまう。そこで本例では光導入窓(5)近傍に
不活性ガス(例えばアルゴンArガス)を噴出するガス
導入管(9)を配管し、上述の如くウェハ(3)上にS
iNx膜を戒長させる場合、ガス導入管(9)から不活
性ガスが光入射窓(5)の面上を覆いながら排気系へ流
れるため、光入射窓(5)の面上にSiNx膜は付着し
なくなる.そのため、光源(6)からの光(7)は、常
に光入射窓(5)を通して反応室(1)内に供給され、
ウェハ(3)へのSiNx膜の成長を確実に行なうこと
ができる。上記不活性ガスは、光入射窓(5)への膜堆
積を防止することから以後該不活性ガスをパージガスと
記す。
更に本例においては、パージガス供給ボンベ(10)か
ら噴射ノズルまでのバージガス供給系にパージガス流量
可変装置(11)を設けて成る。このパージガス流量可
変装置(11)としてはMFC(マスフローコントロー
ラ)を用いるを可とする。そして、ウェハ(3)へのS
iNκ膜の成長時に、M F C (11)を用いてパ
ージガスの流量を除々に変化させる。
このM F C (11)によって変化させる流量の範
囲は、反応ガスSiJi/N■3の分圧や反応室(1)
の形状によって設定する必要があるが、本例では数10
5CCMから数1000SCCHの範囲でパージガスの
流量を変化させる. このように、パージガスの流量を変化させることによっ
て、反応ガスSizHb/NHxの濃度分布が除々に変
化し、これに伴なって第2図に示す如くウエハ(3)上
でのSiNκ膜における膜厚のピーク位置hpも除々に
移動するため、ウェハ(3)上に形成されるSiNx膜
の膜厚を均一化させることができる。ここで、第2図A
,B及びCは夫々パージガスの流量を300SCCM.
 400SCCM及び500SCCMとしたときの膜厚
分布を示すものであり、流量の変化に応じて膜厚のピー
ク位置hpが移動していることがわかる。
また、M F C (11)による流量変化の範囲は、
ウェハ(3)の回転、即ちサセプタ(2)の回転機構と
併用させれば、上記範囲(数105CCM〜数1000
SCCM )よりも少ない範囲に設定することが可能で
ある。尚、第1図及び第4図におけるM F C (1
1)の矢印はMF C (11)をパージガス流量可変
装置(即ち、パージガスの流量を徐々に変化させる装置
)として使用することを示すもので、通常使用(即ち、
パージガスの流量を一定量に制御する)の場合は、以後
の図面において矢印を省略して図示する。
次に、第3図に基いて第2実施例を説明する。
尚、上記第l実施例と対応するものについて同符号を記
し、その詳細説明は省略する。
この第2実施例での光入射窓(5)は、第1実施例のよ
うな出窓型弐ではなく、反応室(1)の側壁に沿って設
けられてなり、また、パージガスを反応室(1)内に導
くガス導入管(9)は、ヒータ(4)を埋設したサセプ
タ(2)内に配管されて、パージガスがサセブタ(2)
と熱的平衡に達した後、即ち本例ではウェハ(3)の温
度以上のv′J100〜200゜Cに達した後、光入射
窓(5)近傍に設置したノズルによりパージガスを吹き
出すように構威されている。第3図では、図示を省略し
てあるが、ガス導入管(9)は、バージガスがヒータ(
4)により充分加熱できるようにその配管ラインがヒー
タ(4)上に引きまわされてなる。
この第2実施例によれば、パージガスをサセブタ(2)
のヒータ(4)によって予めウェハ(3)の温度以上に
加熱して光入射窓(5)に吹き付けるようにしたので、
バージガスによるウエハ(3)並びに反応ガスの冷却を
防止することができる。従って、反応ガスの光(7)と
の反応効率の向上及びウェハ(3)上での表面反応効率
の向上を図ることができ、ウェハ(3)上に膜質の良好
なSiNx膜を形成することができる。
次に、上記第1実施例と第2実施例を組合せた第3実施
例を第4図に基いて説明する。尚、第1及び第2実施例
と対応するものについて同符号を記し、その詳細説明は
省略する。
この第3実施例においては、バージガス供給系、即ちガ
ス導入管(9)にパージガス流量可変装置として用いら
れるM F C (11)が設けられると共に、上記ガ
ス導入管(9)がサセプタ(2)内のヒータ(4)上に
配管されて威る。
この第3実施例によれば、ウェハ(3)へのSiNx膜
の成長時、バージガスはM F C (11)によりそ
の流量が除々に変化し、更に上記パージガスは、ヒータ
(4)によってウェハ(3)の温度以上に加熱されて光
入射窓(5)に吹き付けられるため、バージガスの流量
の変化によって反応ガスの濃度分布が除々に変化し、そ
れに伴って第2図に示すようにウエハ(3)上に形成さ
れるSiNx膜に関する膜厚のピーク位置hpも除々に
移動し、ウェハ(3)上には、膜厚が均一化されたSi
Nx膜が形成される。また同時にパージガスは、ヒータ
(4)によって加熱されているため、バージガスによる
ウエハ(3)及び反応ガスの冷却が防止され、膜質の良
好なSiNx膜をウェハ(3)上に形成することができ
る。
上記第1〜第3実施例において、ウエハ(3)上に形成
されるSiNx膜に関し、膜中のシリコンStとナイト
ライドNの比(Si/N)を変えるときは、本例におい
ては、レーザ光(7)の光路とウェハ(3)間の距離d
を変えることにより行なう。通常、シリコンSiとナイ
トライドNの比(St/N)を変える場合、反応ガスS
iJi/N}I3の各流量を変える必要があるが、この
場合、反応ガスの流量によってはパージガスによる光入
射窓(5)に対するパージ効果が失われるおそれがある
。そのため、バージガスの流量も新たに変える必要があ
り、これら反応ガス及びバージガスの流量の変化で反応
室(1)内の全圧が変化してしまいウエハ(3)上に形
成されるSiNx膜の膜質のストレスによる劣化を引起
こすおそれがある。このとき、膜厚の分布も変化する.
しかし本例の如くレーザ光(7)の光路とウエハ(3)
間の距離dを変化させるようにすれば、他の条件(反応
ガス.パージガスの流量)を全く変更することなく行な
われるため、上記のような不都合を心配することなく簡
単にウエハ(3)上に形成されるSiNx膜のシリコン
SiとナイトライドNの比(St/N)を変化させるこ
とができる。しかも第1及び第3実施例において、M 
F C (11)でバージガスの流量を変化させてもS
iNx膜の膜質に影響を及ぼすことはない。尚、レーザ
光(7)の光路とウエハ(3)間の距離dと、ウエノ1
(3)上に形成されるSiNx膜のシリコンSiとナイ
トライドNの比(Si/N)の関係は、第5図で示す距
離dと屈折率(屈折率が小さい程、ナイトライドNの存
する割合が多いことを示す)に関する特性曲線からもわ
かるとおり、距離dが小さい程、屈折率が小さくなり、
ナイトライドNの多い膜となっていることがわかる。
一方、上述のように、光CVD法で形成したSiNx膜
は不安定であるため、大気中に放置しておくと自然酸化
されてしまう場合がある。例えば反応ガスを上記と同様
にSiJi/NH3とし、更にウエハ(3)の温度を1
00″Cとしてウエハ(3)上にSiNx膜を形成した
場合、数日間大気中にさらすと、第6図のスペクトル特
性図の曲線■で示すように、酸化を示す波数1050 
(cod−’)のポイントで透過率の下限ビークP2が
現われ、自然酸化が進行していることがわかる。尚、曲
線Iは或膜直後のスペクトル特性を示すものである。そ
こでウエハ(3)への或膜後300″C以下の温度でア
ニールを行なってみたが、第6図の曲線■で示すように
、酸化を示すポイントで上記下限ビークP2よりも更に
下限のビークP3が現われ自然酸化を抑制する効果はほ
とんどないことがわかった。しかして本例においては、
ウェハ(3)への戒膜後、^r雰囲気中で400゜Cに
ウェハ(3)を加熱し、1.5時間のアニール処理を行
なう。Ar雰囲気は、パージガスをそのまま利用して形
成してもよい。このアニール処理によれば、第6図の曲
線■で示すように酸化を示す波数1050 (cm−’
)のポイントでピークは現われず、酸化の進行が停止し
ていることがわかる。従ってこのアニール処理を第1〜
第3実施例に利用することによって更に膜質の良好なS
iNx膜を形成することができる。
また、光CVD法では、ウエハ(3)上に薄膜を成長さ
せる際、反応ガスの濃度分布を均一にする必要がある。
特に第1及び第3実施例においては、バージガスの流量
を変化させて反応ガスの濃度分布を変化させるが、パー
ジガスの流量を変化させる前に予め反応ガスの濃度分布
を均一にしておけば、M F C (11)によるパー
ジガス流量の変化のタイ逅ングを容易かつ定量的に計る
ことができ、光CVD装置の全自動化を図ることが可能
となる。
そこで本例では、第7図に示すように、光入射窓(5)
と相対向する反応室(1)の側壁にもパージガス導入管
(9)を設けるようにする。この構或によれば、反応ガ
スは、両方向からのパージガス流出によりその濃度分布
が均一化される。尚、パージガス導入管(9)は、図示
の例のほか、紙面に対して垂直な方向にも設けるように
してもよい。
第8図は、上記反応ガスの濃度分布の均一化法を光源(
6)からの光(7)を反応室(1)の上方から供給する
タイプの光CVD装置に適用した場合を示すものであり
、上記第1〜第3実施例と対応するものについては同符
号を記す.即ち、この光CVD装置は、反応ガス導入部
(8)、バージガス導入管(9)及び排気系をウェハ(
3)に対し、対称に設けて成る。
即ち、ウェハ(3)上近傍に配される反応ガス導入部(
8)は、光(7)を妨げないように例えばウエハ(3)
の外周とほぼ大きさが同じリング状のものを用い、バー
ジガス導入管(9)は、光入射窓(5)近傍に両方向か
らバージガスが供給されるようになされ、排気系は、サ
セプタ(2)の下方に接続されて威る。この構或によれ
ば、反応ガスはパージガス導入管(9)から導入された
パージガスによりその濃度分布に影響を受けるが、両方
向からパージガスを導入しているため、その影響も両方
向から均一に行なわれ、ウェハ(3)上の反応ガスの濃
度分布は均一となる。
また、他の例としては、第9図に示すように、複数のノ
ズルが点対称に配列されたパージガス導入部(9)を光
入射窓(5)近傍に設け、また反応ガス導入部(8)を
ウェハ(3)に対し、複数個対称に設け、更に反応室(
1)の側壁及び底部に排気孔(l2)を複数個、ウェハ
(3)を中心として点対称となるように設ける(第10
図参照)。この場合も反応ガスの濃度分布は均一となる
。この第8図及び第9図に係る光CVD装置に第1〜第
3実施例に係る光CVD装置を適用することはもちろん
可能である。
また、光CVD法では、ウエハ及びサセプタを約200
゜C〜300゜Cに加熱するため、ウェハ及びサセプタ
からの熱輻射で反応室の内壁や空間中に気相反応が発生
し、それがダスト源になるおそれがある。そこで本例で
は、第11図に示すように、ウェハ(3)の対面に熱吸
収体を設けて成る。即ち、ウェハ(3)を例えばフエイ
スダウンで保持するサセプタ(2)の対面に冷却ガスが
流通するガス管(13)を設けて成る。サセプタ(2)
は内部にヒータ(4)を有し、約200℃〜300゜C
に加熱されている。また冷却ガスはヘリウムHeガスな
どが好適である。この構威によれば、気相Vでの反応ガ
スは、平衡状態では第12図の特性図で示すように、サ
セプタ(2)からサセブタ対面まで温度勾配をもつため
、気相Vで不必要な核成長は発生しなくなり、特に、反
応ガスを反応室(1)内に封じ込めて平衡状態で光CV
Dを行なう場合に有利である。また、反応ガスを流した
状態で光CVDを行なう場合もやはり気相Vでの核成長
は抑えられる。この他の例では、第13図に示すように
、ガス管(13)の配管を光入射窓(5)にまで延長す
れば、光入射窓(5)の冷却も兼ねることができ、光入
射窓(5)への膜堆積を更に効率よく防止することがで
きる。これら第11図及び第l3図の構或は、上記第1
〜第3実施例にも適用可能である。
〔発明の効果〕
本発明に係る薄膜形成方法及び光反応装置は、不活性ガ
スをその流量を変化させながら光入射窓に吹き付けるよ
うにしたので、光入射窓への膜堆積を防止できると共に
、基板上での反応ガスの濃度分布を変化させて、基板上
に形成される薄膜の膜厚分布を均一にすることができる
また、本発明に係る薄膜形成方法及び光反応装置は、不
活性ガスを基板の温度以上に加熱して光入射窓に吹き付
けるようしたので、光入射窓への膜堆積を防止できると
共に、不活性ガスによる基板並びに反応ガスの冷却を防
止でき、基板上に膜質の良好な薄膜を形成することがで
きる。
また、本発明に係る薄膜形成方法及び光反応装置は、不
活性ガスを基板の温度以上に加熱すると共に、該不活性
ガスをその流量を変化させながら光入射窓に吹き付ける
ようにしたので、光入射窓への膜堆積を防止できると共
に、基板上に形成される薄膜の膜質及び膜厚分布を改善
することができる。
【図面の簡単な説明】
第1図は第1実施例に係る薄膜形成方法及び光CVD装
置を示す構威図、第2図はパージガス流量の変化に伴な
う膜厚分布の変化を示す特性図、第3図は第2実施例に
係る薄膜形成方法及び光CVD装置を示す構威図、第4
図は第3実施例に係る薄膜形成方法及び光CVD装置を
示す構戒図、第5図はレーザ光,ウエハ間の距離と屈折
率の関係を示す特性図、第6図は或膜後の光透過スペク
トルを示す特性図、第7図は反応ガス濃度の均一化法の
一例を示す構威図、第8図及び第9図は反応ガス濃度の
均一化法の他の例を示す構或図、第10図は排気孔の配
役例を示す平面図、第11図はダスト低減化法の一例を
示す構威図、第12図は気相中における温度勾配を示す
特性図、第13図はダスト低減化法の他の例を示す構戒
図、第14図は基板と光の位置関係を示す説明図、第1
5図はウエハ上でのエネルギ密度を示す特性図である。 (1)は反応室、(2)はサセプタ、(3)はウェハ、
(4)はヒータ、(5)は光入射窓、(6)は光源、(
7)はレーザ光、(8)はガス導入部、(9)はガス導
入管、(10)はパージガス供給ボンベ、(11)はM
FCである。 代 理 人 松 隈 秀 盛 第2実JIeイ}りt’tTf!A[!1第3図 愁3実M!!fIjt示1構パ図 第4図 4手辰とたのイ立1!I¥l係1示1託明図第14図 ウIハ上の a1 瓢ハJ:?・のエネルギ2n署〒寸特}・tq?島 Δ席 ?氏■ 負j目中1二δIナる2五席勾I!Ii4よ7丁寺子生
の第12図

Claims (1)

  1. 【特許請求の範囲】 1、反応室内に基板を載置し、上記基板に光源からの光
    を上記反応室の光入射窓を通して照射することにより、
    反応ガスの光化学反応を利用して上記基板上に薄膜を成
    長させる薄膜形成方法において、 不活性ガスをその流量を変化させながら上記光入射窓に
    吹き付けるようにしたことを特徴とする薄膜形成方法。 2、反応室内に基板を載置し、上記基板に光源からの光
    を上記反応室の光入射窓を通して照射することにより、
    反応ガスの光化学反応を利用して上記基板上に薄膜を成
    長させる光反応装置において、 不活性ガスをその流量を変化させながら上記光入射窓に
    吹き付ける手段を設けて成る光反応装置。 3、反応室内に基板を載置し、上記基板に光源からの光
    を上記反応室の光入射窓を通して照射することにより、
    反応ガスの光化学反応を利用して上記基板上に薄膜を形
    成させる薄膜形成方法において、 不活性ガスを上記基板の温度以上に加熱して上記光入射
    窓に吹き付けるようにしたことを特徴とする薄膜形成方
    法。 4、反応室内に基板を載置し、上記基板に光源からに光
    を上記反応室の光入射窓を通して照射することにより、
    反応ガスの光化学反応を利用して上記基板上に薄膜を成
    長させる光反応装置において、 上記基板の温度以上に不活性ガスを加熱する手段と、加
    熱された不活性ガスを上記光入射窓に吹き付ける手段を
    設けて成る光反応装置。 5、反応室内に基板を載置し、上記基板に光源からの光
    を上記反応室の光入射窓を通して照射することにより、
    反応ガスの光化学反応を利用し て上記基板上に薄膜を
    成長させる薄膜形成方法において、 不活性ガスを上記基板の温度以上に加熱すると共に、該
    不活性ガスをその流量を変化させながら上記光入射窓に
    吹き付けるようにしたことを特徴とする薄膜形成方法。 6、反応室内に基板を載置し、上記基板に光源からの光
    を上記反応室の光入射窓を通して照射することにより、
    反応ガスの光化学反応を利用して上記基板に薄膜を成長
    させる光反応装置において、 不活性ガスを上記基板の温度以上に加熱する手段と該不
    活性ガスをその流量を変化させながら上記光入射窓に吹
    き付ける手段を設けて成る光反応装置。
JP19187289A 1989-07-25 1989-07-25 薄膜形成方法及び光反応装置 Pending JPH0355839A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19187289A JPH0355839A (ja) 1989-07-25 1989-07-25 薄膜形成方法及び光反応装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19187289A JPH0355839A (ja) 1989-07-25 1989-07-25 薄膜形成方法及び光反応装置

Publications (1)

Publication Number Publication Date
JPH0355839A true JPH0355839A (ja) 1991-03-11

Family

ID=16281881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19187289A Pending JPH0355839A (ja) 1989-07-25 1989-07-25 薄膜形成方法及び光反応装置

Country Status (1)

Country Link
JP (1) JPH0355839A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100012032A1 (en) * 2008-07-19 2010-01-21 Yung-Tin Chen Apparatus for high-rate chemical vapor deposition
US7960252B2 (en) * 2008-09-30 2011-06-14 Yung-Tin Chen Method for forming a semiconductor film including a film forming gas and decomposing gas while emitting a laser sheet
JP2015517203A (ja) * 2012-03-14 2015-06-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 水平レーザを有する原子層堆積のための装置および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100012032A1 (en) * 2008-07-19 2010-01-21 Yung-Tin Chen Apparatus for high-rate chemical vapor deposition
US7960252B2 (en) * 2008-09-30 2011-06-14 Yung-Tin Chen Method for forming a semiconductor film including a film forming gas and decomposing gas while emitting a laser sheet
JP2015517203A (ja) * 2012-03-14 2015-06-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 水平レーザを有する原子層堆積のための装置および方法

Similar Documents

Publication Publication Date Title
US5234869A (en) Method of manufacturing silicon nitride film
KR100215376B1 (ko) 표면감수성이감소된오존/테트라에톡시실란산화규소막의증착방법
JPH07201762A (ja) 半導体素子製造用ガス供給装置
JP2000150513A (ja) 窒化ケイ素薄膜の蒸着
US20090104541A1 (en) Plasma surface treatment to prevent pattern collapse in immersion lithography
KR20020008395A (ko) 화학 증착 시스템 및 방법
CN107924841A (zh) 气体供给部、衬底处理装置及半导体器件的制造方法
JPS6140035B2 (ja)
KR100274944B1 (ko) 박막작성장치
JPH02258689A (ja) 結晶質薄膜の形成方法
JPH0355839A (ja) 薄膜形成方法及び光反応装置
TW505542B (en) Rapid thermal processing system and its apparatus and method
JP2011044493A (ja) 半導体装置の製造方法
JPS6283339A (ja) 光フアイバ被膜形成方法
Motooka et al. Epitaxial growth of Si by ArF laser‐excited supersonic free jets of Si2H6
JP2723053B2 (ja) 薄膜の形成方法およびその装置
JP2000100728A (ja) 結晶成長装置
KR100988730B1 (ko) 실리콘 나이트라이드의 원자층증착 방법
JPH08262251A (ja) 光導波路成膜装置
JP2004095940A (ja) 半導体装置の製造方法
JPH02281614A (ja) 多結晶シリコン薄膜の製造方法
JPH04206524A (ja) 半導体の成膜装置
JPS6118123A (ja) 薄膜形成装置
JPS6314873A (ja) 光cvd装置
JPS61198733A (ja) 薄膜形成方法