JPH035497B2 - - Google Patents

Info

Publication number
JPH035497B2
JPH035497B2 JP59219182A JP21918284A JPH035497B2 JP H035497 B2 JPH035497 B2 JP H035497B2 JP 59219182 A JP59219182 A JP 59219182A JP 21918284 A JP21918284 A JP 21918284A JP H035497 B2 JPH035497 B2 JP H035497B2
Authority
JP
Japan
Prior art keywords
heat
thermosiphon
gas
liquid separation
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59219182A
Other languages
Japanese (ja)
Other versions
JPS6196341A (en
Inventor
Yoshihisa Fujii
Katsuya Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP59219182A priority Critical patent/JPS6196341A/en
Publication of JPS6196341A publication Critical patent/JPS6196341A/en
Publication of JPH035497B2 publication Critical patent/JPH035497B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一般のオフイスビルや住宅用及びグ
リーンハウスの冷暖房または道路の融雪などに必
要な熱エネルギーを効率的に輸送する方法に関す
るもので、通常利用の他に地域毎の集中管理方式
や工場等の廃熱や温泉熱等コストのかからない熱
源の有効利用にも役立つものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for efficiently transporting thermal energy necessary for heating and cooling general office buildings, residential buildings, and greenhouses, or for melting snow on roads. In addition to normal use, it is also useful for centralized management in each region and for the effective use of inexpensive heat sources such as waste heat from factories and heat from hot springs.

〔従来技術とその問題点〕[Prior art and its problems]

冷暖房を行なう分野で、熱エネルギーの輸送方
法としてはヒートポンプが広く普及している。し
かし、かかるヒートポンプを用いる輸送方式では
熱需要部が離れて存在する場合は輸送のためのポ
ンプ動力が必要となり、ランニングコストがかか
り、省エネルギー効果も低減してしまう。
In the field of heating and cooling, heat pumps are widely used as a method of transporting thermal energy. However, in such a transportation method using a heat pump, if the heat demand section is located far away, pump power is required for transportation, which increases running costs and reduces the energy saving effect.

一方、ポンプ等の動力を用いない無動力の熱エ
ネルギーの輸送法として熱サイフオンがあるが、
該熱サイフオンは上端に設置される気液分離ドラ
ムを冷却しフロン蒸気を凝縮させる必要があり、
その熱損失が問題である。
On the other hand, there is a thermosiphon, which is a non-powered method of transporting thermal energy that does not use power such as a pump.
The thermosiphon needs to cool the gas-liquid separation drum installed at the upper end to condense the freon vapor.
That heat loss is a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は前記従来例の不都合を解消する
ことにあり、そのために本発明は熱サイフオンの
気液分離ドラム内に配設される冷却用熱交換器を
熱入力源としてヒートポンプに接続し、該ヒート
ポンプの熱出力を行なう熱交換器を熱サイフオン
の本体に設け、ヒートポンプの補助熱源として熱
サイフオンの気液分離ドラム内で得られる凝縮潜
熱を用いながら、ヒートポンプで得られた温熱、
冷熱を熱サイフオンを利用して熱負荷側に輸送す
ることを要旨とする。
An object of the present invention is to eliminate the disadvantages of the conventional example, and for this purpose, the present invention connects a cooling heat exchanger disposed in the gas-liquid separation drum of a thermosiphon to a heat pump as a heat input source, A heat exchanger for producing heat output from the heat pump is installed in the main body of the thermosiphon, and the latent heat of condensation obtained in the gas-liquid separation drum of the thermosiphon is used as an auxiliary heat source for the heat pump.
The main idea is to transport cold energy to the heat load side using a thermosiphon.

〔作用〕[Effect]

本発明によれば、今まで無駄に捨てられていた
熱サイフオンの気液分離ドラム内の凝縮潜熱をヒ
ートポンプの補助熱源として利用でき、その結
果、ヒートポンプと熱サイフオンを組合せて両者
の欠点を補うことになる。
According to the present invention, the latent heat of condensation in the gas-liquid separation drum of the thermosiphon, which has been wasted until now, can be used as an auxiliary heat source for the heat pump, and as a result, the heat pump and the thermosiphon can be combined to compensate for the drawbacks of both. become.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の輸送方法の実施例を示す概念
図で、図中Aは熱サイフオン、Bはヒートポンプ
を示す。
FIG. 1 is a conceptual diagram showing an embodiment of the transportation method of the present invention, in which A indicates a thermosiphon and B indicates a heat pump.

熱サイフオンAは周知なごとく上昇管1、気液
分離ドラム2、下降管3及び輸送管4からなる密
閉構造であり、これらの内部は熱媒体としての液
体フロン113(Ccl2F−CcF2)で満されている。液
体フロンとフロン蒸気が平衝状態となつている気
液分離ドラム2は最上端に置かれ、上昇管1及び
下降管3は約5〜10mほど上がる。また、輸送管
4は水平方向に約100〜300mほど伸び、その端は
放熱コイルに形成されてフアンコイルユニツト5
の一部を構成し、ここから熱需要部に温熱若しく
は冷熱を供給できるようにしている。
As is well known, thermosiphon A has a sealed structure consisting of an ascending pipe 1, a gas-liquid separation drum 2, a descending pipe 3, and a transport pipe 4, and inside these is liquid fluorocarbon 113 (Ccl 2 F-CcF 2 ) as a heat medium. filled with. The gas-liquid separation drum 2, in which liquid fluorocarbon and fluorocarbon vapor are in equilibrium, is placed at the top, and the ascending pipe 1 and descending pipe 3 rise approximately 5 to 10 meters. Further, the transport pipe 4 extends horizontally for approximately 100 to 300 m, and its end is formed into a heat dissipation coil and is connected to the fan coil unit 5.
from which hot or cold heat can be supplied to the heat demand section.

図中7は気液分離ドラム2内に配設され、フロ
ン113の蒸気を凝縮させてドラム2内の圧力を一
定に保持するための冷却用の熱交換器で、該熱交
換器7の他端を熱入力用としてヒートポンプBに
接続する。また、ヒートポンプBのy熱出力(暖
房運転では温熱、冷房運転では冷熱)をフロンに
伝熱するための熱交換器6を、熱サイフオンAの
本体中、上昇管1の下端部に設置する。
In the figure, 7 is a cooling heat exchanger disposed inside the gas-liquid separation drum 2 to condense the vapor of the freon 113 and keep the pressure inside the drum 2 constant. Connect the end to heat pump B for heat input. In addition, a heat exchanger 6 for transferring heat output of the heat pump B (hot heat in heating operation, cold heat in cooling operation) to the fluorocarbon is installed in the main body of thermosiphon A at the lower end of the riser pipe 1.

図中、9は真空/加圧ポンプで、気液分離ドラ
ム2に接続され、暖房・冷房運転の切換え時に気
液分離ドラム2の圧力設定を行うもの、図中8は
外気を導入し、ヒートポンプBの吸熱源を調整す
るバルブを示す。
In the figure, 9 is a vacuum/pressure pump that is connected to the gas-liquid separation drum 2 and sets the pressure of the gas-liquid separation drum 2 when switching between heating and cooling operation. A valve that adjusts the heat absorption source of B is shown.

次に前記のごとき装置を用いての動作について
説明する。
Next, the operation using the above-mentioned apparatus will be explained.

まず、暖房運転の場合について説明すると、バ
ルブ8を介して導入される外気空気及び熱交換器
7からの入力を熱源xとしてヒートポンプBを作
動させ高温yと低温排気zを得る。この場合、前
記のごとく熱交換器7からの熱は気液分離ドラム
2内に発生する凝縮潜熱である。
First, the case of heating operation will be described. Heat pump B is operated using outside air introduced through valve 8 and input from heat exchanger 7 as heat source x to obtain high temperature y and low temperature exhaust z. In this case, as described above, the heat from the heat exchanger 7 is the latent heat of condensation generated within the gas-liquid separation drum 2.

一方、熱交換器6を介してフロン液は加熱さ
れ、沸点に達すると上昇管1内で沸騰気泡が発生
する。この沸騰気泡による上昇管1内の密度低下
を駆動力として加熱フロン液は輸送管4を通り熱
需要部に送られフアンコイルユニツト5を介して
室内の暖房に使われる。その流れと温度レベルを
第2図に示し、また第1図中の実線矢印で示し
た。
On the other hand, the fluorocarbon liquid is heated through the heat exchanger 6, and when it reaches its boiling point, boiling bubbles are generated in the riser pipe 1. Using the density reduction in the riser pipe 1 due to the boiling bubbles as a driving force, the heated Freon liquid is sent through the transport pipe 4 to the heat demand section and is used for indoor heating via the fan coil unit 5. The flow and temperature level are shown in FIG. 2 and indicated by solid arrows in FIG.

そして、フロン113の飽和圧力と飽和温度の曲
線は第4図に示すように、飽和温度の上昇と共に
飽和圧力も上昇する。加熱されたフロン液の温度
はほぼ飽和温度に等しくなるため、輸送温度の調
整は気液分離ドラム2の圧力で行うことができる
が、調整範囲は最大2Kg/cm2G(飽和温度70℃以
下)であるため熱サイフオンAの圧力は比較的低
圧に保持され、安全である。
As shown in FIG. 4, the saturation pressure and saturation temperature curve of the Freon 113 increases as the saturation temperature increases. Since the temperature of the heated Freon liquid is almost equal to the saturation temperature, the transportation temperature can be adjusted by the pressure of the gas-liquid separation drum 2, but the adjustment range is up to 2Kg/cm 2 G (saturation temperature 70℃ or less) ), the pressure of thermosiphon A is maintained at a relatively low pressure and is safe.

次に冷房運転時の場合について説明すると、外
気空気及び熱交換器7からの入力を熱源xとして
ヒートポンプを作動させ低温yと高温排気zを得
る。そして熱交換器6を介してフロン液は冷却さ
れる。
Next, the case of cooling operation will be described. The heat pump is operated using outside air and input from the heat exchanger 7 as the heat source x to obtain low temperature y and high temperature exhaust gas z. The fluorocarbon liquid is then cooled through the heat exchanger 6.

気液分離ドラム2の圧力を真空ポンプ9を用い
て大気圧以下に設定しておけば、フアンコイルユ
ニツト5で加熱されたフロン液は20℃程度でも沸
とうし、輸送管4や下降管3を通して気泡は上昇
し、フロン液は暖房時と逆向きに(第1図点線矢
印参照)流れ、冷却されたフロン液はフアンコイ
ルユニツト5に流入する。また、気液分離ドラム
2では熱交換器7によつてフロン蒸気は凝縮し、
ドラム内圧力は低圧のまま保持される。この流れ
の温度レベルを第3図に示す。
If the pressure of the gas-liquid separation drum 2 is set below atmospheric pressure using the vacuum pump 9, the fluorocarbon liquid heated by the fan coil unit 5 will boil even at around 20°C, and the The air bubbles rise through the fan coil unit 5, the fluorocarbon liquid flows in the opposite direction to that during heating (see the dotted arrow in FIG. 1), and the cooled fluorocarbon liquid flows into the fan coil unit 5. Furthermore, in the gas-liquid separation drum 2, the fluorocarbon vapor is condensed by the heat exchanger 7,
The pressure inside the drum is maintained at a low pressure. The temperature level of this flow is shown in FIG.

〔効果〕〔effect〕

以上述べたように本発明の冷暖房用熱エネルギ
ーの輸送方法は、ヒートポンプと熱サイフオンを
組合わせ、ヒートポンプの補助熱源として熱サイ
フオン上端の気液分離ドラム内の発熱としての凝
縮潜熱を利用するようにしたので、省エネルギー
効果が高く下記の効果を発揮できるものである。
As described above, the method for transporting thermal energy for air conditioning and heating of the present invention combines a heat pump and a thermosiphon, and utilizes the latent heat of condensation as heat generated in the gas-liquid separation drum at the upper end of the thermosiphon as an auxiliary heat source for the heat pump. Therefore, it has a high energy saving effect and can exhibit the following effects.

(イ) 熱輸送動力費が不用であるため、ランニング
コストが安く遠方への熱輸送が可能である。
(b) Heat transport Since power costs are not required, running costs are low and heat can be transported to long distances.

(ロ) 熱サイフオンはクローズドシステムで、かつ
構造が簡単であるためメンテナンスが容易であ
る。
(b) The thermosiphon is a closed system and has a simple structure, so maintenance is easy.

(ハ) 熱サイフオン内の圧力は10Kg/cm2G以下の低
圧であり、安全性が高い。
(c) The pressure inside the thermosiphon is low, less than 10Kg/cm 2 G, and is highly safe.

(ニ) ヒートポンプは市販製品が利用でき、簡単に
組立てられる。
(d) Heat pumps are commercially available products and can be easily assembled.

(ホ) 同じ配管で冷暖房が共用できるため配管コス
トが安い。
(e) Piping costs are low because heating and cooling can be shared using the same piping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷暖房用熱エネルギーの輸送
方法の実施例を示す概念図、第2図は暖房運転時
の動作説明図、第3図は冷房運転時の動作説明
図、第4図は熱媒体の飽和圧力曲線を示すグラフ
である。 A……熱サイフオン、B……ヒートポンプ、1
……上昇管、2……気液分離ドラム、3……下降
管、4……輸送管、5……フアンコイルユニツ
ト、6,7……熱交換器、8……バルブ、9……
ドラム内圧力調整用真空/加圧ポンプ。
Fig. 1 is a conceptual diagram showing an embodiment of the method of transporting thermal energy for air conditioning and heating according to the present invention, Fig. 2 is an explanatory diagram of the operation during heating operation, Fig. 3 is an explanatory diagram of the operation during cooling operation, and Fig. 4 is an explanatory diagram of the operation during cooling operation. It is a graph which shows the saturation pressure curve of a heat medium. A...Thermosiphon, B...Heat pump, 1
... Ascending pipe, 2... Gas-liquid separation drum, 3... Descending pipe, 4... Transport pipe, 5... Fan coil unit, 6, 7... Heat exchanger, 8... Valve, 9...
Vacuum/pressure pump for adjusting the pressure inside the drum.

Claims (1)

【特許請求の範囲】[Claims] 1 熱サイフオンの気液分離ドラム内に配設され
る冷却用熱交換器を熱入力源としてヒートポンプ
に接続し、該ヒートポンプの熱出力を行なう熱交
換器を熱サイフオンの本体に設け、ヒートポンプ
の補助熱源として熱サイフオンの気液分離ドラム
内で得られる凝縮潜熱を用いながら、ヒートポン
プで得られた温熱、冷熱を熱サイフオンを利用し
て熱負荷側に輸送することを特徴とした冷暖房用
熱エネルギーの輸送方法。
1. A cooling heat exchanger installed in the gas-liquid separation drum of the thermosiphon is connected to the heat pump as a heat input source, and a heat exchanger for producing the heat output of the heat pump is provided in the main body of the thermosiphon to assist the heat pump. A thermal energy system for heating and cooling that uses the latent heat of condensation obtained in the gas-liquid separation drum of the thermosiphon as a heat source, and transports the hot and cold heat obtained by the heat pump to the heat load side using the thermosiphon. Transportation method.
JP59219182A 1984-10-17 1984-10-17 Transporting method of air conditioning heat energy Granted JPS6196341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219182A JPS6196341A (en) 1984-10-17 1984-10-17 Transporting method of air conditioning heat energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219182A JPS6196341A (en) 1984-10-17 1984-10-17 Transporting method of air conditioning heat energy

Publications (2)

Publication Number Publication Date
JPS6196341A JPS6196341A (en) 1986-05-15
JPH035497B2 true JPH035497B2 (en) 1991-01-25

Family

ID=16731481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219182A Granted JPS6196341A (en) 1984-10-17 1984-10-17 Transporting method of air conditioning heat energy

Country Status (1)

Country Link
JP (1) JPS6196341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637011A (en) * 2013-10-24 2016-06-01 日本曹达株式会社 Polyol composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272042A (en) * 1986-05-20 1987-11-26 Nippon P-Mc Kk Heat pump type air conditioning equipments
CN101813403B (en) * 2010-04-21 2011-08-10 冯益安 Low-pressure extraction-type air conditioner or heat pump water heater
CN102720553B (en) * 2012-04-27 2016-12-14 王法文 A kind of method and apparatus producing kinetic energy and refrigeration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637011A (en) * 2013-10-24 2016-06-01 日本曹达株式会社 Polyol composition

Also Published As

Publication number Publication date
JPS6196341A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
EP0127939A3 (en) High efficiency boiler
JPH035497B2 (en)
US2795115A (en) Absorption refrigeration
US3880230A (en) Heat transfer system
JPS6045328B2 (en) heating device
JPS63275897A (en) Low temperature utilizing method for liquified natural gas
RU2186005C2 (en) Device and method for functioning of panel unit with thermal tubes
JPS5852919A (en) Heat pump device
JP4416316B2 (en) Boiler and power generator
JP3062565B2 (en) Cooling water inlet temperature control method for refrigerator in water heat storage system
JP2530221B2 (en) Waste heat recovery type heat storage cooling system
JPS56105225A (en) Room heating device
JPS6242296Y2 (en)
JPS6150212B2 (en)
WO2003078904A1 (en) Heat exchange structure body for atmospheric pressure steam and heat exchange method
JPS62288493A (en) Heat transfer system
SU1153170A1 (en) Cryogenic liquid gasifier
JPH0236561Y2 (en)
JPH068414Y2 (en) Energy supply system for heat exchange equipment
JPS6057137A (en) Building temperature adjusting device utilizing heat pipe
JPH0817481A (en) Thermoelectric transducing device
JPH066957U (en) Cold plate
JPS6285451A (en) Heat transfer apparatus
JPH05149569A (en) Air heater and air cooler
GB1596786A (en) Energy storage devices