JP4416316B2 - Boiler and power generator - Google Patents

Boiler and power generator Download PDF

Info

Publication number
JP4416316B2
JP4416316B2 JP2000398752A JP2000398752A JP4416316B2 JP 4416316 B2 JP4416316 B2 JP 4416316B2 JP 2000398752 A JP2000398752 A JP 2000398752A JP 2000398752 A JP2000398752 A JP 2000398752A JP 4416316 B2 JP4416316 B2 JP 4416316B2
Authority
JP
Japan
Prior art keywords
heat
temperature
vibration
flow path
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000398752A
Other languages
Japanese (ja)
Other versions
JP2002195789A (en
Inventor
和嗣 渡部
利彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoe Shokai Co Ltd
Original Assignee
Tomoe Shokai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoe Shokai Co Ltd filed Critical Tomoe Shokai Co Ltd
Priority to JP2000398752A priority Critical patent/JP4416316B2/en
Publication of JP2002195789A publication Critical patent/JP2002195789A/en
Application granted granted Critical
Publication of JP4416316B2 publication Critical patent/JP4416316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in an exhaust heat recovery heat exchanger 1 of a conventional boiler 10 or turbine 32, of the cost increasing because a space is required for that part and the capacity of extra piping or pump 15 must be increased, in order to circulate the heating medium, i.e., boiler water, and it has been difficult to keep the temperature at a constant level, because the thermal conductivity is not controlled appropriately in a two-phase type heat pipe. SOLUTION: The thermal conduction apparatus comprises an opposed oscillation flow type heat pipe 2, a control box 5, and a thermosensor 6. The opposed oscillation flow type heat pipe 2 causes thermal conductivity to vary, by varying oscillation of liquid 2c by a shaker 2d. The thermosensor 6 transmits temperature information of a thermal storage tank 20 to the control box 5. Based on the temperature information, the control box 5 controls the oscillation of the shaker 2d. Thus the temperature of the thermal storage tank 20 can be controlled to be at a constant level, if the thermal conduction apparatus is used.

Description

【0001】
【発明の属する技術分野】
高温部と低温部との間に並列に延在する複数の流路部を備える流路と、該流路内にほぼ満たされた状態で封入される液体と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段とを備え、前記流路の隣合う流路部内の液体同士が壁を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行うことにより熱伝導率を高めることが可能な熱伝導部材を用いたボイラ及び発電装置に関する。
【0002】
【従来の技術】
従来、例えば、図8に示すような、工場等における給湯及び暖房のために、湯を貯蔵しておく缶体13を備え、かつ、排気熱を回収するための排熱回収熱交換器1を備えたボイラ10がある。該ボイラ10は、該ボイラ10の主動力としてバーナ11(加熱部)を備え、該バーナ11の燃焼による排気ガスが通る熱交換部12(熱交換部)が缶水を貯蔵している缶体13内に設けられ、該缶体13内の缶水を加熱している。また、該熱交換部12及び排熱回収熱交換器1を通過後の該排気ガスを外部へ排出させるための煙道14(排気系)と、前記缶体13内の缶水を該缶体13内部や排熱回収熱交換器1へ循環させるためのポンプ15、配管16と、ボイラ10の熱エネルギーを外部に供給する外部熱交換部17を備えている。
通常は、ボイラ10のバーナ11によって生じる排気熱は、煙道14を通ってそのまま外部に捨てられてしまうが、熱交換部12の出口である煙道14に排熱回収熱交換器1を設けることにより、この捨てられている排気熱の熱エネルギを該排熱回収熱交換器1を用いて缶水の加温を行わせ、再利用させている。
【0003】
【発明が解決しようとする課題】
ところで、前記ボイラ10では、該排熱回収熱交換器1を前記熱交換部12の出口と煙道14の間に設ける為にボイラのスペース(体積)が増え、また該排熱回収熱交換器1に缶水を循環させる為の配管を設け、さらに該排熱回収熱交換器1を通過する水の圧損が加わる為にポンプサイズやその動力に余計なコストがかかっていた。
また、熱伝導装置としては、例えば、二相の蒸発と凝縮との相変化によるヒートパイプ等が知られており、この熱伝導装置を用いて排気熱を缶水側に伝導することが考えられる。
しかし、ヒートパイプ等の相変化を利用した熱伝導装置は、主に、熱伝導率を上げるが、高温部の熱が制御されることなく一方的に低温部に搬送され、従って放熱等の目的でしか使用されていなかった。
【0004】
すなわち、二相の蒸発と凝縮との相変化による熱伝導装置では流れる熱量を制御する機能がないため、受熱部で吸熱した熱を自動的に運び、そのまま放熱部で放熱するしかない。したがって、上述のボイラの排気熱の再利用に用いた場合に、従来の熱伝導装置では、排気熱の缶水への熱伝導を制御することはできず、熱の消費の負荷がない時は熱伝導装置の缶水への放熱部分で過熱する恐れもあった。さらに、ボイラが停止し、煙道14の温度が缶水より下がった時の熱の逆流も制御できなかった。
一方、排気熱の熱量を貯蓄しておくための蓄熱槽を備えたボイラでは、従来の熱伝導装置が熱伝導率を適宜制御できないため、蓄熱槽から使用され、消費される熱とのバランスにおいて、該蓄熱槽内の熱媒体の温度を一定に保つことは難しかった。
しかし、実際の日常生活において、熱を利用する暖房や給湯では、絶対的な熱量も必要であるが、それよりも快適に利用できる温度レベルを常時保つことが重要であった。
【0005】
また、従来の二相式のヒートパイプを用いて、例えば、ビル等の建築物の冷暖房システムを構築しようとした場合に、すなわち、室外機と室内機との間の熱輸送にヒートパイプを用いた場合に、室外機を屋上に設置すると以下のような問題が発生する。
すなわち、暖房時に、従来の二相式のヒートパイプを熱輸送に使用すると、放熱部が受熱部より下の位置となり、その間の距離が長くなると、ヒートパイプに封入された液体が蒸発しても下に降りない為、ヒートパイプの機能は極端に低下する。
本発明の課題は、熱輸送量の制御性が備えられ、液体一相の振動流型ヒートパイプを熱伝導部材として用いたボイラ及び発電装置を提供することである。
【0006】
【課題を解決するための手段】
本発明の請求項1記載のボイラは、図1から図3に示すように、
高温部と低温部との間に並列に延在する複数の流路部(2e)を備える流路と、該流路内にほぼ満たされた状態で封入される液体(2c)と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段(加振器2d)とを備え、前記流路の隣合う流路部内の液体同士が壁(流路壁2b)を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行う熱伝導部材(対向振動流型ヒートパイプ2)と、
各種センサ・機器等の装置に接続されて信号を出力する信号出力手段(サーモセンサー6)と、
該信号出力手段から出力された信号に基づいて、前記加振手段により液体に加えられる振動の開始及び停止と、振動の振幅と、振動の振動数とのうちの少なくとも一つを制御するとともに、前記加振手段の作動及び停止を制御する制御手段(制御ボックス5)と、を備える熱伝導装置を用いたボイラ(10)であって、
缶水を有する缶体(13)と、
前記缶水を加熱する加熱部(バーナ11)と、
該加熱部からの熱を缶水に伝える熱交換部(12)と、
前記加熱部からの排気を放出する排気系(煙道14)と、
前記缶水の温度を計測するセンサを備えるとともに計測された温度を示す信号を出力する前記信号出力手段となる温度計測手段と、を備え、
前記熱伝導部材は、前記排気系から前記缶水に熱を伝導し、
前記制御手段は、前記缶水の温度が所定の温度付近に達するまでは、前記熱伝導部材が高い熱伝導率で前記排気系の熱を前記缶水に伝導するように前記加振手段を制御し、前記缶水の温度が所定の温度付近に達した場合には、前記熱伝導部材の熱伝導率が前記缶水の温度がほぼ所定の温度を維持するものとなるように前記加振手段を制御することを特徴とする。
【0007】
上記構成によれば、例えば、前記信号出力手段を、温度を計測するセンサを備えるとともに計測された温度を示す信号を出力する温度計測手段とし、該温度計測手段が前記低温部に設けられた場合、温度計測手段は低温部の温度を感知して制御手段に信号を送り、該信号によって制御手段は、熱伝導部材内部の加振手段の振動の振幅及び振動数や、該加振手段の作動及び停止を制御することができる。また、該熱伝導部材は、該熱伝導部材内部の液体の振動が変化すれば、該熱伝導部材の熱伝導率も変化する機能を備えているので、前記高温部から前記低温部へ伝導する熱量、即ち、熱輸送量を前記低温部の温度によって、適宜制御することができる。
従って、前記熱伝導装置は、前記低温部の温度をほぼ一定に保つ制御を行うことができる。
また、前記温度計測手段が前記高温部に設けられた場合、該温度計測手段は該高温部の温度を感知して前記制御手段に信号を送り、該信号によって該制御手段は、前記熱伝導部材内部の前記加振手段の振動の振幅及び振動数のうちの少なくとも一つを制御するとともに、該加振手段の作動及び停止を制御することができる。この時、該高温部の温度がある所定の温度を越えると前記加振手段を停止させ、所定の温度以下であれば該加振手段を作動させるといった制御を行い、かつ、該所定の温度を前記熱伝導部材が熱伝導できる限界以下の温度近傍に設定しておけば、該熱伝導部材の寿命を長持ちさせることができる。また、該高温部の温度がある所定の温度を越えると前記加振手段を作動させ、所定の温度以下であれば該加振手段を停止させるといった制御を行い、かつ、該所定の温度を前記低温部の温度に設定しておけば、該低温部の温度が前記高温部の温度よりも、高くなることによって生じる該低温部から該高温部への熱輸送量の逆流現象を防ぐことができる。
なお、信号出力手段は、上述の温度計測手段に限定されるものではなく、例えば、高温部側の熱源のオンオフに対応して信号を出力するものや、本発明の熱伝導装置により熱が伝導されて温められる媒体の供給の開始と停止とに対応して信号を出力するものであってもよい。
【0008】
また、上記構成によれば、前記缶水の温度が所定の温度以下の時は、前記熱交換部と高い熱伝導率になっている前記熱伝導部材とによって、該缶水は急速に加熱される。そして、該缶水の温度が所定の温度に達した時、該缶水に設置されている前記温度計測手段が該缶水の温度を感知して温度を示す信号を出力し、該信号が前記制御手段に入力される。該制御手段は、該熱伝導部材の熱伝導率を下げて、該缶水の温度をほぼ所定の温度に維持させるように、前記加振手段を適宜制御する。
以上のことから、前記排気系から前記缶水に熱を伝導する前記熱伝導部材により、該缶水の加熱を補助することができる。また、前記温度計測手段が該缶水の温度を感知して前記制御手段に温度を示す信号を送り、該信号によって該制御手段は、前記加振手段の振幅及び振動数を前記制御手段が制御することによって、該熱伝導部材の熱伝導率を制御し、該缶水の温度を一定に維持する制御を行うことができる。
なお、ここで言うボイラとは、熱源からの熱で缶体(容器)内の水を加熱して温水若しくは蒸気を発生させる装置を定義し、法規上の分類である「ボイラー」や商品名に使われている「温水機」、「給湯器」に限定されない。そこで、前記ボイラとしては、湯を溜めておく缶体として大気に開放した容器を用いたものや、圧力容器を用いたものや、真空容器を用いて容器内部を負圧に保ったものなどがあり、一般のボイラ、給湯器及び温水器に属するものは、どのようなものを用いても良い。
【0009】
本発明の請求項2記載のボイラは、
高温部と低温部との間に並列に延在する複数の流路部(2e)を備える流路と、該流路内にほぼ満たされた状態で封入される液体(2c)と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段(加振器2d)とを備え、前記流路の隣合う流路部内の液体同士が壁(流路壁2b)を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行う熱伝導部材(対向振動流型ヒートパイプ2)と、
各種センサ・機器等の装置に接続されて信号を出力する信号出力手段(サーモセンサー6)と、
該信号出力手段から出力された信号に基づいて、前記加振手段により液体に加えられる振動の開始及び停止と、振動の振幅と、振動の振動数とのうちの少なくとも一つを制御するとともに、前記加振手段の作動及び停止を制御する制御手段(制御ボックス5)と、を備える熱伝導装置を用いたボイラ(10)であって、
缶水を有する缶体(13)と、
前記缶水を加熱する加熱部(バーナー11)と、
該加熱部からの熱を缶水に伝える熱交換部(12)と、
前記加熱部からの排気を放出する排気系(煙道14)と、
該排気系から放出される熱を蓄熱する蓄熱部(蓄熱槽20)と、
該蓄熱部の温度を計測するセンサを備えるとともに計測された温度を示す信号を出力する前記信号出力手段となる温度計測手段と、を備え、
前記熱伝導部材は、前記排気系から前記蓄熱部に熱を伝導し、
前記制御手段は、前記蓄熱部の温度が所定の温度付近に達するまでは、前記熱伝導部材が高い熱伝導率で前記排気系の熱を前記蓄熱部に伝導するように前記加振手段を制御し、前記蓄熱部の温度が所定の温度付近に達した場合には、前記熱伝導部材の熱伝導率が前記蓄熱部の温度がほぼ所定の温度を維持するものとなるように前記加振手段を制御することを特徴とする。
【0010】
上記構成によれば、例えば、前記信号出力手段を、温度を計測するセンサを備えるとともに計測された温度を示す信号を出力する温度計測手段とし、該温度計測手段が前記低温部に設けられた場合、温度計測手段は低温部の温度を感知して制御手段に信号を送り、該信号によって制御手段は、熱伝導部材内部の加振手段の振動の振幅及び振動数や、該加振手段の作動及び停止を制御することができる。また、該熱伝導部材は、該熱伝導部材内部の液体の振動が変化すれば、該熱伝導部材の熱伝導率も変化する機能を備えているので、前記高温部から前記低温部へ伝導する熱量、即ち、熱輸送量を前記低温部の温度によって、適宜制御することができる。
従って、前記熱伝導装置は、前記低温部の温度をほぼ一定に保つ制御を行うことができる。
また、前記温度計測手段が前記高温部に設けられた場合、該温度計測手段は該高温部の温度を感知して前記制御手段に信号を送り、該信号によって該制御手段は、前記熱伝導部材内部の前記加振手段の振動の振幅及び振動数のうちの少なくとも一つを制御するとともに、該加振手段の作動及び停止を制御することができる。この時、該高温部の温度がある所定の温度を越えると前記加振手段を停止させ、所定の温度以下であれば該加振手段を作動させるといった制御を行い、かつ、該所定の温度を前記熱伝導部材が熱伝導できる限界以下の温度近傍に設定しておけば、該熱伝導部材の寿命を長持ちさせることができる。また、該高温部の温度がある所定の温度を越えると前記加振手段を作動させ、所定の温度以下であれば該加振手段を停止させるといった制御を行い、かつ、該所定の温度を前記低温部の温度に設定しておけば、該低温部の温度が前記高温部の温度よりも、高くなることによって生じる該低温部から該高温部への熱輸送量の逆流現象を防ぐことができる。
なお、信号出力手段は、上述の温度計測手段に限定されるものではなく、例えば、高温部側の熱源のオンオフに対応して信号を出力するものや、本発明の熱伝導装置により熱が伝導されて温められる媒体の供給の開始と停止とに対応して信号を出力するものであってもよい。
【0011】
また、上記構成によれば、前記排気系から前記蓄熱部に熱を伝導する前記熱伝導部材により、該蓄熱部の加熱をすることができるとともに、前記温度計測手段が該蓄熱部の温度を感知して前記制御手段に信号を送り、該信号によって該制御手段は、前記加振手段の振幅及び振動数を前記制御手段が制御することによって、該熱伝導部材の熱伝導率を制御し、該蓄熱部の温度を一定に維持する制御を行うことができる。
【0019】
本発明の請求項記載のボイラは、請求項または記載のボイラにおいて、
前記信号出力手段として、加熱部による缶水の加熱の開始・停止に際し、加熱の開始・停止を示す信号を出力する加熱信号出力手段を備え、前記制御手段が前記加熱部の開始・停止に連動して加振手段の振動の開始・停止を制御することを特徴とする。
【0020】
上記構成によれば、前記制御手段に前記ボイラによる加熱が停止したという信号が送られることによって、該制御手段は前記加振手段の振動を停止させる。さらに、該加振手段が停止することによって、前記熱伝導部材は、熱伝導率が極端に低下する。
従って、前記制御手段が熱伝導の必要がないときに前記加振手段の振動を停止させることにより総合効率が高くなるとともに、通常は前記ボイラが停止すると、前記排気系の温度が前記缶水若しくは前記蓄熱部の温度より下がってしまい、該缶水等の熱量が排気系に放出されてしまうが、前記加振手段の停止によって前記熱伝導部材の熱伝導が遮断されるので、この無駄な熱量損失を防ぐことができる。
【0021】
本発明の請求項記載のボイラは、例えば、図5に示すように、請求項1〜3の何れかに記載のボイラにおいて、
前記缶水を用いて給湯・暖房用等に使用される温水を発生させるための回路(外部熱交換部17)、該回路の給水側配管(配管18b)及び該給水側配管に接続されて前記回路に給水する給水手段(給水ポンプ18a)と、
給水手段に接続されて給水の開始・停止を示す信号を出力する前記信号出力手段としての給水信号出力手段と、を備え、
前記熱伝導部材は、前記排気系から前記給水側配管に熱を伝導し、
前記制御手段は、前記給水手段の給水の開始・停止に連動して前記加振手段の振動の開始・停止を制御することを特徴とする。
【0022】
上記構成によれば、加熱された缶水(気化して蒸気となっていてもよい)を用いて、温水を生成する回路を備えたボイラ(温水器)において、温水を生成する回路に供給される水が、熱伝導部材により伝導された排気熱により予め温められることになる。これにより、前記回路で必要とされる熱量が減少し、ボイラの効率を高めることができる。
このようなボイラにおいて、温水が使用されている間は、給水が行なわれ、温水が使用されていない場合は、給水が止まることになる。一方、ボイラの加熱部側は、基本的に缶体内の缶水が所定温度に保たれるように作動する。したがって、加熱部の加熱の開始及び停止と、給水手段の給水の開始及び停止とは、必ずしも一致しない。したがって、排気熱を無制御に給水側配管に伝導した場合に、給水が止まっている間も配管が加熱されることになり、配管内部でとまった状態の水が過熱する可能性がある。したがって、このような構成の場合には、加熱部の制御に、給水配管側の温度を考慮するなどの変更が必要となるが、給水がとまっている間、加熱部の加熱を停止するような制御をすると缶体内の缶水の温度が低下して、給水が再開した際の温水の温度が低下するなどの問題を生じる可能性がある。
しかし、本発明においては、制御手段により給水が止まった際には、熱伝導部材の加振手段が制御されて、熱伝導部材の熱伝導率が極端に低下するので、特に給水側配管の温度を考慮して加熱部を制御しなくとも、給水停止時に給水配管が過熱状態となるのを防止することができる。
【0023】
本発明の請求項記載の発電装置は、例えば、図4に示すように、
高温部と低温部との間に並列に延在する複数の流路部(2e)を備える流路と、該流路内にほぼ満たされた状態で封入される液体(2c)と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段(加振器2d)とを備え、前記流路の隣合う流路部内の液体同士が壁(流路壁2b)を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行う熱伝導部材(対向振動流型ヒートパイプ2)と、
各種センサ・機器等の装置に接続されて信号を出力する信号出力手段(サーモセンサー6)と、
該信号出力手段から出力された信号に基づいて、前記加振手段により液体に加えられる振動の開始及び停止と、振動の振幅と、振動の振動数とのうちの少なくとも一つを制御するとともに、前記加振手段の作動及び停止を制御する制御手段(制御ボックス5)と、を備える熱伝導装置を用いた発電装置(30)であって、
ガスタービン(タービン32)と、
ガスタービンの回転により発電を行う発電部(発電機34)と、
前記ガスタービンの排気を放出する排気系(煙道36)と、
該排気系から放出される熱を蓄熱する蓄熱部と、
蓄熱部の温度を計測するセンサを備えるとともに計測された温度を示す信号を出力する前記信号出力手段となる温度計測手段と、を備え、
前記熱伝導部材は、前記排気系から前記蓄熱部に熱を伝導し、
前記制御手段は、前記蓄熱部の温度が所定の温度付近に達するまでは、前記熱伝導部材が高い熱伝導率で前記排気系の熱を前記蓄熱部に伝導するように前記加振手段を制御し、前記蓄熱部の温度が所定の温度付近に達した場合には、前記熱伝導部材の熱伝導率が前記蓄熱部の温度がほぼ所定の温度を維持するものとなるように前記加振手段を制御することを特徴とする。
【0024】
上記構成によれば、前記排気系から前記蓄熱部に熱を伝導する前記熱伝導部材により、該蓄熱部の加熱をすることができるとともに、前記温度計測手段が該蓄熱部の温度を感知して前記制御手段に信号を送り、該信号によって該制御手段は、前記加振手段の振幅及び振動数を前記制御手段が制御することによって、該熱伝導部材の熱伝導率を制御し、該蓄熱部の温度を一定に維持する制御を行うことができる。
【0025】
本発明の請求項記載の発電装置は、請求項記載の発電装置において、
前記信号出力手段として、前記ガスタービンの作動の開始・停止に際し、作動の開始・停止を示す信号を出力する作動信号出力手段を備え、前記制御手段が前記ガスタービンの作動の開始・停止に連動して前記加振手段の振動の開始・停止を制御することを特徴とする。
【0026】
上記構成によれば、前記制御手段に前記ガスタービンによる加熱が停止したという信号が送られることによって、該制御手段は前記加振手段の振動を停止させる。さらに、該加振手段が停止することによって前記熱伝導部材は、ほとんど熱を通さない状態になる。
従って、前記制御手段が熱伝導の必要がないとき前記加振手段の振動を停止させることにより総合効率が高くなるとともに、通常は前記ガスタービンが停止すると、前記排気系の温度が前記蓄熱部の温度より下がってしまい、該蓄熱部の熱量が排気系に放出されてしまうが、前記加振手段の停止によって前記熱伝導部材の熱伝導が遮断されるので、この無駄な熱量損失を防ぐことができる。
【0027】
本発明の請求項記載の発電装置は、
高温部と低温部との間に並列に延在する複数の流路部(2e)を備える流路と、該流路内にほぼ満たされた状態で封入される液体(2c)と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段(加振器2d)とを備え、前記流路の隣合う流路部内の液体同士が壁(流路壁2b)を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行う熱伝導部材(対向振動流型ヒートパイプ2)と、
各種センサ・機器等の装置に接続されて信号を出力する信号出力手段(サーモセンサー6)と、
該信号出力手段から出力された信号に基づいて、前記加振手段により液体に加えられる振動の開始及び停止と、振動の振幅と、振動の振動数とのうちの少なくとも一つを制御するとともに、前記加振手段の作動及び停止を制御する制御手段(制御ボックス5)と、を備える熱伝導装置を用いた発電装置(30)であって、
ガスタービン(タービン32)と、
ガスタービンの回転により発電を行う発電部(発電機34)と、
前記ガスタービンの排気を放出する排気系(煙道36)と、
前記排気系の余熱を用いて給湯・暖房用等に使用される温水を発生させるための回路、該回路の給水側配管及び該給水側配管に接続されて前記回路に給水する給水手段と、
給水手段に接続されて給水の開始・停止を示す信号を出力する前記信号出力手段としての給水信号出力手段と、を備え、
前記熱伝導部材は、前記排気系から前記給水側配管に熱を伝導し、
前記制御手段は、前記給水手段の給水の開始・停止に連動して前記加振手段の振動の開始・停止を制御することを特徴とする。
【0028】
上記構成によれば、ガスタービンによる発電の際の排気熱を利用して温水を供給することが可能な発電装置において、請求項記載のボイラと同様の効果を奏することができる。すなわち、この発電装置においては、排気熱を利用して給湯を行なう際に、予め、温水を生成する回路に供給される水を熱伝導部材により伝導された排気熱で予熱して、前記回路における負荷を減少させることができる構成において、温水が消費されずに給水が止まっている間、熱伝導部材の熱伝導率を極端に低下させて給水される水が過熱するのを防止することができる。
なお、給水される水を温めて温水を生成する回路の負荷を減少させることで、給湯量が多く、補助的にバーナを必要とするような場合に、バーナに使用されるエネルギを低減させたり、補助的なバーナを使用せずにすむような構成とすることができる。
【0034】
【発明の実施の形態】
本発明の熱伝導装置、ボイラ、発電装置及び加温・冷却装置における実施の形態を以下に図面を参照して説明する。
本発明の熱伝導装置に用いられる熱伝導部材には、図1に示す対向振動流型ヒートパイプ2を用いている。該対向振動流型ヒートパイプ2は、全体が薄い板状体2aになっている。該板状体2a内部は、流路が高温部から低温部を往復するように蛇行することにより各流路部2eが高温部と低温部との間で並列に配置された状態とされている。、また、並列に配置された流路部2e同士は、それぞれ流路壁2bにより隔てられるとともに、各流路部2eは、それぞれ一方の端部側において右隣の流路部2eに接続され、他方の端部側において左隣の流路部2eに接続され、さらに左右の端部の流路部2が互いに接続されることで、流路は閉回路循環流路になっている。そして、該閉回路循環流路内部には熱を伝える媒体となる液体2cが、流路内にほぼ満たされた状態で封入されている。該液体2cは流路内に設置されている加振器2d(加振手段)によって、該流路内を高温部(Hot side)へ向う方向と低温部(Cold side)へ向う方向との間で往き来するように振動する。また、該液体2cは、蛇行した流路内を振動するため、流路壁2bを隔てて隣接する液体2c同士は互いに逆位相になっている。
【0035】
以下に、前記対向振動流型ヒートパイプ2の熱を伝達する仕組みについて説明する。
まず、振動によって高温部に振れた壁温より低い温度の液体2cは、流路壁2bを隔てて隣接する逆位相の液体2cが高温部から運んでくる熱量を該流路壁2bを通して吸熱する。そして該熱量を吸熱した液体2cは、低温部へ該熱量を運ぶ。その後、低温部に振れた液体2cは壁温より温度が高いので、流路壁2bを隔てて隣接する高温部に振れた液体2cに該熱量を流路壁2bを通して放熱する。これら上記動作の繰り返しにより、高温部から低温部へ熱が伝達されていく。そのため、流路内で熱媒体を移動させることによって、該熱媒体とともに熱を移動させるものに対して、上記本発明のように隣接した流路壁2bを通して、熱を伝導させるものの方が、より大きな熱輸送量を運ぶことができる。
さらに、前記加振器2dの振動数を多くすると上記動作が、早く行われるため熱伝導率が向上し、また、振動数を少なくすると上記動作が、遅く行われるため熱伝導率が下がる。また、振幅を広くすることにより一回の振動による熱の移動距離が延びて熱伝導率が向上し、振幅を狭くすると逆に熱伝導率が低下する。このように加振器2dの振動数や振幅を変えることにより、前記熱伝導率は振動数の平方根から二乗の間(振動数領域による)に、また、その液体の振動流の振幅の二乗に比例するので、熱の伝わり方を広い範囲で変えることができる。
【0036】
次に、本発明の第1例としての熱伝導装置及びボイラについて、以下に説明する。
図2に示すボイラ10は、該ボイラ10の主動力としてバーナ11(加熱部)を備え、該バーナ11の燃焼による排気ガスが通る熱交換部12(熱交換部)が缶水を貯蔵している缶体13内に設けられ、該缶体13内の缶水を加熱している。また、該熱交換部12を通過後の該排気ガスを外部へ排出させるための煙道14(排気系)と、前記缶体13内の缶水を循環させるためのポンプ15、配管16と、ボイラ10の熱エネルギーを外部に供給する外部熱交換部17を備えている。なお、このボイラ10は、以下に説明する本発明の熱伝導装置が備えられ、該熱伝導装置により排気熱を利用して缶水を加熱する構成とその制御方法以外は、基本的に周知の開放型の容器を利用した温水器とほぼ同様のものである。
また熱伝導装置には、熱伝導部材として上記対向振動流型ヒートパイプ2が用いられ、該対向振動流型ヒートパイプ2の高温部に、該バーナ11の排気ガスから熱を吸熱する受熱部3、低温部には缶体13内部に該対向振動流型ヒートパイプ2より伝達してきた熱を放熱する放熱部4が設けられている。そして、該受熱部3は前記煙道14に設置され、該放熱部4は前記缶体13内に設置される。前記対向振動流型ヒートパイプ2の内部に設けられる前記加振器2dには、該加振器2dの振動数、振幅を温度によって制御する制御ボックス5(制御手段)が接続され、該制御ボックス5は該缶体13外壁に設けられている。また、該缶体13内の缶水の温度を感知するために該缶体13内にサーモセンサー6(温度計測手段)が設けられている。そして、該サーモセンサー6が感知した温度が、サーモセンサ6内にある図示しない信号出力手段によって温度を示す信号となって、前記制御ボックス5に出力される。
【0037】
ここで、前記対向振動流型ヒートパイプ2の高温部に設けられる受熱部3は、図3に示すように、二相の蒸発と凝縮との相変化による従来型ヒートパイプ3aと、金属材料等で作られる伝熱板3bとで構成される。一方、放熱部4も受熱部3と同様な構成になっている。ここで、前記従来型ヒートパイプ3aは、パイプが蛇行する流路であるため、対向振動流型ヒートパイプ2のように流路壁2bを隔てて隣接していない。従って、蛇行の往復回数を多くすることにより、その表面積を容易に大きくすることができる。
次に、受熱部3から対向振動流型ヒートパイプ2へ熱量を伝達する仕組みについて説明する。まず、従来型ヒートパイプ3aが、煙道14から熱量を受熱する。従来型ヒートパイプ3aが受熱する熱量は、該従来型ヒートパイプ3a内を流れて伝熱板3b側へ伝達される。そして、該熱量は該伝熱板3b内を流れ、対向振動流型ヒートパイプ2へ伝達される。一方、放熱部4については、上記とは逆の順序で伝達される熱量が缶体13内の缶水に放熱される。
【0038】
以上のように、受熱部3を設けることにより、従来型ヒートパイプ3aの表面積が対向振動流型ヒートパイプ2の表面積より大きくなるため、煙道14からの熱量を受熱する効率が上がるとともに、放熱部4も上記と同様な作用で、缶体13内への熱量を放熱する効率が上がるため、熱伝導装置の総合伝熱効率を高めることができる。
また、対向振動流型ヒートパイプ2は、液体2cが流路内にほぼ満たされた状態で封入されているので、排熱をその高温部で直接受熱させると、排熱温度が液体2cの沸点温度以上になった場合に正常に機能しない可能性がでてくる。一方、従来型ヒートパイプ3a内には既に蒸発した気体が存在する。そのため、排熱温度が従来型ヒートパイプ3a内に封入された液体の沸点温度を大幅に越えた場合、仮に封入される液体が水であったとしても、該従来型ヒートパイプ3aは300℃程度まで耐えうる構造になっている。従って、排熱を該従来型ヒートパイプ3aで直接受熱させることができる。さらに、従来型ヒートパイプ3a及び伝熱板3bにおける熱損失を利用して、対向振動流型ヒートパイプ2に到達する熱の温度を液体2cの沸点温度に達しないように設定すれば、該対向振動流型ヒートパイプ2を適正な条件で使用できる。
なお、煙道14及び缶体13の熱量を受熱及び放熱させる部材としては、前記従来型ヒートパイプ3aに限定されず、例えば、金属板を幾層にも重ねたもの等でも良く、ヒートパイプ以外に、その表面積が大きく伝熱可能な金属部材であればどのようなものでも良い。
また、なお外部熱交換部17は、加熱された缶水の熱で、外部熱交換部17に給水される水を温めて温水を生成して給湯するためのものである。
【0039】
次に、第1例におけるボイラ10が稼働している時の、熱伝導装置の動作について説明する。
まず、缶体13内の缶水を加熱するために、バーナ11の主電源を入れると、前記加振器2d及び前記サーモセンサー6の電源、制御ボックス5も連動してオンになる。そして、前記缶体13内の缶水の温度をサーモセンサー6が感知し、前記制御ボックス5に情報が伝達される。ここで、該缶体13内の缶水温度がまだ常温(例えば20℃)であり、該缶水温度が該缶体13内のあらかじめ設定された缶水設定温度の下限値(例えば67℃)に達していないとすると、該制御ボックス5は、前記加振器2dに対し、該加振器2dをHiモードとさせる指令を与え、該加振器2dを高速で振動させる。該加振器2dが高速で振動することにより、前記対向振動流型ヒートパイプ2の熱伝導率は高くなり、多くの熱量を該缶体13内の缶水に伝導する。多量の該熱量が放熱部4から放熱されるため、該缶体13内の缶水の温度は急激に上がっていく。
【0040】
やがて、該缶水の温度が前記缶水設定温度の下限値に達すると、該制御ボックス5は前記加振器2dに対し、該加振器2dをLowモードにさせる指令を与え、該加振器2dを低速で振動させる。該加振器2dが低速で振動することにより、前記対向振動流型ヒートパイプ2の熱伝導率が低くなり、比較的少ない熱量を該缶体13内の缶水に伝導する。少量の該熱量は放熱部4より放熱されるため、該缶体13内の缶水の温度上昇は、前記加振器2dがHiモードの時と比べ、緩やかなものとなる。該缶水の温度は緩やかに上がっていき、やがて前記缶水設定温度の上限値(例えば73℃)を越えると、前記制御ボックス5は、前記加振器2dに対し、該加振器2dを強制的に停止させる指令を与え、該加振器2dを停止させる。該加振器2dが停止することによって、前記対向振動流型ヒートパイプ2は、受熱部3からの熱伝導をほぼ遮断してしまう。
【0041】
該熱伝導が遮断されてしまった前記缶体13内の缶水の温度は上昇しなくなり、やがて緩やかに下降し始める。該缶水の温度がどんどん下降し、前記缶水設定温度の範囲内のある決められた温度(例えば68.5℃)に達すると、前記制御ボックス5は前記加振器2dに対し、該加振器2dを再びLowモードで始動させる指令を出し、該加振器2dは低速で振動を始める。該加振器2dが始動することにより、前記対向振動流型ヒートパイプ2の伝熱機能も復活し、少量の熱量を受熱部3から放熱部4へ伝導する。そして、前記缶体13内の缶水の温度も再び、緩やかに上昇を始める。但し、使用負荷が大きく缶水温度が更に降下し、前記缶水設定温度の下限値(例えば67℃)を下まわり、例えば60℃以下になった時はHiモードとする指令を再び与え、運転のスタート時と同様な動作を行う。以上の動作を繰り返すことによって、該缶体13内のあらかじめ設定された前記缶水設定温度上限から下限までの領域で、缶水に熱を供給する前記熱交換部12の補助的役割を果たし、該領域間での缶水加熱の微調整を行うことができる。
【0042】
従って、上記本発明の第1例によれば、前記対向振動流型ヒートパイプ2を使用することによって、バーナ11による排気ガスの熱量を再利用できるとともに、前記対向振動流型ヒートパイプ2が、缶水を補助的に加熱する必要がなくなると、前記加振器2dが停止するため、省エネの効果を上げることができる。さらに、缶体13内の缶水を微調整しながら加熱することができる。
また、該対向振動流型ヒートパイプ2は、受熱部と放熱部とを繋ぐだけで良く、図5に示すような従来の熱伝導装置として利用されてきた排気回収熱交換器1のように、熱媒体である缶水を該排気回収熱交換器1内部の配管へ循環させて缶体13に熱伝達させるような大掛かりな設備とは違い、熱のみを伝達するため設置スペースが必要なく、ボイラ設備のコンパクト化が実現する。さらに、従来の排気回収熱交換器1のようにポンプ15によって、缶水を該排気回収熱交換器1内に循環させる必要がないので、ポンプ15の容量を大きくしたり、数を増やしたりする必要がなくなり、コストも安くなる。
さらに、他のポンプを備えた熱伝導装置と比べると、対向振動流型ヒートパイプ2の方が構成部品が少ないため、製造コストが安くなる。
また、缶水を循環させる動力に比べ振動を発生させる動力は10分の1程度ですみ、省エネルギーを実現できる。
【0043】
本発明の第2例としての熱伝導装置及びボイラについて、以下に説明する。
図4に示すボイラ10は、蓄熱槽20(蓄熱部)を備え缶体13内の缶水とは別に蓄熱槽20の熱を利用可能な構成とされ、かつ、本発明の熱伝導装置が、第1例のように排気熱を缶体13内に伝導するのではなく、蓄熱槽20に伝導するようになっている以外は、第1例のボイラ10とほぼ同様な構成となっており、第1例と同様の構成要素には、同じ符号を付してその説明を省略する。なお、蓄熱槽20内に水等の熱媒体21が充填されており、温水等を供給できるようになっている。
【0044】
また熱伝導装置には、熱伝導部材として上記対向振動流型ヒートパイプ2が用いられ、該対向振動流型ヒートパイプ2の高温部に、該バーナ11の排気ガスから熱を吸熱する受熱部3、低温部には該蓄熱槽20内の熱媒体21に該対向振動流型ヒートパイプ2より伝達してきた熱を放熱する放熱部4が設けられている。そして、該受熱部3は前記煙道14に設置され、該放熱部4は前記蓄熱槽20内に設置される。前記対向振動流型ヒートパイプ2の内部に設けられる前記加振器2dには、該加振器2dの振動数、振幅を温度によって制御する制御ボックス5が接続され、該制御ボックス5は該蓄熱槽20外壁に設けられている。また、該蓄熱槽20内の熱媒体21の温度を感知するために該蓄熱槽20内にサーモセンサー6が設けられている。そして、該サーモセンサー6が感知した情報が信号となって、前記制御ボックス5に送信される。
【0045】
次に、第2例におけるボイラ10が稼働している時の、熱伝導装置の動作について説明する。
まず、缶体13内の缶水を加熱するために、バーナ11の主電源を入れると、前記加振器2d及び前記サーモセンサー6、制御ボックス5の電源も連動してオンになる。そして、蓄熱槽20内の熱媒体21の温度をサーモセンサー6が感知し、前記制御ボックス5に情報が伝達される。ここで、該蓄熱槽20内の熱媒体21の温度がまだ常温(例えば20℃)であり、該熱媒体21の温度が蓄熱槽20内のあらかじめ設定された熱媒体設定温度の下限値(例えば67℃)に達していないとすると、該制御ボックス5は、前記加振器2dに対し、該加振器2dをHiモードとさせる指令を与え、該加振器2dを高速で振動させる。該加振器2dが高速で振動することにより、前記対向振動流型ヒートパイプ2の熱伝導率は高くなり、多くの熱量を該蓄熱槽20内の熱媒体21に伝達する。この時、多量の熱量が放熱部4から放熱されるため、該蓄熱槽20内の熱媒体21の温度は急激に上がっていく。やがて、該熱媒体21の温度が前記熱媒体設定温度の下限値に達すると、該制御ボックス5は前記加振器2dに対し、該加振器2dをLowモードにさせる指令を与え、該加振器2dを低速で振動させる。
【0046】
該加振器2dが低速で振動することにより、前記対向振動流型ヒートパイプ2の熱伝導率が低くなり、比較的少ない熱量を該蓄熱槽20内の熱媒体21に伝導する。少量の熱量が放熱部4より放熱されるため、該蓄熱槽20内の熱媒体21の温度上昇は、前記加振器2dがHiモードの時と比べ、緩やかなものとなる。その後、該熱媒体21の温度は緩やかに上がっていき、やがて熱媒体設定温度の上限値(例えば73℃)を越えると、前記制御ボックス5は前記加振器2dに対し、該加振器2dを強制的に停止させる指令を与え、該加振器2dを停止させる。該加振器2dが停止することによって、前記対向振動流型ヒートパイプ2は、受熱部3からの熱伝導をほぼ遮断してしまう。
【0047】
該熱伝導が遮断されてしまった前記蓄熱槽20内の熱媒体21の温度は上昇しなくなり、やがて緩やかに下降し始める。該熱媒体21の温度がどんどん下降し、前記熱媒体設定温度の範囲内のある決められた温度(例えば68.5℃)以下になると、前記制御ボックス5は前記加振器2dに対し、該加振器2dを再びLowモードで始動させる指令を出し、該加振器2dは低速で振動を始める。該加振器2dが始動することにより、前記対向振動流型ヒートパイプ2の伝熱機能も復活し、少量の熱量を受熱部3から放熱部4へ伝達する。そして、前記蓄熱槽20内の熱媒体21の温度も再び、緩やかに上昇を始める。但し、使用負荷が大きく熱媒体温度が更に降下し、前記熱媒体設定温度の下限値(例えば67℃)を下まわり、例えば60℃以下になった時はHiモードとする指令を再び与え、運転のスタート時と同様な動作を行う。以上の動作を繰り返すことによって、該蓄熱槽20内の熱媒体21の温度をほぼ一定に保つことができる。
【0048】
従って、上記本発明の第2例によれば、前記対向振動流型ヒートパイプ2を使用することによって、バーナ11による排気ガスの熱量を再利用できるとともに、蓄熱槽20内の熱媒体21の温度をほぼ一定に保つことができる。
また、従来のようにバーナ11を直接制御することがないので、缶体13内で缶水を加熱し続けながら蓄熱槽20内温度を制御することができる。従って、総合効率も従来に比べ高いものとなる。
なお、第1、2例では、制御ボックス5の制御対象は加振器2dに限定したが、例えば、バーナ11の排気ガスの温度が高くなりすぎないように、煙道14内にサーモセンサー6を設け、該排気ガスの温度を感知させ、該制御ボックス5を介して該バーナ11を制御させても良い。
【0049】
また、前記制御ボックス5に前記ボイラ10による加熱が停止したという信号が送られることによって、該制御ボックス5が前記加振器2dの振動を停止させても良い。該加振器2dが停止することによって、前記対向振動流型ヒートパイプ2は、ほとんど熱を通さない状態になり、前記制御ボックス5が前記加振器2dの振動を停止させることにより総合効率が高くなるとともに、通常は前記ボイラ10が停止すると、前記煙道14の温度が前記缶水若しくは前記蓄熱槽20の温度より下がってしまい、該缶水等の熱量が煙道14に放出されてしまうが、前記加振器2dの停止によって前記対向振動流型ヒートパイプ2の熱伝導が遮断されるので、この無駄な熱量損失を防ぐことができる。
さらに、受熱部3及び放熱部4の構成は、第1例と同様な構成であっても良い。
【0050】
次に、本発明の第3例としての熱伝導装置及びボイラ10について、以下に説明する。
図5に示すボイラ10は、本発明の熱伝導装置が、第1例のように排気熱を缶体13内に伝導するのではなく、給湯を行なうための外部熱交換部17への給水側の配管18bに伝導するようになっている以外は、第1例のボイラ10とほぼ同様な構成となっており、第1例と同様の構成要素には、同じ符号を付してその説明を省略する。
外部熱交換部17を備えた給湯設備18は、そのほかに、図示しない給水タンクから水を外部熱交換部17に送る給水ポンプ18aと、給水ポンプ18aから送られる水が通る配管18bと、外部熱交換部17で温められた水を使用するために給湯配管18d及びその先に設置される温水を消費する機器(例えば、暖房機器や蛇口18c等を含む)から構成される。
【0051】
また熱伝導装置には、熱伝導部材として上記対向振動流型ヒートパイプ2が用いられ、該対向振動流型ヒートパイプ2の高温部には、バーナ11の排気ガスから熱を吸収する受熱部3、低温部には前記配管18b内の水に熱を放熱する放熱部4が設けられている。そして、該受熱部3は煙道14に設置され、該放熱部4は前記配管18b内に設置される。前記対向振動流型ヒートパイプ2の内部に設けられる加振器2dには、該加振器2dの振動数、振幅を温度によって制御する制御ボックス5が接続される。また、前記給湯配管18d内の湯の温度を感知するために該給湯配管18d内に図示しないサーモセンサーが設けられている。そして、該サーモセンサーが感知した温度が図示しない信号出力手段により温度を示す信号となって、前記制御ボックス5に出力される。
【0052】
また、給水ポンプ18aには、給水ポンプ18aの給水の開始・停止を示す信号を出力する信号出力手段が備えられている。
なお、給水の開始と停止とを示す信号は、例えば、給水開始時や給水停止時にパルス状の信号を出力するものであってもよいし、給水中及び給水停止中のうちの一方の場合にハイレベルの信号を継続して出力し、他方の場合にローレベルの信号を継続して出力するものであってもよい。
また、制御ボックス5は、演算処理装置としてのCPU、CPUにバスにより接続されたRAM・ROM等のメモリを備えた記憶装置、CPUと外部機器との間で信号の入出力を行なうインタフェースなどを備えた周知の制御装置である
また、制御ボックス5は、給水ポンプ18aにおける給水の開始・停止に連動して、熱伝導装置の加振器2dの加振の開始・停止を制御するとともに、給湯配管18d内の水温に基づいて、加振器2dの振動数(振幅)を制御する。
【0053】
次に、第3例におけるボイラ10が稼働している時の、熱伝導装置の動作について説明する。
まず、給湯が開始される(例えば、温水を消費する機器で温水用のバルブがあけられ給水ポンプ18a部分で水圧が低下したのがセンサ等で検知される)と給水ポンプ18aが作動する。そして、給水ポンプ18aが作動すると給水ポンプ18aに接続された信号出力手段から給水開始を示す信号が出力される。この信号が入力された制御ボックス5は、給水開始に連動して、対向振動流型ヒートパイプ2の加振器2dを高い振動数のHiモードで作動させ、対向振動流型ヒートパイプ2がほとんど熱伝導しない状態から高い熱伝導率で熱伝導する状態とし、排気熱により外部熱交換部17に給水される水を予熱する。
【0054】
また、給水ポンプ18aが作動している給湯中は、対向振動流型ヒートパイプ2の加振器2dを基本的に常に作動させ、ボイラ10の排気熱を再利用する。一方、給湯は移管18c内の湯の温度が予め設定された設定温度基準値(例えば、70℃)に達していない場合は、ボイラ10のバーナ11を高燃焼状態とし、前記湯の温度が予め設定された設定温度基準値に達している場合は、ボイラ10のバーナ11を低燃焼状態とする。これにより、給湯中は、排気熱により常に、外部熱交換部17に給水される配管18bの水を予熱した状態となるとともに、温度の制御はバーナ11側で行なわれるので、水を予熱することにより、設定温度基準値を保つための缶水からの熱量は少なくて済む。すなわち、バーナ11は、相対的に低燃焼状態の時間が長くなり、省エネルギが実現される。
【0055】
また、給湯が停止される(例えば、温水を消費する全ての機器で温水用のバルブが閉じられ給水ポンプ18a部分で水圧が上昇したのがセンサ等により検知される)と給水ポンプ18aも停止する。そして、給水ポンプ18aが停止すると給水ポンプ18aに接続された信号出力手段から給水停止を示す信号が出力される。そして、前記給湯配管18d内の湯の温度が設定温度基準値に達している場合は、制御ボックス5において、給湯配管18d内のサーモセンサから湯の温度が設定温度基準値より高いことを示す信号と、給水ポンプ18aの信号出力手段からの給水ポンプ18aが停止したことを示す信号が入力された際に、制御ボックス5は、給水停止に連動して、対向振動流型ヒートパイプ2の加振器2dを停止させ、対向振動流型ヒートパイプ2がほとんど熱伝導しない状態とし、外部熱交換部17に給水される水の予熱を停止する。
【0056】
一方、給水ポンプ18aの信号出力手段から給水ポンプ18aの停止を示す信号が出力された場合でも、給湯配管18d内のサーモセンサから湯の温度が設定温度基準値より低いことを示す信号が出力されている場合は、対向振動流型ヒートパイプ2の加振器2dを停止せずに、振動数を下げたLOWモードで加振器2dを振動させる。これにより、配管18b内の水が温められるとともにこの配管18bに連続する給湯配管18dの水も温められ、給湯配管18d内の湯の温度が緩やかに上昇し、設定温度基準値に達する。そして、設定温度基準値に達したことを示す信号がサーモセンサから出力された際に、制御ボックス5が対向振動流型ヒートパイプ2の加振器2dを停止させる。
また、上述のように対向振動流型ヒートパイプ2の加振器2dが停止した状態もしくはLOWモードで振動している状態の場合に、給水ポンプ18aが作動した際には、前記信号出力手段から制御ボックス5に給水ポンプ18aが作動したことを示す信号が出力され、制御ボックス5が対向振動流型ヒートパイプ2の加振器2dをHiモードで作動させる。
【0057】
従って、上記本発明の第3例によれば、前記対向振動流型ヒートパイプ2を使用することによって、バーナ11による排気ガスの熱量を再利用できるとともに、給湯設備18の熱源としての外部熱交換部17の補助的な役割を果たし、総合伝熱効率の高い給湯設備18を実現可能にする。
また、給湯が停止して外部熱交換部17への給水が停止している間は、外部熱交換部17に給水される水が加熱されることがなく、給水停止時に外部交換部17の手前で水が必要以上に加熱されるのを防止することができる。
なお、受熱部3及び放熱部4の構成は、第1例と同様な構成であっても良い。
【0058】
次に、本発明の第4例としての熱伝導装置及び発電装置について、以下に説明する。
図6に示す発電装置30は、燃料ガスと圧縮された空気を混合させ、燃焼させるための燃焼室31と、該燃焼室31から放出される燃焼エネルギーから回転力を得るタービン32(ガスタービン)と、該タービン32の回転力によって、空気を圧縮する圧縮機33及び電気を発生させる発電機34(発電部)と、該圧縮機33によって圧縮された空気を排気ガスの熱によって加熱するための熱交換器であるレキュペレータ35と、該排気ガスを誘導し外部へ放出するための煙道36(排気系)と、該圧縮機33内に取り入れる空気を浄化するための高性能フィルタ37とを備えている。さらに、該発電装置30には、燃料全体の約3分の1を占める放射・排ガス損失を回収すべく、前記燃焼室31から放出される排気ガスの熱エネルギを貯蓄しておくための蓄熱槽20(蓄熱部)が設けられ、また、該排気ガスの熱エネルギを該蓄熱槽20に伝達させる前記熱伝達装置が設けられている。そして、前記発電機34から得られた電力は、AC/DCコンバータ40を介して、蓄電池41に充電されたり、AC/DCコンバータ40及びAC/DCインバータ42、変圧器43を介して、商用電源44として利用される。また、蓄電池41、商用電源44にそれぞれ切り換えるための遮断器45を備えている。さらに前記蓄熱槽20の熱エネルギは、温水供給や暖房等の熱供給装置50として利用される。
【0059】
次に、第4例における発電装置30が稼働している時の、熱伝導装置の動作について説明する。
まず最初に、前記燃料ガスが通る配管のバルブを開け、該燃料ガスを前記燃焼室31に流入させる。該燃料ガスは、該燃焼室31内の図示しない点火プラグ等で点火されることによって、燃焼を開始し、排気ガスを該燃焼室31外に放出する。該排気ガスは、タービン32の羽根を回し、レキュペレータ35及び煙道36を通って外部へ放出される。
ここで、前記点火プラグ等のスタータがオンになると、前記加振器2d及び前記サーモセンサー6、制御ボックス5の電源も連動してオンになる。そして、蓄熱槽20内の熱媒体21の温度を該サーモセンサー6が感知し、該サーモセンサー6に設けられる送信部から、前記制御ボックス5の受信部に情報が伝達される。ここで、該蓄熱槽20内の熱媒体21の温度がまだ常温(例えば20℃)であり、該熱媒体21の温度が蓄熱槽20内のあらかじめ設定された熱媒体設定温度の下限値(例えば67℃)に達していないとすると、該制御ボックス5は、前記加振器2dに対し、該加振器2dをHiモードとさせる指令を与え、該加振器2dを高速で振動させる。
【0060】
該加振器2dが高速で振動することにより、前記対向振動流型ヒートパイプ2の熱伝導率は高くなり、多くの熱量を該蓄熱槽20内の熱媒体21に伝導する。この時、多量の熱量が放熱部4から放熱されるため、該蓄熱槽20内の熱媒体21の温度は急激に上がっていく。やがて、該熱媒体21の温度が熱媒体設定温度の下限値に達すると、該制御ボックス5は前記加振器2dに対し、該加振器2dをLowモードにさせる指令を与え、該加振器2dを低速で振動させる。該加振器2dが低速で振動することにより、前記対向振動流型ヒートパイプ2の熱伝導率が低くなり、比較的少ない熱量を該蓄熱槽20内の熱媒体21に伝導する。少量の熱量が放熱部4より放熱されるため、該蓄熱槽20内の熱媒体21の温度上昇は、前記加振器2dがHiモードの時と比べ、緩やかなものとなる。
【0061】
その後、該熱媒体21の温度は緩やかに上がっていき、やがて熱媒体設定温度の上限値(例えば73℃)を越えると、前記制御ボックス5は前記加振器2dに対し、該加振器2dを強制的に停止させる指令を与え、該加振器2dを停止させる。該加振器2dが停止することによって、前記対向振動流型ヒートパイプ2は、受熱部3からの熱伝導をほぼ遮断してしまう。該熱伝導が遮断されてしまった前記蓄熱槽20内の熱媒体21の温度は上昇しなくなり、やがて緩やかに下降し始める。該熱媒体21の温度がどんどん下降し、前記熱媒体設定温度の範囲内のある決められた温度(例えば68.5℃)以下になると、前記制御ボックス5は前記加振器2dに対し、該加振器2dを再びLowモードで始動させる指令を出し、該加振器2dは低速で振動を始める。該加振器2dが始動することにより、前記対向振動流型ヒートパイプ2の伝熱機能も復活し、少量の熱量を受熱部3から放熱部4へ伝導する。そして、前記蓄熱槽20内の熱媒体21の温度も再び、緩やかに上昇を始める。但し、使用負荷が大きく熱媒体温度が更に降下し、前記熱媒体設定温度の下限値(例えば67℃)を下まわり、例えば60℃以下になった時はHiモードとする指令を再び与え、運転のスタート時と同様な動作を行う。以上の動作を繰り返すことによって、該蓄熱槽20内の熱媒体21の温度をほぼ一定に保つことができる。
【0062】
従って、上記本発明の第4例によれば、前記対向振動流型ヒートパイプ2を使用することによって、前記ガスタービンの前記燃焼室31から放出される燃焼エネルギーを再利用できるとともに、蓄熱槽20内の熱媒体21の温度をほぼ一定に保つことができる。
なお、第4例では、制御ボックス5の制御対象は加振器2dに限定したが、例えば、燃焼室31から噴出する排気ガスの温度が高くなりすぎないように、煙道36内にサーモセンサーを設け、該排気ガスの温度を感知させ、該制御ボックス5を介して発電装置30の燃料供給バルブの開閉を制御させても良い。
また、受熱部3及び放熱部4の構成は、第1例と同様な構成であっても良い。
さらに、放熱部4の設置個所を蓄熱槽20内に限らずに、例えば、第3例のような外部熱交換部の代わりに蓄熱層もしくは貯湯式ボイラを備えた給湯設備の配管内等にしても良い。この場合には、対向振動流型ヒートパイプ2を用いてタービン32の排気熱により給水される水を加熱して温水を生成するものとし(必要に応じて補助バーナを用いるものとしてもよい)、第三例のように給湯設備への給水の開始・停止に連動して熱伝導部材の加振器の加振の開始・停止を制御するようにしてもよい。
【0063】
本発明の第5例としての熱伝導装置を用いた加温装置としての床暖房60について、以下に説明する。
図7に示す床暖房60は、所定の大きさの床材61と、該床材61内部に蛇行して張り巡らされている上記対向振動流型ヒートパイプ2と、該対向振動流型ヒートパイプ2内部の加振器2dを制御する制御ボックス5と、前記床材61の室内側に設置される図示しないサーモセンサーと、該対向振動流型ヒートパイプ2に熱を供給する熱源62から構成される。
次に、熱源62から床材61へ熱を伝達する仕組みについて説明する。まず、床暖房60の主電源を入れると、前記熱源62の電源及び前記加振器2d、前記サーモセンサー及び制御ボックス5の電源も連動してオンになる。そして、室内温度を前記サーモセンサーが感知し、該サーモセンサーに設けられる送信部から、前記制御ボックス5の受信部に情報が伝達される。
【0064】
ここで、室内温度がまだ常温(例えば15℃)であり、室内温度があらかじめ設定された設定温度の下限値(例えば24℃)に達していないとすると、該制御ボックス5は、前記加振器2dに対し、該加振器2dをHiモードとさせる指令を与え、該加振器2dを高速で振動させる。該加振器2dが高速で振動することにより、前記対向振動流型ヒートパイプ2の熱伝導率は高くなり、多くの熱量を床材61に伝導する。この時、多量の熱量が床材61から放熱されるため、室内温度は急激に上がっていく。やがて、室内温度が設定温度の下限値に達すると、該制御ボックス5は前記加振器2dに対し、該加振器2dをLowモードにさせる指令を与え、該加振器2dを低速で振動させる。該加振器2dが低速で振動することにより、前記対向振動流型ヒートパイプ2の熱伝導率が低くなり、比較的少ない熱量を床材61に伝導する。少量の熱量が床材61より放熱されるため、室内温度上昇は、前記加振器2dがHiモードの時と比べ、緩やかなものとなる。
【0065】
その後、室内温度は緩やかに上がっていき、やがて設定温度の上限値(例えば26℃)を越えると、前記制御ボックス5は前記加振器2dに対し、該加振器2dを強制的に停止させる指令を与え、該加振器2dを停止させる。該加振器2dが停止することによって、前記対向振動流型ヒートパイプ2は、熱源62からの熱伝導をほぼ遮断してしまう。熱伝導が遮断されると、室内温度は上昇しなくなり、やがて緩やかに下降し始める。室内温度がどんどん下降し、設定温度の範囲内のある決められた温度(例えば24.5℃)以下になると、前記制御ボックス5は前記加振器2dに対し、該加振器2dを再びLowモードで始動させる指令を出し、該加振器2dは低速で振動を始める。該加振器2dが始動することにより、前記対向振動流型ヒートパイプ2の伝熱機能も再開し、少量の熱量を熱源62から床材61へ伝導する。そして、室内温度も再び、緩やかに上昇を始める。但し、気温が相当低く、室内温度が更に降下し、前記室内設定温度の下限値(例えば24℃)を下まわり、例えば20℃以下になった時はHiモードとする指令を再び与え、運転のスタート時と同様な動作を行う。以上の動作を繰り返すことによって、室内温度をほぼ一定に保つことができる。
【0066】
従って、上記本発明の第5例によれば、前記対向振動流型ヒートパイプ2を使用することによって、室内温度をほぼ一定に保つことができる。
なお、前記対向振動流型ヒートパイプ2の利用方法は、上記床暖房に限定されず、各種暖房装置や、豪雪地域等の道路に埋設して道路上に積もった雪を融かす融雪装置として利用しても良い。床暖房以外の場合には、例えば、対向振動流型ヒートパイプ2の放熱部をパネルヒータ状にしたり、オイルヒータ状にしたりしてもよい。
さらに、受熱部3の構成は、第1例と同様な構成であっても良い。
また、第5例の室内温度の設定温度を手動によって自由に選択させても良い。設定温度が変化しても上記の作用は再現されるため、室内温度をその設定温度にほぼ一定に保つことができる。
【0067】
また、図7で、熱源62の温度を床材61の温度より低くする、例えば、温度制御しない場合の室温が30℃で、例えば5℃程度の冷水もしくは井戸水を冷熱源62として用いれば、上述の床暖房のシステムを用いて冷房を行なうことができる。
また、冷暖房システムにおいて、室外機と室内機との間の熱輸送に対向振動流型ヒートパイプ2を用いるものとしてもよい。すなわち、室外機と室内機との間を対向振動流型ヒートパイプ2を用いて接続し、室外機を熱源もしくは冷熱源とし、室内機側に対向振動流型ヒートパイプ2を用いて熱を輸送する構成としてもよい。このような構成とした場合に、従来の二相式のヒートパイプをビルの冷暖房システムに応用した際のように、上下方向で熱の輸送に支障が生じるようなことがない。例えば、従来のヒートパイプにより、ビルの上側に室外機を設置して、ビルの下階側に暖房を行なうような場合には、ヒートパイプ中の温められて気化した気体が下方に降りないことにより、熱輸送に支障が生じたり、逆にビルの下側に室外機を設置して、ビルの上階側に冷房を行なうような場合にヒートパイプ中で冷やされて凝縮した液体が上方に登らないことにより、熱輸送に支障が生じたりする。
それに対して、対向振動流型ヒートパイプ2では、その内部が常時液体によりほぼ満たされた状態となっているので、上下方向にほとんど関係なく熱を輸送することができる。したがって、上述のような冷暖房システムを中高層のビルに好適に応用することができる。また、熱源(冷熱源)は、一般的な室外機に限られるものではなく、各種蓄熱槽(冷熱源として氷を作るものでもよい)や、湧き水、井戸水、各種排気熱、地熱、温泉を用いるものとしてもよい。そして、熱源側で温度コントロールが不可能なものでも、上述のように対向振動流型ヒートパイプ2の加振の状態により熱輸送量を制御して温度を制御することができる。また、温度コントロールが可能な熱源を用いるものとした際も、熱源のオンオフに対応して対向振動流型ヒートパイプ2の加振を制御することで、エネルギロスを低減することができる。
【0068】
また、第1〜5例では、加振器2dの制御をHiモード、Lowモード、停止の3パターンに限定したが、該対向振動流型ヒートパイプ2の熱伝導率は振動に対応して変化するものなので制御の段階を増加させ、給湯や、暖房の負荷に応じたり、温度に合わせて適宜制御することも可能である。
【0069】
【発明の効果】
以上のように、本実施形態における熱伝導装置によれば、前記温度計測手段は前記低温部の温度を感知して前記制御手段に信号を送り、該信号によって該制御手段が、前記熱伝導部材内部の前記加振手段の振動の振幅及び振動数のうちの少なくとも一つを制御するとともに、該加振手段の作動及び停止を制御するため、前記高温部から前記低温部へ移動する熱量、即ち、熱輸送量を前記低温部の温度によって、適宜制御することができる。
従って、前記熱伝導装置は、前記低温部側の温度をほぼ一定に保つ制御を行うことができる。
また、前記熱伝導装置を備えたボイラ10及び発電装置によれば、ボイラ10の前記缶体13、または、前記蓄熱槽20に前記熱伝導部材の低温部及び前記温度計測手段を設置することにより、該ボイラ10の缶体13内の缶水や、該蓄熱槽20内の熱媒体21の温度を常時、ほぼ一定に保つことができる。
また、蒸気熱伝導装置を備えた加熱・冷却装置によれば、熱源(冷熱源)からの熱輸送量を調整して温度制御したり、エネルギロスを低減したりすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態例の第1例の熱交換装置を示す平面及び側面図である。
【図2】本発明の実施の形態例の第2例のボイラを示す概略図である。
【図3】前記ボイラに用いられる熱交換装置の受熱部を示す概略図である。
【図4】本発明の実施の形態例の第3例のボイラを示す概略図である。
【図5】本発明の実施の形態例の第4例のボイラを示す概略図である。
【図6】本発明の実施の形態例の第5例の発電装置を示す概略図である。
【図7】本発明の実施の形態例の第6例の加温装置としての床暖房装置を示す概略図である。
【図8】従来例である熱交換器を備えたボイラを示す概略図である。
【符号の説明】
1 熱交換器
2 対向振動流型ヒートパイプ(熱伝導部材)
2b 流路壁(壁)
2c 液体(液体)
2d 加振器(加振手段)
2e 流路部(流路部)
5 制御ボックス(制御手段)
6 サーモセンサー(温度計測手段)
10 ボイラ
11 バーナ(加熱部)
12 煙管群(熱交換部)
13 缶体
14 煙道(排気系)
20 蓄熱槽(蓄熱部)
32 タービン(ガスタービン)
34 発電機(発電部)
36 煙道(排気系)
[0001]
BACKGROUND OF THE INVENTION
  A flow path having a plurality of flow path portions extending in parallel between the high temperature section and the low temperature section, a liquid sealed in a substantially filled state in the flow path, and the liquid flowing in the flow path Vibration means that vibrates so as to come and go along the extending direction of the path portion, and the liquids in the adjacent flow path portions of the flow paths are arranged adjacent to each other with a wall therebetween, and In a state where the liquid in the flow path is vibrated so that the vibrations by the vibration means are in opposite phases between the liquids in the adjacent flow paths, the liquid in the adjacent flow path exchanges heat through the wall. The thermal conductivity member that can increase the thermal conductivity by usingBoiler and power generatorAbout.
[0002]
[Prior art]
Conventionally, for example, as shown in FIG. 8, an exhaust heat recovery heat exchanger 1 for recovering exhaust heat is provided with a can 13 for storing hot water for hot water supply and heating in a factory or the like. There is a boiler 10 provided. The boiler 10 includes a burner 11 (heating unit) as main power of the boiler 10, and a heat exchange unit 12 (heat exchange unit) through which exhaust gas generated by combustion of the burner 11 passes stores can water. It is provided in 13 and the can water in the can 13 is heated. Further, the flue 14 (exhaust system) for discharging the exhaust gas after passing through the heat exchanging section 12 and the exhaust heat recovery heat exchanger 1 to the outside, and the can water in the can body 13 can be used as the can body. 13 includes a pump 15 for circulation to the inside and the exhaust heat recovery heat exchanger 1, a pipe 16, and an external heat exchange unit 17 for supplying the heat energy of the boiler 10 to the outside.
Normally, the exhaust heat generated by the burner 11 of the boiler 10 is discarded as it is through the flue 14, but the exhaust heat recovery heat exchanger 1 is provided in the flue 14 which is the outlet of the heat exchange unit 12. As a result, the waste heat heat energy is reused by heating the can water using the exhaust heat recovery heat exchanger 1.
[0003]
[Problems to be solved by the invention]
By the way, in the boiler 10, since the exhaust heat recovery heat exchanger 1 is provided between the outlet of the heat exchange unit 12 and the flue 14, the space (volume) of the boiler increases, and the exhaust heat recovery heat exchanger is increased. 1 is provided with a pipe for circulating the can water, and further pressure loss of the water passing through the exhaust heat recovery heat exchanger 1 is added, so that an extra cost is required for the pump size and its power.
Further, as a heat conduction device, for example, a heat pipe due to a phase change between two-phase evaporation and condensation is known, and it is conceivable to conduct exhaust heat to the can water side using this heat conduction device. .
However, heat conduction devices using phase change such as heat pipes mainly increase the thermal conductivity, but the heat in the high temperature part is unilaterally transported to the low temperature part without being controlled, and therefore heat dissipation etc. It was only used in.
[0004]
That is, since the heat conduction device based on the phase change between the two-phase evaporation and the condensation does not have a function of controlling the amount of flowing heat, the heat absorbed by the heat receiving portion is automatically carried and the heat radiating portion can only radiate heat. Therefore, when used for reusing the exhaust heat of the boiler described above, the conventional heat conduction device cannot control the heat conduction of the exhaust heat to the can water, and when there is no heat consumption load There was also a risk of overheating at the heat dissipation part to the can water of the heat conduction device. Furthermore, the back flow of heat when the boiler stopped and the temperature of the flue 14 fell below the can water could not be controlled.
On the other hand, in a boiler equipped with a heat storage tank for storing the amount of heat of exhaust heat, since the conventional heat conduction device cannot appropriately control the heat conductivity, in balance with the heat consumed and consumed from the heat storage tank It was difficult to keep the temperature of the heat medium in the heat storage tank constant.
However, in actual daily life, heating and hot water supply using heat requires an absolute amount of heat, but it is important to always maintain a temperature level that can be used more comfortably.
[0005]
  In addition, when a conventional two-phase heat pipe is used to construct an air conditioning system for a building such as a building, for example, the heat pipe is used for heat transport between the outdoor unit and the indoor unit. If the outdoor unit is installed on the roof, the following problems will occur.
  That is, when a conventional two-phase heat pipe is used for heat transport during heating, the heat dissipating part is located below the heat receiving part, and if the distance between them becomes long, the liquid sealed in the heat pipe will evaporate. Since it does not go down, the function of the heat pipe is extremely reduced.
  An object of the present invention is to provide a controllability of heat transport amount and use a liquid single-phase vibration flow type heat pipe as a heat conducting member.Boiler and power generatorIs to provide.
[0006]
[Means for Solving the Problems]
  According to claim 1 of the present inventionboilerFigure 1FromAs shown in FIG.
  A flow path including a plurality of flow path sections (2e) extending in parallel between the high temperature section and the low temperature section, a liquid (2c) sealed in a substantially filled state in the flow path, and the liquid Vibration means (vibrator 2d) that vibrates in the flow path so as to come and go along the extending direction of the flow path section, and the liquid in the flow path section adjacent to the flow path is a wall ( In a state in which the liquid in the flow path part is vibrated so that the vibrations by the excitation means are in opposite phases with each other in the adjacent flow path parts while being arranged adjacent to each other with the flow path wall 2b) The heat conducting member (opposite vibration flow type heat pipe 2) that exchanges heat between the liquids in the adjacent flow passages through the wallWhen,
  A signal output means (thermosensor 6) connected to devices such as various sensors and devices to output signals;
  Based on the signal output from the signal output means, control at least one of the start and stop of vibration applied to the liquid by the vibration means, the amplitude of vibration, and the vibration frequency, Control means (control box 5) for controlling the operation and stop of the vibration means;A boiler (10) using a heat conduction device comprising:
A can body (13) having canned water;
A heating unit (burner 11) for heating the can water;
A heat exchange section (12) for transferring heat from the heating section to the can water;
An exhaust system (flue 14) for releasing exhaust from the heating unit;
A temperature measuring unit that includes the sensor that measures the temperature of the can water and that outputs the signal indicating the measured temperature;
The heat conducting member conducts heat from the exhaust system to the can water,
The control means controls the excitation means so that the heat conduction member conducts heat of the exhaust system to the can water with high thermal conductivity until the temperature of the can water reaches a predetermined temperature. When the temperature of the can water reaches around a predetermined temperature, the vibration means is arranged so that the thermal conductivity of the heat conducting member maintains the predetermined temperature of the can water. It is characterized by controlling.
[0007]
  According to the above configuration, for example, when the signal output unit includes a sensor that measures temperature and outputs a signal indicating the measured temperature, and the temperature measurement unit is provided in the low-temperature portion. The temperature measuring means senses the temperature of the low temperature part and sends a signal to the control means, and the control means uses the signal to determine the amplitude and frequency of vibration of the vibration means inside the heat conducting member and the operation of the vibration means. And stop can be controlled. Further, since the heat conducting member has a function of changing the thermal conductivity of the heat conducting member when the vibration of the liquid inside the heat conducting member changes, the heat conducting member conducts from the high temperature part to the low temperature part. The amount of heat, that is, the amount of heat transport can be appropriately controlled by the temperature of the low temperature part.
  Therefore, the heat conduction device can perform control to keep the temperature of the low temperature part substantially constant.
When the temperature measuring means is provided in the high temperature part, the temperature measuring means senses the temperature of the high temperature part and sends a signal to the control means. It is possible to control at least one of the amplitude and frequency of vibration of the internal vibration means and to control the operation and stop of the vibration means. At this time, if the temperature of the high-temperature part exceeds a predetermined temperature, the excitation means is stopped, and if the temperature is equal to or lower than the predetermined temperature, the excitation means is controlled, and the predetermined temperature is set. If the temperature is set in the vicinity of a temperature below the limit at which the heat conducting member can conduct heat, the life of the heat conducting member can be extended. In addition, when the temperature of the high temperature part exceeds a predetermined temperature, the vibrating means is operated, and if the temperature is equal to or lower than the predetermined temperature, the vibrating means is stopped, and the predetermined temperature is set to the predetermined temperature. If the temperature of the low temperature part is set, the reverse flow phenomenon of the amount of heat transport from the low temperature part to the high temperature part caused by the temperature of the low temperature part becoming higher than the temperature of the high temperature part can be prevented. .
The signal output means is not limited to the above-described temperature measuring means. For example, the signal output means outputs a signal corresponding to the on / off of the heat source on the high temperature part side, or heat is conducted by the heat conduction device of the present invention. A signal may be output in response to the start and stop of the supply of the medium to be heated.
[0008]
Further, according to the above configuration, when the temperature of the can water is equal to or lower than a predetermined temperature, the can water is rapidly heated by the heat exchanging portion and the heat conducting member having high thermal conductivity. The When the temperature of the can water reaches a predetermined temperature, the temperature measuring means installed in the can water senses the temperature of the can water and outputs a signal indicating the temperature, Input to the control means. The control means appropriately controls the vibration means so as to lower the thermal conductivity of the heat conducting member and maintain the temperature of the can water at a substantially predetermined temperature.
From the above, heating of the can water can be assisted by the heat conducting member that conducts heat from the exhaust system to the can water. Further, the temperature measuring means senses the temperature of the can water and sends a signal indicating the temperature to the control means, and the control means controls the amplitude and frequency of the vibration means by the signal. By doing so, it is possible to control the thermal conductivity of the heat conducting member and maintain the temperature of the can water constant.
In addition, the boiler here refers to a device that heats the water in the can (container) with heat from the heat source to generate hot water or steam, It is not limited to the “hot water machine” and “water heater” used. Therefore, as the boiler, there are those using a container opened to the atmosphere as a can body for storing hot water, those using a pressure vessel, those using a vacuum vessel to keep the inside of the vessel at a negative pressure, etc. Yes, any one belonging to general boilers, water heaters and water heaters may be used.
[0009]
  According to claim 2 of the present inventionBoiler
A flow path including a plurality of flow path sections (2e) extending in parallel between the high temperature section and the low temperature section, a liquid (2c) sealed in a substantially filled state in the flow path, and the liquid Vibration means (vibrator 2d) that vibrates in the flow path so as to come and go along the extending direction of the flow path section, and the liquid in the flow path section adjacent to the flow path is a wall ( In a state in which the liquid in the flow path part is vibrated so that the vibrations by the excitation means are in opposite phases with each other in the adjacent flow path parts while being arranged adjacent to each other with the flow path wall 2b) A heat conducting member (opposite oscillating flow type heat pipe 2) that exchanges heat between the liquids in the adjacent flow path parts through the wall;
A signal output means (thermosensor 6) connected to devices such as various sensors and devices to output signals;
Based on the signal output from the signal output means, control at least one of the start and stop of vibration applied to the liquid by the vibration means, the amplitude of vibration, and the vibration frequency, A boiler (10) using a heat conduction device comprising control means (control box 5) for controlling operation and stop of the vibration means,
A can body (13) having canned water;
A heating unit (burner 11) for heating the can water;
A heat exchange section (12) for transferring heat from the heating section to the can water;
An exhaust system (flue 14) for releasing exhaust from the heating unit;
A heat storage section (heat storage tank 20) for storing heat released from the exhaust system;
A temperature measuring unit that includes a sensor that measures the temperature of the heat storage unit and that serves as the signal output unit that outputs a signal indicating the measured temperature;
The heat conducting member conducts heat from the exhaust system to the heat storage unit,
The control means controls the excitation means so that the heat conduction member conducts heat of the exhaust system to the heat storage section with high thermal conductivity until the temperature of the heat storage section reaches a predetermined temperature. When the temperature of the heat storage part reaches a predetermined temperature, the vibration means is arranged so that the heat conductivity of the heat conducting member maintains the predetermined temperature of the heat storage part. It is characterized by controlling.
[0010]
  According to the above configuration,For example, when the signal output means is a temperature measurement means that includes a sensor for measuring temperature and outputs a signal indicating the measured temperature, and the temperature measurement means is provided in the low temperature portion, the temperature measurement means is a low temperature. Sense the temperature of the part and send a signal to the control means, and the control means controls the amplitude and frequency of vibration of the vibration means inside the heat conducting member, and the operation and stop of the vibration means by the signal Can do. Further, since the heat conducting member has a function of changing the thermal conductivity of the heat conducting member when the vibration of the liquid inside the heat conducting member changes, the heat conducting member conducts from the high temperature part to the low temperature part. The amount of heat, that is, the amount of heat transport can be appropriately controlled by the temperature of the low temperature part.
Therefore, the heat conduction device can perform control to keep the temperature of the low temperature part substantially constant.
When the temperature measuring means is provided in the high temperature part, the temperature measuring means senses the temperature of the high temperature part and sends a signal to the control means. It is possible to control at least one of the amplitude and frequency of vibration of the internal vibration means and to control the operation and stop of the vibration means. At this time, if the temperature of the high-temperature part exceeds a predetermined temperature, the excitation means is stopped, and if the temperature is equal to or lower than the predetermined temperature, the excitation means is controlled, and the predetermined temperature is set. If the temperature is set in the vicinity of a temperature below the limit at which the heat conducting member can conduct heat, the life of the heat conducting member can be extended. In addition, when the temperature of the high temperature part exceeds a predetermined temperature, the vibrating means is operated, and if the temperature is equal to or lower than the predetermined temperature, the vibrating means is stopped, and the predetermined temperature is set to the predetermined temperature. If the temperature of the low temperature part is set, the reverse flow phenomenon of the amount of heat transport from the low temperature part to the high temperature part caused by the temperature of the low temperature part becoming higher than the temperature of the high temperature part can be prevented. .
The signal output means is not limited to the above-described temperature measuring means. For example, the signal output means outputs a signal corresponding to the on / off of the heat source on the high temperature part side, or heat is conducted by the heat conduction device of the present invention. A signal may be output in response to the start and stop of the supply of the medium to be heated.
[0011]
According to the above configuration, the heat storage member can be heated by the heat conducting member that conducts heat from the exhaust system to the heat storage unit, and the temperature measuring unit senses the temperature of the heat storage unit. Then, a signal is sent to the control means, and the control means controls the thermal conductivity of the heat conducting member by the control means controlling the amplitude and frequency of the vibration means by the signal, Control which maintains the temperature of a thermal storage part constant can be performed.
[0019]
  Claims of the invention3The described boiler is claimed1Or2In the described boiler,
  The signal output means includes a heating signal output means for outputting a signal indicating the start / stop of heating when heating of the can water is started / stopped by the heating section, and the control means is interlocked with the start / stop of the heating section. Thus, the start / stop of the vibration of the vibration means is controlled.
[0020]
According to the above configuration, the control means stops the vibration of the excitation means by sending a signal to the control means that heating by the boiler is stopped. Furthermore, the thermal conductivity of the heat conducting member is extremely lowered by stopping the excitation means.
Therefore, when the control means does not need heat conduction, the overall efficiency is increased by stopping the vibration of the excitation means. Normally, when the boiler is stopped, the temperature of the exhaust system is changed to the can water or Although the temperature of the heat storage section falls and the amount of heat such as canned water is released to the exhaust system, the heat conduction of the heat conducting member is interrupted by stopping the excitation means, so this wasted heat amount Loss can be prevented.
[0021]
  Claims of the invention4The described boiler is, for example, as shown in FIG.In the boiler in any one of Claims 1-3,
  A circuit (external heat exchange unit 17) for generating hot water used for hot water supply / heating using the can water, and a water supply side pipe of the circuit(Piping 18b)And water supply means (water supply pump 18a) connected to the water supply side pipe and supplying water to the circuit;
  TheA water supply signal output means as the signal output means connected to the water supply means for outputting a signal indicating start / stop of water supply;With
The heat conducting member conducts heat from the exhaust system to the water supply side pipe,
SaidThe control means controls the start / stop of the vibration of the vibration means in conjunction with the start / stop of the water supply of the water supply means.
[0022]
According to the above configuration, in a boiler (water heater) having a circuit for generating hot water using heated can water (which may be vaporized into steam), the hot water is supplied to the circuit for generating hot water. The water is heated in advance by the exhaust heat conducted by the heat conducting member. Thereby, the amount of heat required in the circuit can be reduced, and the efficiency of the boiler can be increased.
In such a boiler, water supply is performed while warm water is being used, and water supply is stopped when warm water is not being used. On the other hand, the heating unit side of the boiler basically operates so that the can water in the can body is maintained at a predetermined temperature. Therefore, the start and stop of heating of the heating unit do not necessarily coincide with the start and stop of water supply of the water supply means. Therefore, when the exhaust heat is conducted to the water supply side pipe without control, the pipe is heated while the water supply is stopped, and the water in the state where the water stays inside may be overheated. Therefore, in the case of such a configuration, it is necessary to change the heating unit in consideration of the temperature of the water supply piping, but the heating unit is stopped while the water supply is stopped. If the control is performed, the temperature of the can water in the can body is lowered, and there is a possibility that the temperature of the hot water is lowered when the water supply is resumed.
However, in the present invention, when water supply is stopped by the control means, the vibration means of the heat conduction member is controlled and the heat conductivity of the heat conduction member is extremely reduced. Even if the heating unit is not controlled in consideration of the above, it is possible to prevent the water supply pipe from being overheated when the water supply is stopped.
[0023]
  Claims of the invention5The described power generator isFor example, as shown in FIG.
A flow path including a plurality of flow path sections (2e) extending in parallel between the high temperature section and the low temperature section, a liquid (2c) sealed in a substantially filled state in the flow path, and the liquid Vibration means (vibrator 2d) that vibrates in the flow path so as to come and go along the extending direction of the flow path section, and the liquid in the flow path section adjacent to the flow path is a wall ( In a state in which the liquid in the flow path part is vibrated so that the vibrations by the excitation means are in opposite phases with each other in the adjacent flow path parts while being arranged adjacent to each other with the flow path wall 2b) A heat conducting member (opposite oscillating flow type heat pipe 2) that exchanges heat between the liquids in the adjacent flow path parts through the wall;
A signal output means (thermosensor 6) connected to devices such as various sensors and devices to output signals;
Based on the signal output from the signal output means, control at least one of the start and stop of vibration applied to the liquid by the vibration means, the amplitude of vibration, and the vibration frequency, A power generator (30) using a heat conduction device comprising control means (control box 5) for controlling the operation and stop of the vibration means,
  A gas turbine (turbine 32);
  TheA power generation unit (generator 34) that generates power by rotating the gas turbine;
  SaidAn exhaust system (flue 36) for discharging gas turbine exhaust;
  A heat storage section for storing heat released from the exhaust system;
  TheThe signal that includes a sensor for measuring the temperature of the heat storage unit and outputs a signal indicating the measured temperatureoutputTemperature measurement meansAnd comprising
The heat conducting member conducts heat from the exhaust system to the heat storage unit,
  SaidControl means until the temperature of the heat storage unit reaches a predetermined temperature,SaidThermal conductivity member has high thermal conductivitySaidTo conduct the heat of the exhaust system to the heat storage partSaidControl the excitation means,Heat storage partIf the temperature of the battery reaches around the specified temperature,SaidThe thermal conductivity of the thermal conduction member isSaidSo that the temperature of the heat storage unit is maintained at a predetermined temperature.SaidControlling the vibration means.
[0024]
According to the above configuration, the heat storage member can heat the heat storage unit by conducting heat from the exhaust system to the heat storage unit, and the temperature measuring unit senses the temperature of the heat storage unit. A signal is sent to the control means, and the control means controls the thermal conductivity of the heat conducting member by the control means controlling the amplitude and frequency of the vibration means, and the heat storage section It is possible to perform control to maintain the temperature at a constant.
[0025]
  Claims of the invention6The described power generator is claimed in claim5In the described power generator,
  As the signal output means,SaidAn operation signal output means for outputting a signal indicating the start / stop of the operation at the start / stop of the operation of the gas turbine;SaidThe start / stop of the vibration of the excitation means is controlled in conjunction with the start / stop of the operation of the gas turbine.
[0026]
According to the above configuration, when the signal that the heating by the gas turbine is stopped is sent to the control means, the control means stops the vibration of the vibration means. Further, when the excitation means is stopped, the heat conducting member becomes almost incapable of passing heat.
Therefore, when the control means does not require heat conduction, the overall efficiency is increased by stopping the vibration of the excitation means. Normally, when the gas turbine is stopped, the temperature of the exhaust system is reduced in the heat storage section. However, since the heat conduction of the heat conducting member is interrupted by stopping the excitation means, this wasteful heat loss can be prevented. it can.
[0027]
  Claims of the invention7The described power generator is
A flow path including a plurality of flow path sections (2e) extending in parallel between the high temperature section and the low temperature section, a liquid (2c) sealed in a substantially filled state in the flow path, and the liquid Vibration means (vibrator 2d) that vibrates in the flow path so as to come and go along the extending direction of the flow path section, and the liquid in the flow path section adjacent to the flow path is a wall ( In a state in which the liquid in the flow path part is vibrated so that the vibrations by the excitation means are in opposite phases with each other in the adjacent flow path parts while being arranged adjacent to each other with the flow path wall 2b) A heat conducting member (opposite oscillating flow type heat pipe 2) that exchanges heat between the liquids in the adjacent flow path parts through the wall;
A signal output means (thermosensor 6) connected to devices such as various sensors and devices to output signals;
Based on the signal output from the signal output means, control at least one of the start and stop of vibration applied to the liquid by the vibration means, the amplitude of vibration, and the vibration frequency, A power generator (30) using a heat conduction device comprising control means (control box 5) for controlling the operation and stop of the vibration means,
  gas turbine(Turbine 32)When,
  ThePower generation unit that generates power by rotating the gas turbine(Generator 34)When,
  SaidExhaust system that discharges gas turbine exhaust(Smokeway 36)When,
  A circuit for generating hot water used for hot water supply / heating using the residual heat of the exhaust system, a water supply side pipe of the circuit and a water supply means connected to the water supply side pipe for supplying water to the circuit;
  TheWater supply signal output means as the signal output means connected to the water supply means for outputting a signal indicating start / stop of water supplyAnd comprising
The heat conducting member conducts heat from the exhaust system to the water supply side pipe,
SaidThe control means is linked to the start / stop of the water supply by the water supply means.SaidIt is characterized by controlling the start / stop of vibration of the vibration means.
[0028]
  According to the above configuration, in the power generation apparatus capable of supplying hot water using exhaust heat during power generation by the gas turbine,4The same effects as the described boiler can be achieved. That is, in this power generator, when hot water is supplied using exhaust heat, water supplied to a circuit that generates hot water is pre-heated with exhaust heat conducted by a heat conducting member in advance, In the configuration capable of reducing the load, while the hot water is not consumed and the water supply is stopped, the heat conductivity of the heat conducting member can be extremely reduced to prevent the supplied water from overheating. .
  In addition, by reducing the load on the circuit that generates hot water by warming the supplied water, the energy used for the burner can be reduced when the amount of hot water supply is large and an auxiliary burner is required. It is possible to adopt a configuration that does not require the use of an auxiliary burner.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the heat conduction device, boiler, power generation device, and heating / cooling device of the present invention will be described below with reference to the drawings.
The counter-oscillating flow type heat pipe 2 shown in FIG. 1 is used for the heat conducting member used in the heat conducting device of the present invention. The counter vibration flow type heat pipe 2 is a thin plate-like body 2a as a whole. The inside of the plate-like body 2a is in a state in which each flow path part 2e is arranged in parallel between the high temperature part and the low temperature part by meandering so that the flow path reciprocates from the high temperature part to the low temperature part. . In addition, the flow path portions 2e arranged in parallel are separated from each other by flow path walls 2b, and each flow path portion 2e is connected to the flow path portion 2e adjacent to the right on one end side, The other end side is connected to the channel portion 2e adjacent to the left, and the channel portions 2 at the left and right ends are connected to each other, so that the channel is a closed circuit circulation channel. A liquid 2c, which is a medium for transferring heat, is sealed inside the closed circuit circulation channel so as to be almost filled in the channel. The liquid 2c is moved between a direction toward the high temperature part (Hot side) and a direction toward the low temperature part (Cold side) by the vibrator 2d (vibration means) installed in the flow path. It vibrates like coming and going. Further, since the liquid 2c vibrates in the meandering flow path, the liquids 2c adjacent to each other across the flow path wall 2b are in opposite phases.
[0035]
Below, the mechanism which transmits the heat | fever of the said opposing vibration flow type heat pipe 2 is demonstrated.
First, the liquid 2c having a temperature lower than the wall temperature swung to the high temperature part by vibration absorbs the amount of heat carried from the high temperature part by the liquid 2c having an opposite phase across the flow path wall 2b through the flow path wall 2b. . The liquid 2c that has absorbed the amount of heat carries the amount of heat to the low temperature part. After that, since the temperature of the liquid 2c shaken to the low temperature part is higher than the wall temperature, the amount of heat is radiated through the flow path wall 2b to the liquid 2c shaken to the adjacent high temperature part across the flow path wall 2b. By repeating these operations, heat is transferred from the high temperature portion to the low temperature portion. Therefore, it is more preferable to conduct heat through the adjacent flow path wall 2b as in the present invention, as compared to what moves heat together with the heat medium by moving the heat medium in the flow path. It can carry a large amount of heat transport.
Further, when the vibration frequency of the vibrator 2d is increased, the above operation is performed quickly, so that the thermal conductivity is improved. When the vibration frequency is decreased, the above operation is performed slowly, so that the thermal conductivity is decreased. Further, by increasing the amplitude, the heat transfer distance is increased by a single vibration to improve the thermal conductivity, and when the amplitude is decreased, the thermal conductivity is decreased. By changing the frequency and amplitude of the vibrator 2d in this way, the thermal conductivity is changed from the square root of the frequency to the square (depending on the frequency region), and to the square of the amplitude of the vibration flow of the liquid. Since it is proportional, the way heat is transmitted can be varied over a wide range.
[0036]
Next, a heat conduction device and a boiler as a first example of the present invention will be described below.
A boiler 10 shown in FIG. 2 includes a burner 11 (heating unit) as main power of the boiler 10, and a heat exchange unit 12 (heat exchange unit) through which exhaust gas generated by combustion of the burner 11 passes stores can water. It is provided in the can body 13 and the can water in the can body 13 is heated. Further, a flue 14 (exhaust system) for exhausting the exhaust gas after passing through the heat exchanging unit 12 to the outside, a pump 15 for circulating the can water in the can 13, a pipe 16, An external heat exchanging unit 17 that supplies the heat energy of the boiler 10 to the outside is provided. The boiler 10 is provided with a heat conduction device of the present invention described below. Basically, the boiler 10 is well-known except for a configuration for heating canned water using exhaust heat by the heat conduction device and its control method. It is almost the same as a water heater using an open container.
Further, in the heat conduction device, the counter oscillating flow type heat pipe 2 is used as a heat conduction member, and a heat receiving unit 3 that absorbs heat from the exhaust gas of the burner 11 to the high temperature part of the counter oscillating flow type heat pipe 2. In the low temperature part, a heat radiating part 4 for radiating the heat transmitted from the counter-vibration flow type heat pipe 2 is provided in the can 13. The heat receiving unit 3 is installed in the flue 14, and the heat radiating unit 4 is installed in the can 13. A control box 5 (control means) for controlling the vibration frequency and amplitude of the vibrator 2d according to temperature is connected to the vibrator 2d provided in the counter oscillating flow type heat pipe 2. The control box 5 is provided on the outer wall of the can 13. Further, a thermosensor 6 (temperature measuring means) is provided in the can body 13 in order to sense the temperature of the can water in the can body 13. Then, the temperature sensed by the thermosensor 6 becomes a signal indicating temperature by a signal output means (not shown) in the thermosensor 6 and is output to the control box 5.
[0037]
Here, as shown in FIG. 3, the heat receiving part 3 provided in the high temperature part of the counter oscillating flow type heat pipe 2 includes a conventional heat pipe 3a due to phase change between two-phase evaporation and condensation, a metal material, and the like. And a heat transfer plate 3b made of On the other hand, the heat radiating section 4 has the same configuration as the heat receiving section 3. Here, since the conventional heat pipe 3a is a flow path through which the pipe meanders, the conventional heat pipe 3a is not adjacent to the flow path wall 2b like the opposed vibration flow type heat pipe 2. Accordingly, the surface area can be easily increased by increasing the number of times of meandering reciprocation.
Next, a mechanism for transferring the amount of heat from the heat receiving unit 3 to the counter-vibration flow type heat pipe 2 will be described. First, the conventional heat pipe 3 a receives heat from the flue 14. The amount of heat received by the conventional heat pipe 3a flows through the conventional heat pipe 3a and is transmitted to the heat transfer plate 3b side. Then, the amount of heat flows through the heat transfer plate 3 b and is transmitted to the counter vibration flow type heat pipe 2. On the other hand, with respect to the heat radiating unit 4, the amount of heat transmitted in the reverse order is radiated to the can water in the can body 13.
[0038]
As described above, by providing the heat receiving portion 3, the surface area of the conventional heat pipe 3a becomes larger than the surface area of the counter-oscillating flow type heat pipe 2, so that the efficiency of receiving heat from the flue 14 is increased, and the heat is dissipated. Since the part 4 also has the same action as described above and increases the efficiency of dissipating the amount of heat into the can 13, the overall heat transfer efficiency of the heat conduction device can be increased.
Further, since the counter oscillating flow type heat pipe 2 is sealed with the liquid 2c almost filled in the flow path, if the exhaust heat is directly received by the high temperature portion, the exhaust heat temperature becomes the boiling point of the liquid 2c. If it exceeds the temperature, it may not function properly. On the other hand, there is already evaporated gas in the conventional heat pipe 3a. Therefore, when the exhaust heat temperature greatly exceeds the boiling point temperature of the liquid enclosed in the conventional heat pipe 3a, even if the liquid enclosed is water, the conventional heat pipe 3a is about 300 ° C. It has a structure that can withstand up to. Therefore, the exhaust heat can be directly received by the conventional heat pipe 3a. Furthermore, if the temperature of the heat reaching the counter oscillating flow type heat pipe 2 is set so as not to reach the boiling point temperature of the liquid 2c using the heat loss in the conventional heat pipe 3a and the heat transfer plate 3b, the counter The oscillating flow heat pipe 2 can be used under appropriate conditions.
The member for receiving and radiating the amount of heat of the flue 14 and the can 13 is not limited to the conventional heat pipe 3a, and may be, for example, a stack of metal plates or the like other than the heat pipe. In addition, any metal member having a large surface area and capable of transferring heat may be used.
The external heat exchanging unit 17 is for heating hot canned water to heat the water supplied to the external heat exchanging unit 17 to generate hot water to supply hot water.
[0039]
Next, the operation of the heat conduction device when the boiler 10 in the first example is operating will be described.
First, when the main power source of the burner 11 is turned on in order to heat the can water in the can body 13, the power source of the vibrator 2d and the thermosensor 6 and the control box 5 are also turned on. Then, the thermosensor 6 senses the temperature of the can water in the can body 13, and information is transmitted to the control box 5. Here, the can water temperature in the can body 13 is still normal temperature (for example, 20 ° C.), and the can water temperature is a lower limit value (for example, 67 ° C.) of a preset can water temperature in the can body 13. If not, the control box 5 gives a command to the vibrator 2d to place the vibrator 2d in the Hi mode, and vibrates the vibrator 2d at high speed. When the vibrator 2d vibrates at high speed, the thermal conductivity of the counter-oscillating flow type heat pipe 2 is increased, and a large amount of heat is conducted to the can water in the can body 13. Since a large amount of the heat is radiated from the heat radiating portion 4, the temperature of the can water in the can 13 rises rapidly.
[0040]
Eventually, when the temperature of the can water reaches the lower limit value of the set temperature of the can water, the control box 5 gives a command to the shaker 2d to set the shaker 2d to the low mode, and the excitation box Vibrator 2d is vibrated at low speed. When the vibrator 2d vibrates at a low speed, the thermal conductivity of the counter oscillating flow type heat pipe 2 is lowered, and a relatively small amount of heat is conducted to the can water in the can body 13. Since a small amount of the heat is radiated from the heat radiating section 4, the temperature rise of the can water in the can body 13 becomes more gradual than when the vibrator 2d is in the Hi mode. When the temperature of the can water gradually rises and eventually exceeds the upper limit value of the can water set temperature (for example, 73 ° C.), the control box 5 causes the vibrator 2d to be connected to the vibrator 2d. A command to forcibly stop is given to stop the vibrator 2d. When the vibration exciter 2d is stopped, the counter oscillating flow type heat pipe 2 substantially blocks heat conduction from the heat receiving portion 3.
[0041]
The temperature of the canned water in the can 13 where the heat conduction has been interrupted does not increase, and gradually begins to decrease. When the temperature of the can water gradually decreases and reaches a predetermined temperature within the range of the can water set temperature (for example, 68.5 ° C.), the control box 5 applies the vibration to the vibrator 2d. A command to start the vibrator 2d again in the low mode is issued, and the vibrator 2d starts to vibrate at a low speed. When the vibration exciter 2d is started, the heat transfer function of the opposed vibration flow type heat pipe 2 is restored, and a small amount of heat is conducted from the heat receiving portion 3 to the heat radiating portion 4. And the temperature of the can water in the said can 13 also begins to rise gently again. However, when the canned water temperature drops further and falls below the lower limit value of the canned water set temperature (for example, 67 ° C.), for example, 60 ° C. or less, the command for setting the Hi mode is given again to operate the operation. The same operation as when starting is performed. By repeating the above operation, in the region from the preset upper limit of the can water temperature to the lower limit in the can body 13, it plays an auxiliary role of the heat exchange unit 12 for supplying heat to the can water, Fine adjustment of canned water heating between the regions can be performed.
[0042]
Therefore, according to the first example of the present invention, by using the counter oscillating flow type heat pipe 2, the amount of heat of the exhaust gas by the burner 11 can be reused. When it is not necessary to heat the can water supplementarily, the vibration exciter 2d is stopped, so that the energy saving effect can be improved. Furthermore, the can water in the can 13 can be heated while being finely adjusted.
Further, the counter vibration flow type heat pipe 2 only needs to connect the heat receiving part and the heat radiating part. Like the exhaust heat recovery heat exchanger 1 that has been used as a conventional heat conduction device as shown in FIG. Unlike large-scale equipment that circulates can water, which is a heat medium, to the piping inside the exhaust gas recovery heat exchanger 1 to transfer heat to the can body 13, only heat is transmitted and no installation space is required. Equipment downsizing is realized. Furthermore, since it is not necessary to circulate can water in the exhaust gas recovery heat exchanger 1 by the pump 15 as in the conventional exhaust gas recovery heat exchanger 1, the capacity of the pump 15 is increased or the number is increased. It is no longer necessary and the cost is reduced.
Furthermore, compared with the heat conduction apparatus provided with other pumps, the counter oscillating flow type heat pipe 2 has fewer components, so the manufacturing cost is reduced.
Moreover, the power to generate vibration is only about 1/10 compared with the power to circulate can water, and energy saving can be realized.
[0043]
A heat conduction device and a boiler as a second example of the present invention will be described below.
The boiler 10 shown in FIG. 4 includes a heat storage tank 20 (heat storage section) and is configured to be able to use the heat of the heat storage tank 20 separately from the can water in the can body 13, and the heat conduction device of the present invention is Except that the exhaust heat is not conducted into the can 13 as in the first example, but is conducted to the heat storage tank 20, the boiler 10 has almost the same configuration as the first example, Constituent elements similar to those in the first example are denoted by the same reference numerals and description thereof is omitted. The heat storage tank 20 is filled with a heat medium 21 such as water so that hot water or the like can be supplied.
[0044]
Further, in the heat conduction device, the counter oscillating flow type heat pipe 2 is used as a heat conduction member, and a heat receiving unit 3 that absorbs heat from the exhaust gas of the burner 11 to the high temperature part of the counter oscillating flow type heat pipe 2. In the low temperature part, a heat radiating part 4 for radiating the heat transferred from the counter oscillating flow type heat pipe 2 to the heat medium 21 in the heat storage tank 20 is provided. The heat receiving unit 3 is installed in the flue 14, and the heat radiating unit 4 is installed in the heat storage tank 20. A control box 5 for controlling the vibration frequency and amplitude of the vibrator 2d according to temperature is connected to the vibrator 2d provided in the counter oscillating flow type heat pipe 2, and the control box 5 is configured to store the heat storage. It is provided on the outer wall of the tank 20. A thermosensor 6 is provided in the heat storage tank 20 in order to sense the temperature of the heat medium 21 in the heat storage tank 20. Then, the information sensed by the thermosensor 6 becomes a signal and is transmitted to the control box 5.
[0045]
Next, the operation of the heat conduction device when the boiler 10 in the second example is operating will be described.
First, when the main power source of the burner 11 is turned on in order to heat the can water in the can body 13, the vibration exciter 2d, the thermo sensor 6, and the control box 5 are also turned on in conjunction with each other. The thermosensor 6 senses the temperature of the heat medium 21 in the heat storage tank 20, and information is transmitted to the control box 5. Here, the temperature of the heat medium 21 in the heat storage tank 20 is still normal temperature (for example, 20 ° C.), and the temperature of the heat medium 21 is the lower limit value of the preset heat medium temperature in the heat storage tank 20 (for example, If the temperature does not reach 67 ° C., the control box 5 gives a command to the vibrator 2d to set the vibrator 2d in the Hi mode, and vibrates the vibrator 2d at high speed. When the vibrator 2 d vibrates at high speed, the thermal conductivity of the counter oscillating flow type heat pipe 2 is increased, and a large amount of heat is transmitted to the heat medium 21 in the heat storage tank 20. At this time, since a large amount of heat is radiated from the heat radiating section 4, the temperature of the heat medium 21 in the heat storage tank 20 rapidly increases. Eventually, when the temperature of the heat medium 21 reaches the lower limit value of the heat medium set temperature, the control box 5 gives a command to the vibration exciter 2d to set the vibration exciter 2d to the low mode. The vibrator 2d is vibrated at a low speed.
[0046]
When the vibrator 2d vibrates at a low speed, the thermal conductivity of the opposed oscillating flow type heat pipe 2 is lowered, and a relatively small amount of heat is conducted to the heat medium 21 in the heat storage tank 20. Since a small amount of heat is radiated from the heat radiating section 4, the temperature rise of the heat medium 21 in the heat storage tank 20 becomes gentler than that when the vibrator 2d is in the Hi mode. Thereafter, the temperature of the heat medium 21 gradually rises, and when the upper limit value (for example, 73 ° C.) of the heat medium set temperature is exceeded, the control box 5 controls the vibrator 2d with respect to the vibrator 2d. Is forcibly stopped, and the vibrator 2d is stopped. When the vibration exciter 2d is stopped, the counter oscillating flow type heat pipe 2 substantially blocks heat conduction from the heat receiving portion 3.
[0047]
The temperature of the heat medium 21 in the heat storage tank 20 where the heat conduction has been interrupted does not increase, and gradually begins to decrease. When the temperature of the heat medium 21 gradually decreases and falls below a predetermined temperature (for example, 68.5 ° C.) within the range of the heat medium set temperature, the control box 5 causes the vibrator 2d to A command for starting the vibrator 2d again in the Low mode is issued, and the vibrator 2d starts to vibrate at a low speed. When the vibration exciter 2d is started, the heat transfer function of the opposed vibration flow type heat pipe 2 is restored, and a small amount of heat is transmitted from the heat receiving portion 3 to the heat radiating portion 4. Then, the temperature of the heat medium 21 in the heat storage tank 20 also begins to rise gradually again. However, when the load on the heat medium is large and the temperature of the heat medium further falls and falls below the lower limit value (for example, 67 ° C.) of the heat medium set temperature, for example, 60 ° C. or less, the command for setting the Hi mode is given again. The same operation as when starting is performed. By repeating the above operation, the temperature of the heat medium 21 in the heat storage tank 20 can be kept substantially constant.
[0048]
Therefore, according to the second example of the present invention, by using the counter oscillating flow type heat pipe 2, the heat amount of the exhaust gas by the burner 11 can be reused, and the temperature of the heat medium 21 in the heat storage tank 20. Can be kept almost constant.
Further, since the burner 11 is not directly controlled as in the prior art, the temperature in the heat storage tank 20 can be controlled while heating the can water in the can 13. Therefore, the overall efficiency is also higher than in the conventional case.
In the first and second examples, the control target of the control box 5 is limited to the vibration exciter 2d. However, for example, the temperature of the exhaust gas in the burner 11 does not become too high, and the thermo sensor 6 is placed in the flue 14. May be provided to sense the temperature of the exhaust gas and control the burner 11 via the control box 5.
[0049]
The control box 5 may stop the vibration of the vibrator 2d by sending a signal to the control box 5 that heating by the boiler 10 has been stopped. When the vibration exciter 2d is stopped, the opposed vibration flow type heat pipe 2 becomes almost incapable of passing heat, and the control box 5 stops the vibration of the vibration exciter 2d, so that the overall efficiency is improved. In general, when the boiler 10 is stopped, the temperature of the flue 14 falls below the temperature of the can water or the heat storage tank 20, and the amount of heat of the can water or the like is released to the flue 14. However, since the heat conduction of the counter oscillating flow type heat pipe 2 is interrupted by the stop of the vibrator 2d, this wasteful heat loss can be prevented.
Furthermore, the structure of the heat receiving part 3 and the heat radiating part 4 may be the same as that of the first example.
[0050]
Next, the heat conduction apparatus and the boiler 10 as a third example of the present invention will be described below.
In the boiler 10 shown in FIG. 5, the heat conduction device of the present invention does not conduct the exhaust heat into the can 13 as in the first example, but supplies water to the external heat exchange unit 17 for hot water supply. Except for being conducted to the pipe 18b, the configuration is almost the same as that of the boiler 10 of the first example, and the same components as those of the first example are denoted by the same reference numerals and the description thereof is omitted. Omitted.
In addition, the hot water supply facility 18 provided with the external heat exchange unit 17 includes a water supply pump 18a that sends water from a water supply tank (not shown) to the external heat exchange unit 17, a pipe 18b through which water sent from the water supply pump 18a passes, and external heat In order to use the water heated by the exchange part 17, it is comprised from the hot water supply piping 18d and the apparatus (For example, a heating apparatus, faucet 18c, etc.) which consumes the hot water installed in the front.
[0051]
In the heat conduction device, the counter oscillating flow type heat pipe 2 is used as a heat conducting member, and a high temperature portion of the counter oscillating flow type heat pipe 2 has a heat receiving part 3 that absorbs heat from the exhaust gas of the burner 11. The low temperature part is provided with a heat radiating part 4 for radiating heat to the water in the pipe 18b. The heat receiving unit 3 is installed in the flue 14, and the heat radiating unit 4 is installed in the pipe 18b. A control box 5 for controlling the frequency and amplitude of the vibrator 2d according to temperature is connected to the vibrator 2d provided in the counter oscillating flow type heat pipe 2. A thermosensor (not shown) is provided in the hot water supply pipe 18d in order to sense the temperature of the hot water in the hot water supply pipe 18d. Then, the temperature sensed by the thermosensor becomes a signal indicating the temperature by a signal output means (not shown) and is output to the control box 5.
[0052]
Further, the water supply pump 18a is provided with signal output means for outputting a signal indicating the start / stop of the water supply of the water supply pump 18a.
In addition, the signal which shows the start and stop of water supply may output a pulse-like signal at the time of water supply start or at the time of water supply stop, for example, in one of water supply and water supply stop A high level signal may be continuously output, and in the other case, a low level signal may be continuously output.
The control box 5 includes a CPU as an arithmetic processing device, a storage device having a memory such as a RAM / ROM connected to the CPU via a bus, an interface for inputting / outputting signals between the CPU and an external device, and the like. It is a known control device with
The control box 5 controls the start / stop of the vibration of the vibrator 2d of the heat conduction device in conjunction with the start / stop of the water supply in the water supply pump 18a, and based on the water temperature in the hot water supply pipe 18d. The frequency (amplitude) of the vibrator 2d is controlled.
[0053]
Next, the operation of the heat conduction device when the boiler 10 in the third example is operating will be described.
First, when hot water supply is started (for example, a sensor for detecting that the hot water valve is opened in a device that consumes hot water and the water pressure is reduced at the portion of the water supply pump 18a), the water supply pump 18a is activated. When the water supply pump 18a is activated, a signal indicating the start of water supply is output from the signal output means connected to the water supply pump 18a. In response to the start of water supply, the control box 5 to which this signal is input operates the vibrator 2d of the counter-vibration flow type heat pipe 2 in the high-frequency Hi mode so that the counter-vibration flow type heat pipe 2 is almost the same. The state of heat conduction is changed from the state of no heat conduction to the state of heat conduction, and the water supplied to the external heat exchange unit 17 is preheated by the exhaust heat.
[0054]
Further, during the hot water supply in which the water supply pump 18a is operating, the vibrator 2d of the opposed oscillating flow type heat pipe 2 is basically always operated, and the exhaust heat of the boiler 10 is reused. On the other hand, when the temperature of hot water in the transfer pipe 18c does not reach a preset set temperature reference value (for example, 70 ° C.), the burner 11 of the boiler 10 is brought into a high combustion state, and the temperature of the hot water is set in advance. If the set temperature reference value has been reached, the burner 11 of the boiler 10 is set to a low combustion state. As a result, during hot water supply, the water in the pipe 18b supplied to the external heat exchanger 17 is always preheated by exhaust heat, and the temperature is controlled on the burner 11 side, so the water is preheated. Therefore, the amount of heat from the can water for maintaining the set temperature reference value is small. That is, the burner 11 has a relatively long time in a low combustion state, and energy saving is realized.
[0055]
In addition, when hot water supply is stopped (for example, a sensor or the like detects that the hot water valve is closed in all the devices that consume hot water and the water pressure is increased in the water supply pump 18a), the water supply pump 18a also stops. . When the water supply pump 18a is stopped, a signal indicating the stop of water supply is output from the signal output means connected to the water supply pump 18a. When the temperature of the hot water in the hot water supply pipe 18d reaches the set temperature reference value, the control box 5 indicates that the temperature of the hot water from the thermosensor in the hot water supply pipe 18d is higher than the set temperature reference value. When the signal indicating that the water supply pump 18a is stopped from the signal output means of the water supply pump 18a is input, the control box 5 vibrates the counter-vibration flow type heat pipe 2 in conjunction with the water supply stop. The counter 2d is stopped so that the opposed oscillating flow type heat pipe 2 hardly conducts heat, and the preheating of the water supplied to the external heat exchanger 17 is stopped.
[0056]
On the other hand, even when a signal indicating stoppage of the water supply pump 18a is output from the signal output means of the water supply pump 18a, a signal indicating that the temperature of the hot water is lower than the set temperature reference value is output from the thermosensor in the hot water supply pipe 18d. If it is, the vibrator 2d is vibrated in the LOW mode with a reduced frequency without stopping the vibrator 2d of the opposed oscillating flow type heat pipe 2. As a result, the water in the pipe 18b is warmed and the water in the hot water supply pipe 18d continuous with the pipe 18b is also warmed, and the temperature of the hot water in the hot water supply pipe 18d gradually rises to reach the set temperature reference value. Then, when a signal indicating that the set temperature reference value has been reached is output from the thermosensor, the control box 5 stops the vibrator 2d of the counter oscillating flow type heat pipe 2.
Further, when the water supply pump 18a is operated in the state where the vibrator 2d of the opposed vibration flow type heat pipe 2 is stopped or is vibrating in the LOW mode as described above, the signal output means A signal indicating that the water supply pump 18a is operated is output to the control box 5, and the control box 5 operates the vibrator 2d of the counter oscillating flow type heat pipe 2 in the Hi mode.
[0057]
Therefore, according to the third example of the present invention, by using the counter oscillating flow type heat pipe 2, the heat quantity of the exhaust gas by the burner 11 can be reused, and the external heat exchange as a heat source of the hot water supply equipment 18 can be performed. The auxiliary | assistant role of the part 17 is played and the hot water supply equipment 18 with high total heat-transfer efficiency is realizable.
Further, while the hot water supply is stopped and the water supply to the external heat exchanging unit 17 is stopped, the water supplied to the external heat exchanging unit 17 is not heated. Therefore, it is possible to prevent the water from being heated more than necessary.
In addition, the structure of the heat receiving part 3 and the thermal radiation part 4 may be the same structure as a 1st example.
[0058]
Next, a heat conduction device and a power generation device as a fourth example of the present invention will be described below.
A power generation device 30 shown in FIG. 6 includes a combustion chamber 31 for mixing and burning fuel gas and compressed air, and a turbine 32 (gas turbine) that obtains rotational force from the combustion energy released from the combustion chamber 31. A compressor 33 that compresses air by a rotational force of the turbine 32, and a generator 34 (power generation unit) that generates electricity, and for heating the air compressed by the compressor 33 by the heat of exhaust gas. A recuperator 35 that is a heat exchanger, a flue 36 (exhaust system) for inducing and releasing the exhaust gas to the outside, and a high-performance filter 37 for purifying the air taken into the compressor 33 are provided. ing. Further, the power generator 30 stores a thermal storage tank for storing thermal energy of the exhaust gas discharged from the combustion chamber 31 in order to recover radiation and exhaust gas loss that occupies about one third of the entire fuel. 20 (heat storage part) is provided, and the heat transfer device for transmitting the heat energy of the exhaust gas to the heat storage tank 20 is provided. The electric power obtained from the generator 34 is charged into the storage battery 41 via the AC / DC converter 40, or the commercial power supply via the AC / DC converter 40, the AC / DC inverter 42, and the transformer 43. 44 is used. Moreover, the circuit breaker 45 for switching each to the storage battery 41 and the commercial power supply 44 is provided. Furthermore, the heat energy of the heat storage tank 20 is used as a heat supply device 50 such as hot water supply or heating.
[0059]
Next, the operation of the heat conduction device when the power generation device 30 in the fourth example is operating will be described.
First, a valve of a pipe through which the fuel gas passes is opened, and the fuel gas flows into the combustion chamber 31. The fuel gas is ignited by a spark plug (not shown) in the combustion chamber 31 to start combustion and discharge exhaust gas to the outside of the combustion chamber 31. The exhaust gas rotates the blades of the turbine 32 and is discharged to the outside through the recuperator 35 and the flue 36.
Here, when the starter such as the spark plug is turned on, the power sources of the vibrator 2d, the thermosensor 6, and the control box 5 are also turned on. Then, the thermo sensor 6 senses the temperature of the heat medium 21 in the heat storage tank 20, and information is transmitted from the transmitter provided in the thermo sensor 6 to the receiver of the control box 5. Here, the temperature of the heat medium 21 in the heat storage tank 20 is still normal temperature (for example, 20 ° C.), and the temperature of the heat medium 21 is the lower limit value of the preset heat medium temperature in the heat storage tank 20 (for example, If the temperature does not reach 67 ° C., the control box 5 gives a command to the vibrator 2d to set the vibrator 2d in the Hi mode, and vibrates the vibrator 2d at high speed.
[0060]
When the vibrator 2 d vibrates at high speed, the thermal conductivity of the counter oscillating flow type heat pipe 2 is increased, and a large amount of heat is conducted to the heat medium 21 in the heat storage tank 20. At this time, since a large amount of heat is radiated from the heat radiating section 4, the temperature of the heat medium 21 in the heat storage tank 20 rapidly increases. Eventually, when the temperature of the heat medium 21 reaches the lower limit value of the heat medium set temperature, the control box 5 gives a command to the vibrator 2d to place the vibrator 2d in the low mode, and the vibration box Vibrator 2d is vibrated at low speed. When the vibrator 2 d vibrates at a low speed, the thermal conductivity of the counter-oscillating flow type heat pipe 2 is lowered, and a relatively small amount of heat is conducted to the heat medium 21 in the heat storage tank 20. Since a small amount of heat is radiated from the heat radiating section 4, the temperature rise of the heat medium 21 in the heat storage tank 20 becomes gentler than that when the vibrator 2d is in the Hi mode.
[0061]
Thereafter, the temperature of the heat medium 21 gradually rises, and when the upper limit value (for example, 73 ° C.) of the heat medium set temperature is exceeded, the control box 5 controls the vibrator 2d with respect to the vibrator 2d. Is forcibly stopped, and the vibrator 2d is stopped. When the vibration exciter 2d is stopped, the counter oscillating flow type heat pipe 2 substantially blocks heat conduction from the heat receiving portion 3. The temperature of the heat medium 21 in the heat storage tank 20 where the heat conduction has been interrupted does not increase, and gradually begins to decrease. When the temperature of the heat medium 21 gradually decreases and falls below a predetermined temperature (for example, 68.5 ° C.) within the range of the heat medium set temperature, the control box 5 causes the vibrator 2d to A command for starting the vibrator 2d again in the Low mode is issued, and the vibrator 2d starts to vibrate at a low speed. When the vibration exciter 2d is started, the heat transfer function of the opposed vibration flow type heat pipe 2 is restored, and a small amount of heat is conducted from the heat receiving portion 3 to the heat radiating portion 4. Then, the temperature of the heat medium 21 in the heat storage tank 20 also begins to rise gradually again. However, when the load on the heat medium is large and the temperature of the heat medium further decreases and falls below the lower limit value (for example, 67 ° C.) of the heat medium set temperature, for example, 60 ° C. or less, the Hi mode command is given again to operate. The same operation as when starting is performed. By repeating the above operation, the temperature of the heat medium 21 in the heat storage tank 20 can be kept substantially constant.
[0062]
Therefore, according to the fourth example of the present invention, by using the counter oscillating flow type heat pipe 2, the combustion energy released from the combustion chamber 31 of the gas turbine can be reused, and the heat storage tank 20 The temperature of the inside heat medium 21 can be kept substantially constant.
In the fourth example, the control target of the control box 5 is limited to the vibration exciter 2d. However, for example, a thermo sensor is provided in the flue 36 so that the temperature of the exhaust gas ejected from the combustion chamber 31 does not become too high. The temperature of the exhaust gas may be sensed, and the opening and closing of the fuel supply valve of the power generator 30 may be controlled via the control box 5.
Moreover, the structure of the heat receiving part 3 and the thermal radiation part 4 may be the same structure as a 1st example.
Furthermore, the installation location of the heat radiating unit 4 is not limited to the heat storage tank 20, for example, in the piping of a hot water supply facility provided with a heat storage layer or a hot water storage boiler instead of the external heat exchange unit as in the third example. Also good. In this case, the counter-vibration flow heat pipe 2 is used to heat the water supplied by the exhaust heat of the turbine 32 to generate hot water (an auxiliary burner may be used if necessary) As in the third example, the start / stop of the vibration of the vibrator of the heat conducting member may be controlled in conjunction with the start / stop of water supply to the hot water supply facility.
[0063]
The floor heating 60 as a heating device using the heat conduction device as the fifth example of the present invention will be described below.
The floor heating 60 shown in FIG. 7 includes a floor material 61 having a predetermined size, the counter-vibration flow type heat pipe 2 meandering around the floor material 61, and the counter-vibration flow type heat pipe. 2 includes a control box 5 for controlling the internal vibrator 2d, a thermosensor (not shown) installed on the indoor side of the floor 61, and a heat source 62 for supplying heat to the counter-vibration flow type heat pipe 2. The
Next, a mechanism for transferring heat from the heat source 62 to the flooring 61 will be described. First, when the main power source of the floor heating 60 is turned on, the power source of the heat source 62, the vibrator 2d, the thermo sensor, and the control box 5 are also turned on in conjunction with each other. Then, the thermo sensor senses the room temperature, and information is transmitted from the transmitter provided in the thermo sensor to the receiver of the control box 5.
[0064]
Here, if the room temperature is still room temperature (for example, 15 ° C.) and the room temperature has not reached the preset lower limit value (for example, 24 ° C.), the control box 5 includes the vibrator A command for setting the vibrator 2d to Hi mode is given to 2d, and the vibrator 2d is vibrated at high speed. When the vibrator 2d vibrates at high speed, the counter-oscillation flow type heat pipe 2 has a high thermal conductivity and conducts a large amount of heat to the flooring 61. At this time, since a large amount of heat is radiated from the flooring 61, the room temperature rises rapidly. When the room temperature eventually reaches the lower limit value of the set temperature, the control box 5 gives a command to the vibrator 2d to place the vibrator 2d in the low mode, and vibrates the vibrator 2d at a low speed. Let When the vibrator 2d vibrates at a low speed, the counter-oscillation flow type heat pipe 2 has a low thermal conductivity and conducts a relatively small amount of heat to the flooring 61. Since a small amount of heat is radiated from the flooring 61, the temperature rise in the room is more gradual than when the vibrator 2d is in the Hi mode.
[0065]
Thereafter, the room temperature gradually rises, and when the upper limit value (for example, 26 ° C.) of the set temperature is exceeded, the control box 5 forcibly stops the vibrator 2d with respect to the vibrator 2d. A command is given to stop the vibrator 2d. When the vibration exciter 2d is stopped, the counter oscillating flow type heat pipe 2 substantially blocks heat conduction from the heat source 62. When the heat conduction is interrupted, the room temperature does not increase and gradually begins to decrease. When the room temperature gradually decreases and falls below a predetermined temperature within the set temperature range (for example, 24.5 ° C.), the control box 5 causes the vibration exciter 2d to go low again. A command to start in the mode is issued, and the vibrator 2d starts to vibrate at a low speed. When the vibrator 2d is started, the heat transfer function of the counter oscillating flow type heat pipe 2 is resumed, and a small amount of heat is conducted from the heat source 62 to the flooring 61. The room temperature also begins to rise slowly again. However, when the air temperature is considerably low and the room temperature further falls and falls below the lower limit value (for example, 24 ° C.) of the indoor set temperature, for example, 20 ° C. or less, the command for setting the Hi mode is given again. The same operation as at start is performed. By repeating the above operation, the room temperature can be kept substantially constant.
[0066]
Therefore, according to the fifth example of the present invention, the room temperature can be kept substantially constant by using the counter oscillating flow type heat pipe 2.
The method of using the opposed oscillating flow type heat pipe 2 is not limited to the above floor heating, but can be used as various heating devices or as a snow melting device that melts snow accumulated on a road in a heavy snow region or the like. You may do it. In cases other than floor heating, for example, the heat radiating portion of the opposed vibration flow type heat pipe 2 may be formed in a panel heater shape or an oil heater shape.
Furthermore, the configuration of the heat receiving unit 3 may be the same as that of the first example.
Further, the set temperature of the indoor temperature in the fifth example may be freely selected manually. Even if the set temperature changes, the above-described effect is reproduced, so that the room temperature can be kept substantially constant at the set temperature.
[0067]
In FIG. 7, if the temperature of the heat source 62 is lower than the temperature of the flooring 61, for example, the room temperature when temperature control is not performed is 30 ° C., for example, cold water or well water of about 5 ° C. is used as the cold heat source 62. The floor heating system can be used for cooling.
In the air conditioning system, the counter-vibration flow heat pipe 2 may be used for heat transport between the outdoor unit and the indoor unit. In other words, the outdoor unit and the indoor unit are connected using the opposed vibration flow type heat pipe 2, the outdoor unit is used as a heat source or a cold heat source, and heat is transported to the indoor unit side using the opposed vibration flow type heat pipe 2. It is good also as composition to do. In the case of such a configuration, there is no such a problem that the heat transport in the vertical direction is hindered as when a conventional two-phase heat pipe is applied to a building air conditioning system. For example, when an outdoor unit is installed on the upper side of a building with a conventional heat pipe and heating is performed on the lower floor side of the building, the heated and vaporized gas in the heat pipe must not go down. If there is a problem with heat transport, or if an outdoor unit is installed on the lower side of the building and cooling is performed on the upper floor side of the building, the liquid cooled and condensed in the heat pipe Failure to climb can cause problems with heat transport.
On the other hand, in the counter-oscillating flow type heat pipe 2, since the inside thereof is always filled with liquid at all times, heat can be transported almost regardless of the vertical direction. Therefore, the air conditioning system as described above can be suitably applied to a mid-to-high-rise building. Moreover, the heat source (cold heat source) is not limited to a general outdoor unit, and various heat storage tanks (which may produce ice as a cold heat source), spring water, well water, various exhaust heat, geothermal heat, and hot springs are used. It may be a thing. Even if the temperature cannot be controlled on the heat source side, the temperature can be controlled by controlling the amount of heat transport according to the state of vibration of the opposed oscillating flow heat pipe 2 as described above. Even when a heat source capable of controlling the temperature is used, energy loss can be reduced by controlling the excitation of the opposed oscillating flow type heat pipe 2 in response to the on / off of the heat source.
[0068]
In the first to fifth examples, the control of the vibrator 2d is limited to the three patterns of the Hi mode, the Low mode, and the stop, but the thermal conductivity of the counter-oscillating flow type heat pipe 2 changes corresponding to the vibration. Therefore, it is possible to increase the number of stages of control and to control appropriately according to the load of hot water supply or heating, or according to the temperature.
[0069]
【The invention's effect】
  As aboveIn this embodimentAccording to the heat conduction device, the temperature measuring means senses the temperature of the low temperature part and sends a signal to the control means, and the control means causes the vibration of the vibration means inside the heat conduction member to be transmitted. In order to control at least one of the amplitude and the frequency, and to control the operation and stop of the excitation means, the amount of heat transferred from the high temperature portion to the low temperature portion, that is, the amount of heat transport, It can be appropriately controlled depending on the temperature.
  Therefore, the heat conducting device can perform control to keep the temperature on the low temperature part side substantially constant.
  Moreover, according to the boiler 10 and power generator provided with the said heat conductive apparatus, by installing the low-temperature part of the said heat conductive member, and the said temperature measurement means in the said can 13 of the boiler 10, or the said thermal storage tank 20. The temperature of the can water in the can 13 of the boiler 10 and the temperature of the heat medium 21 in the heat storage tank 20 can be kept almost constant at all times.
  Moreover, according to the heating / cooling device provided with the vapor heat conduction device, the temperature can be controlled by adjusting the amount of heat transport from the heat source (cold heat source), and the energy loss can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view and a side view showing a heat exchange device of a first example of an embodiment of the present invention.
FIG. 2 is a schematic view showing a second example of the boiler according to the embodiment of the present invention.
FIG. 3 is a schematic view showing a heat receiving part of a heat exchange device used in the boiler.
FIG. 4 is a schematic view showing a third example of the boiler according to the embodiment of the present invention.
FIG. 5 is a schematic view showing a fourth example of the boiler according to the embodiment of the present invention.
FIG. 6 is a schematic diagram showing a power generator of a fifth example of an embodiment of the present invention.
FIG. 7 is a schematic diagram showing a floor heating apparatus as a heating apparatus according to a sixth example of the embodiment of the present invention.
FIG. 8 is a schematic view showing a boiler provided with a heat exchanger as a conventional example.
[Explanation of symbols]
1 heat exchanger
2 Opposite vibration flow type heat pipe (heat conduction member)
2b Channel wall (wall)
2c Liquid (liquid)
2d vibrator (vibration means)
2e Channel part (channel part)
5 Control box (control means)
6 Thermo sensor (temperature measuring means)
10 Boiler
11 Burner (heating unit)
12 Fire tube group (Heat exchange part)
13 Can body
14 Flue (exhaust system)
20 Thermal storage tank (thermal storage unit)
32 Turbine (gas turbine)
34 Generator (Power Generation Department)
36 Flue (exhaust system)

Claims (7)

高温部と低温部との間に並列に延在する複数の流路部を備える流路と、該流路内にほぼ満たされた状態で封入される液体と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段とを備え、前記流路の隣合う流路部内の液体同士が壁を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行う熱伝導部材と、
各種センサ・機器等の装置に接続されて信号を出力する信号出力手段と、
該信号出力手段から出力された信号に基づいて、前記加振手段により液体に加えられる振動の開始及び停止と、振動の振幅と、振動の振動数とのうちの少なくとも一つを制御するとともに、前記加振手段の作動及び停止を制御する制御手段と、を備える熱伝導装置を用いたボイラであって、
缶水を有する缶体と、
前記缶水を加熱する加熱部と、
該加熱部からの熱を缶水に伝える熱交換部と、
前記加熱部からの排気を放出する排気系と、
前記缶水の温度を計測するセンサを備えるとともに計測された温度を示す信号を出力する前記信号出力手段となる温度計測手段と、を備え、
前記熱伝導部材は、前記排気系から前記缶水に熱を伝導し、
前記制御手段は、前記缶水の温度が所定の温度付近に達するまでは、前記熱伝導部材が高い熱伝導率で前記排気系の熱を前記缶水に伝導するように前記加振手段を制御し、前記缶水の温度が所定の温度付近に達した場合には、前記熱伝導部材の熱伝導率が前記缶水の温度がほぼ所定の温度を維持するものとなるように前記加振手段を制御することを特徴とするボイラ。
A flow path having a plurality of flow path portions extending in parallel between the high temperature section and the low temperature section, a liquid sealed in a substantially filled state in the flow path, and the liquid flowing in the flow path Vibration means that vibrates so as to come and go along the extending direction of the path portion, and the liquids in the adjacent flow path portions of the flow paths are arranged adjacent to each other with a wall therebetween, and In a state where the liquid in the flow path is vibrated so that the vibrations by the vibration means are in opposite phases between the liquids in the adjacent flow paths, the liquid in the adjacent flow path exchanges heat through the wall. A heat conducting member ;
A signal output means for outputting a signal connected to various sensors / devices;
Based on the signal output from the signal output means, control at least one of the start and stop of vibration applied to the liquid by the vibration means, the amplitude of vibration, and the vibration frequency, Control means for controlling the operation and stop of the vibration means, and a boiler using a heat conduction device comprising:
A can body having can water;
A heating unit for heating the can water;
A heat exchanging section for transferring heat from the heating section to the can water;
An exhaust system for discharging exhaust from the heating unit;
A temperature measuring unit that includes the sensor that measures the temperature of the can water and that outputs the signal indicating the measured temperature;
The heat conducting member conducts heat from the exhaust system to the can water,
The control means controls the excitation means so that the heat conduction member conducts heat of the exhaust system to the can water with high thermal conductivity until the temperature of the can water reaches a predetermined temperature. When the temperature of the can water reaches around a predetermined temperature, the vibration means is arranged so that the thermal conductivity of the heat conducting member maintains the predetermined temperature of the can water. A boiler characterized by controlling.
高温部と低温部との間に並列に延在する複数の流路部を備える流路と、該流路内にほぼ満たされた状態で封入される液体と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段とを備え、前記流路の隣合う流路部内の液体同士が壁を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行う熱伝導部材と、
各種センサ・機器等の装置に接続されて信号を出力する信号出力手段と、
該信号出力手段から出力された信号に基づいて、前記加振手段により液体に加えられる振動の開始及び停止と、振動の振幅と、振動の振動数とのうちの少なくとも一つを制御するとともに、前記加振手段の作動及び停止を制御する制御手段と、を備える熱伝導装置を用いたボイラであって、
缶水を有する缶体と、
前記缶水を加熱する加熱部と、
該加熱部からの熱を缶水に伝える熱交換部と、
前記加熱部からの排気を放出する排気系と、
該排気系から放出される熱を蓄熱する蓄熱部と、
該蓄熱部の温度を計測するセンサを備えるとともに計測された温度を示す信号を出力する前記信号出力手段となる温度計測手段と、を備え、
前記熱伝導部材は、前記排気系から前記蓄熱部に熱を伝導し、
前記制御手段は、前記蓄熱部の温度が所定の温度付近に達するまでは、前記熱伝導部材が高い熱伝導率で前記排気系の熱を前記蓄熱部に伝導するように前記加振手段を制御し、前記蓄熱部の温度が所定の温度付近に達した場合には、前記熱伝導部材の熱伝導率が前記蓄熱部の温度がほぼ所定の温度を維持するものとなるように前記加振手段を制御することを特徴とするボイラ。
A flow path having a plurality of flow path portions extending in parallel between the high temperature section and the low temperature section, a liquid sealed in a substantially filled state in the flow path, and the liquid flowing in the flow path Vibration means that vibrates so as to come and go along the extending direction of the path portion, and the liquids in the adjacent flow path portions of the flow paths are arranged adjacent to each other with a wall therebetween, and In a state where the liquid in the flow path is vibrated so that the vibrations by the vibration means are in opposite phases between the liquids in the adjacent flow paths, the liquid in the adjacent flow path exchanges heat through the wall. A heat conducting member ;
A signal output means for outputting a signal connected to various sensors / devices;
Based on the signal output from the signal output means, control at least one of the start and stop of vibration applied to the liquid by the vibration means, the amplitude of vibration, and the vibration frequency, Control means for controlling the operation and stop of the vibration means, and a boiler using a heat conduction device comprising:
A can body having can water;
A heating unit for heating the can water;
A heat exchanging section for transferring heat from the heating section to the can water;
An exhaust system for discharging exhaust from the heating unit;
A heat storage section for storing heat released from the exhaust system;
A temperature measuring unit that includes a sensor that measures the temperature of the heat storage unit and that serves as the signal output unit that outputs a signal indicating the measured temperature;
The heat conducting member conducts heat from the exhaust system to the heat storage unit,
The control means controls the excitation means so that the heat conduction member conducts heat of the exhaust system to the heat storage section with high thermal conductivity until the temperature of the heat storage section reaches a predetermined temperature. When the temperature of the heat storage part reaches a predetermined temperature, the vibration means is arranged so that the heat conductivity of the heat conducting member maintains the predetermined temperature of the heat storage part. A boiler characterized by controlling.
請求項または記載のボイラにおいて、
前記信号出力手段として、加熱部による缶水の加熱の開始・停止に際し、加熱の開始・停止を示す信号を出力する加熱信号出力手段を備え、前記制御手段が前記加熱部の開始・停止に連動して加振手段の振動の開始・停止を制御することを特徴とするボイラ。
In the boiler according to claim 1 or 2 ,
The signal output means includes a heating signal output means for outputting a signal indicating the start / stop of heating when heating of the can water is started / stopped by the heating section, and the control means is interlocked with the start / stop of the heating section. And controlling the start and stop of the vibration of the vibration means.
請求項1〜3の何れかに記載のボイラにおいて、
前記缶水を用いて給湯・暖房用等に使用される温水を発生させるための回路、該回路の給水側配管及び該給水側配管に接続されて前記回路に給水する給水手段と、
給水手段に接続されて給水の開始・停止を示す信号を出力する前記信号出力手段としての給水信号出力手段と、を備え、
前記熱伝導部材は、前記排気系から前記給水側配管に熱を伝導し、
前記制御手段は、前記給水手段の給水の開始・停止に連動して前記加振手段の振動の開始・停止を制御することを特徴とするボイラ。
In the boiler in any one of Claims 1-3,
A circuit for generating hot water used for hot water supply / heating using the can water, a water supply side pipe of the circuit and a water supply means connected to the water supply side pipe for supplying water to the circuit;
And a water supply signal output means as said signal output means for outputting a signal indicating the start and stop of the water supply is connected to said water supply means,
The heat conducting member conducts heat from the exhaust system to the water supply side pipe,
The said control means controls the start / stop of the vibration of the said vibration means in conjunction with the start / stop of the water supply of the said water supply means.
高温部と低温部との間に並列に延在する複数の流路部を備える流路と、該流路内にほぼ満たされた状態で封入される液体と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段とを備え、前記流路の隣合う流路部内の液体同士が壁を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行う熱伝導部材と、
各種センサ・機器等の装置に接続されて信号を出力する信号出力手段と、
該信号出力手段から出力された信号に基づいて、前記加振手段により液体に加えられる振動の開始及び停止と、振動の振幅と、振動の振動数とのうちの少なくとも一つを制御するとともに、前記加振手段の作動及び停止を制御する制御手段と、を備える熱伝導装置を用いた発電装置であって、
ガスタービンと、
ガスタービンの回転により発電を行う発電部と、
前記ガスタービンの排気を放出する排気系と、
該排気系から放出される熱を蓄熱する蓄熱部と、
蓄熱部の温度を計測するセンサを備えるとともに計測された温度を示す信号を出力する前記信号出力手段となる温度計測手段と、を備え、
前記熱伝導部材は、前記排気系から前記蓄熱部に熱を伝導し、
前記制御手段は、前記蓄熱部の温度が所定の温度付近に達するまでは、前記熱伝導部材が高い熱伝導率で前記排気系の熱を前記蓄熱部に伝導するように前記加振手段を制御し、前記蓄熱部の温度が所定の温度付近に達した場合には、前記熱伝導部材の熱伝導率が前記蓄熱部の温度がほぼ所定の温度を維持するものとなるように前記加振手段を制御することを特徴とする発電装置。
A flow path having a plurality of flow path portions extending in parallel between the high temperature section and the low temperature section, a liquid sealed in a substantially filled state in the flow path, and the liquid flowing in the flow path Vibration means that vibrates so as to come and go along the extending direction of the path portion, and the liquids in the adjacent flow path portions of the flow paths are arranged adjacent to each other with a wall therebetween, and In a state where the liquid in the flow path is vibrated so that the vibrations by the vibration means are in opposite phases between the liquids in the adjacent flow paths, the liquid in the adjacent flow path exchanges heat through the wall. A heat conducting member;
A signal output means for outputting a signal connected to various sensors / devices;
Based on the signal output from the signal output means, control at least one of the start and stop of vibration applied to the liquid by the vibration means, the amplitude of vibration, and the vibration frequency, Control means for controlling operation and stop of the vibration means, and a power generation device using a heat conduction device comprising:
A gas turbine,
A power generation unit that generates power by rotation of the gas turbine;
An exhaust system that emits exhaust of the gas turbine,
A heat storage section for storing heat released from the exhaust system;
And a temperature measurement means to be the signal output means for outputting a signal indicative of the measured temperature provided with a sensor for measuring the temperature of the heat storage unit,
The heat conducting member conducts heat from the exhaust system to the heat storage unit,
Said control means, said until the temperature of the heat storage unit reaches the vicinity of a predetermined temperature, controlling the vibrating means to conduct the exhaust system of heat the heat conducting member has high thermal conductivity in the heat storage unit and, wherein when the temperature of the heat storage unit has reached the vicinity of a predetermined temperature, the heat conducting member of the temperature of the thermal conductivity the heat storage unit is almost certain of said vibrating means so as to maintain the temperature A power generator characterized by controlling the power.
請求項記載の発電装置において、
前記信号出力手段として、前記ガスタービンの作動の開始・停止に際し、作動の開始・停止を示す信号を出力する作動信号出力手段を備え、前記制御手段が前記ガスタービンの作動の開始・停止に連動して前記加振手段の振動の開始・停止を制御することを特徴とする発電装置。
The power generator according to claim 5 ,
As the signal output means, upon starting and stopping of operation of the gas turbine, comprising an actuation signal outputting means for outputting a signal indicating the start and stop of the operation, interlocking said control means to start and stop the operation of the gas turbine And controlling the start and stop of the vibration of the vibrating means.
高温部と低温部との間に並列に延在する複数の流路部を備える流路と、該流路内にほぼ満たされた状態で封入される液体と、該液体を流路内で流路部の延在方向に沿って往き来するように振動させる加振手段とを備え、前記流路の隣合う流路部内の液体同士が壁を隔てて隣接して配置されるとともに、前記加振手段による振動が隣接する流路部内の液体同士で逆位相となるように該流路部内の液体を振動させた状態で、隣接する流路部内の液体同士が壁を介して熱交換を行う熱伝導部材と、
各種センサ・機器等の装置に接続されて信号を出力する信号出力手段と、
該信号出力手段から出力された信号に基づいて、前記加振手段により液体に加えられる振動の開始及び停止と、振動の振幅と、振動の振動数とのうちの少なくとも一つを制御するとともに、前記加振手段の作動及び停止を制御する制御手段と、を備える熱伝導装置を用いた発電装置であって、
ガスタービンと、
ガスタービンの回転により発電を行う発電部と、
前記ガスタービンの排気を放出する排気系と、
前記排気系の余熱を用いて給湯・暖房用等に使用される温水を発生させるための回路、該回路の給水側配管及び該給水側配管に接続されて前記回路に給水する給水手段と、
給水手段に接続されて給水の開始・停止を示す信号を出力する前記信号出力手段としての給水信号出力手段と、を備え、
前記熱伝導部材は、前記排気系から前記給水側配管に熱を伝導し、
前記制御手段は、前記給水手段の給水の開始・停止に連動して前記加振手段の振動の開始・停止を制御することを特徴とする発電装置。
A flow path having a plurality of flow path portions extending in parallel between the high temperature section and the low temperature section, a liquid sealed in a substantially filled state in the flow path, and the liquid flowing in the flow path Vibration means that vibrates so as to come and go along the extending direction of the path portion, and the liquids in the adjacent flow path portions of the flow paths are arranged adjacent to each other with a wall therebetween, and In a state where the liquid in the flow path is vibrated so that the vibrations by the vibration means are in opposite phases between the liquids in the adjacent flow paths, the liquid in the adjacent flow path exchanges heat through the wall. A heat conducting member;
A signal output means for outputting a signal connected to various sensors / devices;
Based on the signal output from the signal output means, control at least one of the start and stop of vibration applied to the liquid by the vibration means, the amplitude of vibration, and the vibration frequency, Control means for controlling operation and stop of the vibration means, and a power generation device using a heat conduction device comprising:
A gas turbine,
A power generation unit that generates power by rotation of the gas turbine;
An exhaust system that emits exhaust of the gas turbine,
A circuit for generating hot water used for hot water supply / heating using the residual heat of the exhaust system, a water supply side pipe of the circuit and a water supply means connected to the water supply side pipe for supplying water to the circuit;
And a water supply signal output means as said signal output means for outputting a signal indicating the start and stop of the water supply is connected to said water supply means,
The heat conducting member conducts heat from the exhaust system to the water supply side pipe,
The said control means controls the start / stop of the vibration of the said vibration means in conjunction with the start / stop of the water supply of the said water supply means.
JP2000398752A 2000-12-27 2000-12-27 Boiler and power generator Expired - Fee Related JP4416316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398752A JP4416316B2 (en) 2000-12-27 2000-12-27 Boiler and power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398752A JP4416316B2 (en) 2000-12-27 2000-12-27 Boiler and power generator

Publications (2)

Publication Number Publication Date
JP2002195789A JP2002195789A (en) 2002-07-10
JP4416316B2 true JP4416316B2 (en) 2010-02-17

Family

ID=18863652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398752A Expired - Fee Related JP4416316B2 (en) 2000-12-27 2000-12-27 Boiler and power generator

Country Status (1)

Country Link
JP (1) JP4416316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816562B1 (en) * 2019-10-31 2023-05-03 Hamilton Sundstrand Corporation Oscillating heat pipe integrated thermal management system for power electronics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068836A (en) * 2002-08-07 2009-04-02 Denso Corp Counter-stream-mode oscillating-flow heat transport apparatus and cooling device
KR100569175B1 (en) 2002-08-07 2006-04-07 가부시키가이샤 덴소 Counter-stream-mode oscillating-flow heat transport apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816562B1 (en) * 2019-10-31 2023-05-03 Hamilton Sundstrand Corporation Oscillating heat pipe integrated thermal management system for power electronics

Also Published As

Publication number Publication date
JP2002195789A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
EP1251261B1 (en) Engine exhaust heat recovering apparatus
EP1094214B1 (en) Engine waste heat recovering apparatus
JP5011062B2 (en) Cogeneration system
JP2009103419A (en) Cogeneration system
JP4883935B2 (en) Waste heat utilization system and operation method thereof
EP3631338A1 (en) Heat-storing apparatus with solid filling material
KR20000070648A (en) Heating installation based on a stirling system
JP2004526932A (en) Building heating system
JP4057034B2 (en) Regenerative heat supply device and regenerative heat supply system using the same
JP4416316B2 (en) Boiler and power generator
CN107769617B (en) Thermo-electric generation system and gas-cooker
JP2010156315A (en) Engine waste heat utilizing device
JP2007263010A (en) Co-generation system
KR200430734Y1 (en) Heating medium type warm air circulator
JP2004111209A (en) Fuel cell power generation system
JP3743375B2 (en) Heat pump water heater
JP2002298863A (en) Exhaust heat recovery system for fuel cell power generating equipment
US11971221B2 (en) Thermal battery and electricity generation system
JP4842717B2 (en) Absorption chiller operation method and absorption chiller operation system
JP2004069123A (en) Macadam type heat storage apparatus
JP2010267565A (en) Fuel cell system
JP4882478B2 (en) Regenerative water heater
JP4145220B2 (en) Regenerative water heater
JP2003254611A (en) Cogeneration system
JP6145541B1 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4416316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees