JPH05149569A - Air heater and air cooler - Google Patents

Air heater and air cooler

Info

Publication number
JPH05149569A
JPH05149569A JP3336262A JP33626291A JPH05149569A JP H05149569 A JPH05149569 A JP H05149569A JP 3336262 A JP3336262 A JP 3336262A JP 33626291 A JP33626291 A JP 33626291A JP H05149569 A JPH05149569 A JP H05149569A
Authority
JP
Japan
Prior art keywords
temperature
air
water
temperature difference
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3336262A
Other languages
Japanese (ja)
Inventor
Yasuo Ogawa
康夫 小川
Shinji Nomichi
伸治 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3336262A priority Critical patent/JPH05149569A/en
Publication of JPH05149569A publication Critical patent/JPH05149569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PURPOSE:To obtain an air heater and air cooler in which temperature loss is very little and energy is saved. CONSTITUTION:In an air heater which employs water as heating fluid, a controlling means is provided which is constituted of temperature meters 12 to 15, an electromotive adjusting valve 11 and a controller 18. In this instance, the controlling means 18 carries out such a control that a proportion of temperature difference between water outlet temperature and air inlet dry ball temperature to that between water inlet temperature and air outlet dry ball temperature has a prescribed value in a range from, for example, 0.7 to 1.4. Similarly, in an air cooler which employs water as cooling fluid, a controlling means is provided which carries out such a control that a proportion of temperature difference between water outlet temperature and air inlet dry ball temperature to that between water inlet temperature and air outlet dry ball temperature has a prescribed value in a range from, for example, 0.7 to 1.4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は暖房用の空気加熱器及び
冷房用の空気冷却器に関し、特に水により加熱を行なう
空気加熱器及び水により冷却を行なう空気冷却器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air heater for heating and an air cooler for cooling, and more particularly to an air heater for heating with water and an air cooler for cooling with water.

【0002】[0002]

【従来技術】一般に、従来の水を加熱流体とする空気加
熱器や水を冷却流体とする空気冷却器においては、水の
比熱1に対して空気の比熱が0.24程度なので、定格
時は加熱器や冷却器の出入口での温度差は水に比べ空気
が約4倍程度あった。従って図4に示すように、JIS
の暖房条件では、例えば60℃で入った水は空気を加熱
しつつ自身は52℃まで冷却され、乾球温度が21℃で
入った空気は、水により加熱され51℃まで上昇する。
このため加熱器の水入口側では空気との温度差が9℃程
度しかないのに水出口側では空気との温度差が31℃に
もなってしまう。
2. Description of the Related Art Generally, in a conventional air heater using water as a heating fluid or an air cooler using water as a cooling fluid, the specific heat of air is about 0.24 with respect to the specific heat of water, and therefore, at the time of rating. The temperature difference between the inlet and outlet of the heater and cooler was about four times that of air compared to water. Therefore, as shown in FIG.
Under the heating conditions of, for example, water that has entered at 60 ° C. is cooled to 52 ° C. while heating the air, and air that has a dry-bulb temperature of 21 ° C. is heated by water and rises to 51 ° C.
Therefore, on the water inlet side of the heater, the temperature difference with air is only about 9 ° C., but on the water outlet side, the temperature difference with air is 31 ° C.

【0003】また、別の暖房条件について図5に示す。
図5は、例えば空気の入口乾球温度は21℃と図4と同
じであるが、温水の入口温度が45℃しかない場合につ
いてである。45℃で入ってきた水は、空気を加熱しつ
つ自身は40℃まで冷却され、空気は乾球温度21℃で
入ってきて、水により加熱され、39℃まで上昇する。
このため加熱器の水入口側では、空気との温度差が6℃
程度しかないのに、水出口側では空気との温度差が19
℃にもなってしまう。
FIG. 5 shows another heating condition.
FIG. 5 shows the case where the inlet dry-bulb temperature of air is 21 ° C., which is the same as in FIG. 4, but the inlet temperature of hot water is only 45 ° C. Water coming in at 45 ° C. cools itself to 40 ° C. while heating the air, and air comes in at a dry-bulb temperature of 21 ° C. and is heated by water to rise to 39 ° C.
Therefore, on the water inlet side of the heater, the temperature difference from the air is 6 ° C.
The temperature difference with the air at the water outlet side is 19
It will be ℃.

【0004】同様に、図6のJISの冷却条件では7℃
で入ってきて水は空気を冷却しつつ自身12℃まで加熱
され、乾球温度27℃で入ってきた空気は、水により冷
却され、14.5℃まで下降する。このため冷却器の水
入口側では、空気との温度差が7.5℃程度しかないの
に、水出口側では、空気との温度差が15℃にもなって
しまう。
Similarly, under the JIS cooling condition of FIG. 6, 7 ° C.
The incoming water is heated to 12 ° C. while cooling the air, and the incoming air at a dry-bulb temperature of 27 ° C. is cooled by the water and drops to 14.5 ° C. Therefore, on the water inlet side of the cooler, the temperature difference with the air is only about 7.5 ° C., but on the water outlet side, the temperature difference with the air is as high as 15 ° C.

【0005】[0005]

【発明が解決しようとする課題】上述のように、空気加
熱器及び空気冷却器の水入口側における水温と空気出口
乾球温度の温度差ΔT1と、水出口側における水温と、
空気入口乾球温度の温度差ΔT2が大幅に異なるので、
下記で説明するように温度損失が大きくなる。
As described above, the temperature difference ΔT 1 between the water temperature at the water inlet side of the air heater and the air cooler and the air outlet dry-bulb temperature, and the water temperature at the water outlet side,
Since the temperature difference ΔT 2 of the air inlet dry bulb temperature is significantly different,
The temperature loss increases as described below.

【0006】本明細書において温度損失を(1−η)で
与える。ηは温度差ΔT1と温度差ΔT2の算術平均温度
差ΔTm2{ΔTm2=(ΔT1+ΔT2)/2}と、温度
差ΔT1と温度差ΔT2の対数平均温度差ΔTm1〔ΔT
1=(ΔT2−ΔT1)/{ln(ΔT2/ΔT1)}〕
の比{η=(ΔTm1/ΔTm2)}として表す。
In this specification, the temperature loss is given by (1−η). η is the temperature difference [Delta] T 1 and the arithmetic mean temperature difference of the temperature difference ΔT 2 ΔTm 2 {ΔTm 2 = (ΔT 1 + ΔT 2) / 2} and, logarithmic mean temperature difference? Tm 1 of the temperature difference [Delta] T 1 and the temperature difference [Delta] T 2 [ ΔT
m 1 = (ΔT 2 −ΔT 1 ) / {ln (ΔT 2 / ΔT 1 )}]
Is expressed as a ratio {η = (ΔTm 1 / ΔTm 2 )}.

【0007】一般に空気熱交換器の交換熱量Q〔kca
l/n〕は Q=ΔTm1・A・h で与えられる。ここでΔTm1;対数平均温度差 A;
伝熱面積 h;熱伝達率従って、温度差ΔTm2が同じ
であっても温度差ΔT1と温度差ΔT2の差が大きくなれ
ば、前記対数平均温度差ΔTm1が小さくなり、結果と
して同じ交換熱量を得るためには、伝熱面積を増やさな
ければならなくなる。図7に、ΔT2/ΔT1とηの関係
を示す。
Generally, the amount of heat exchanged by an air heat exchanger Q [kca
1 / n] is given by Q = ΔTm 1 · A · h. Where ΔTm 1 ; logarithmic mean temperature difference A;
Heat transfer area h; heat transfer coefficient Therefore, even if the temperature difference ΔTm 2 is the same, if the difference between the temperature difference ΔT 1 and the temperature difference ΔT 2 becomes large, the logarithmic average temperature difference ΔTm 1 becomes small, and as a result, the same. In order to obtain the heat exchange amount, the heat transfer area must be increased. FIG. 7 shows the relationship between ΔT 2 / ΔT 1 and η.

【0008】図7において、例えば、ΔT1=ΔT2の時
はΔTm1=ΔTm2となり、η=1となる。また、ΔT
2がΔT1の3倍ならば、η=ΔTm1/ΔTm2=0.9
1となり、温度損失は9%あることになる。前述の図4
に示した暖房のJIS条件ではη=0.89、図2に示
した場合はη=0.90、図6に示した冷房のJIS条
件ではη=0.96である。
In FIG. 7, for example, when ΔT 1 = ΔT 2 , ΔTm 1 = ΔTm 2 and η = 1. Also, ΔT
If 2 is three times ΔT 1 , then η = ΔTm 1 / ΔTm 2 = 0.9
1 and the temperature loss is 9%. Figure 4 above
Η = 0.89 under the heating JIS conditions shown in FIG. 2, η = 0.90 in the case shown in FIG. 2, and η = 0.96 under the cooling JIS conditions shown in FIG.

【0009】本発明は上述の点に鑑みてなされたもので
上記問題点を除去し、温度損失が少なく、且つ省エネル
ギーの空気加熱器及び空気冷却器を提供することを目的
とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an air heater and an air cooler which eliminate the above problems, have a small temperature loss, and save energy.

【0010】[0010]

【問題を解決するための手段】上記問題点を解決するた
めに本発明は、加熱流体として水を用いる空気加熱器に
おいて、水出口温度と空気入口乾球温度との温度差と、
水入口温度と空気出口乾球温度との温度差の比が、例え
ば0.7〜1.4の間の一定の値になるように制御する
制御手段を設けたことを特徴とする。
In order to solve the above problems, the present invention provides an air heater using water as a heating fluid, wherein the temperature difference between the water outlet temperature and the air inlet dry bulb temperature is:
It is characterized in that control means is provided for controlling the ratio of the temperature difference between the water inlet temperature and the air outlet dry-bulb temperature to a constant value between 0.7 and 1.4, for example.

【0011】また、冷却流体として水を用いる空気冷却
器において、水出口温度と空気入口乾球温度との温度差
と、水入口温度と空気出口乾球温度との温度差の比が、
例えば0.7〜1.4の間の一定の値になるように制御
する制御手段を設けたことを特徴とする。
In an air cooler using water as the cooling fluid, the ratio of the temperature difference between the water outlet temperature and the air inlet dry-bulb temperature to the temperature difference between the water inlet temperature and the air-outlet dry-bulb temperature is
For example, it is characterized in that a control means for controlling the value to a constant value between 0.7 and 1.4 is provided.

【0012】[0012]

【作用】本発明は、加熱流体として水を用いる空気加熱
器及び冷却流体として水を用いる空気冷却器を上記のご
とく構成することにより、温度差ΔT2と温度差ΔT1
比(ΔT2/ΔT1)が0.7≦ΔT2/ΔT1≦1.4と
なり、図7に示すようにηが0.99以上となるので、
非常に省エネルギーとなる。
According to the present invention, by constructing the air heater using water as the heating fluid and the air cooler using water as the cooling fluid as described above, the ratio of the temperature difference ΔT 2 and the temperature difference ΔT 1 (ΔT 2 / ΔT 1 ) is 0.7 ≦ ΔT 2 / ΔT 1 ≦ 1.4, and η is 0.99 or more as shown in FIG.
It is very energy efficient.

【0013】さらに、負荷に送水する水の流量を減少で
きるので、ポンプ動力の低減ができ、配管も細くするこ
とができる。
Furthermore, since the flow rate of water to be supplied to the load can be reduced, the pump power can be reduced and the piping can be made thin.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の実施例として、地域暖房システ
ムの構成を示す図である。図中、温水製造装置1(通常
はボイラかヒートポンプ)により製造された温水は、ポ
ンプ2により加圧され、主配管3を通り、枝配管3−
1,3−2,3−3,・・・で分かれて暖房負荷5−
1,5−2,5−3,・・・に供給される。該暖房負荷
5−1,5−2,5−3,・・・内で冷却された温水
は、枝配管4−1,4−2,4−3,・・・を通って主
配管4に合流し、再び温水製造装置1に戻る。図2は暖
房負荷5−1,5−2,5−3,・・・の内暖房負荷5
−1の詳細を代表して示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a district heating system as an embodiment of the present invention. In the figure, hot water produced by a hot water producing apparatus 1 (usually a boiler or a heat pump) is pressurized by a pump 2, passes through a main pipe 3, and branches pipe 3-
1,3-2,3-3, ...
1, 5-2, 5-3, ... The hot water cooled in the heating loads 5-1, 5-2, 5-3, ... Passes through the branch pipes 4-1, 4-2, 4-3 ,. Merge and return to the hot water producing apparatus 1 again. FIG. 2 shows the heating load 5-1, 5-2, 5-3, ...
It is a figure which shows the details of -1 on behalf.

【0015】図2において暖房負荷5−1内には、枝配
管3−1から送られて来る温水を加熱流体とする空気加
熱器6があり、暖房負荷5−1内の空気を暖めている。
空気は、空気入口部7からファン16により吸引され、
熱交換器部17を通過する際に暖められ、空気出口部8
から排出される。一方、枝配管3−1からの温水は温水
入口部9から入り、熱交換器部17で空気を暖め、自身
は冷却されて、温水出口部10から、電動調整弁11及
び枝配管4−1を出ていく。また、空気出入口部8,7
と温水出入口部10,9にそれぞれ温度計測装置12、
14、15、13を設置し、その出力を制御装置18に
入力している。
In FIG. 2, the heating load 5-1 includes an air heater 6 which uses hot water sent from the branch pipe 3-1 as a heating fluid to warm the air in the heating load 5-1. ..
The air is sucked by the fan 16 from the air inlet portion 7,
It is warmed when passing through the heat exchanger portion 17, and the air outlet portion 8
Discharged from. On the other hand, the hot water from the branch pipe 3-1 enters from the hot water inlet part 9, warms the air in the heat exchanger part 17, and cools itself, and from the hot water outlet part 10, the electric control valve 11 and the branch pipe 4-1. To leave. Also, the air inlet / outlet parts 8, 7
And the hot water inlet / outlet portions 10 and 9 respectively have temperature measuring devices 12 and
14, 15, and 13 are installed, and the output thereof is input to the control device 18.

【0016】上記実施例において、空気出入口部8,7
と温水出入口部10,9のそれぞれに設置された温度計
測装置12、14、15、13の出力により、制御装置
18は、温水出口部10の温度と空気入口部10の乾球
温度の温度差が、温水入口部9の温度と空気出口部8の
乾球温度の温度差の0.7倍以上1.4倍以下になるよ
うに、電動調整弁11を制御し、温水の流量を調節す
る。
In the above embodiment, the air inlet / outlet portions 8, 7
The temperature difference between the temperature of the hot water outlet 10 and the temperature of the dry-bulb temperature of the air inlet 10 is controlled by the controller 18 based on the outputs of the temperature measuring devices 12, 14, 15, and 13 installed in the hot water inlet and outlet parts 10 and 9, respectively. Is controlled to be 0.7 times or more and 1.4 times or less the temperature difference between the temperature of the hot water inlet 9 and the dry bulb temperature of the air outlet 8 to adjust the flow rate of the hot water. ..

【0017】以上のように温水の流量を調整することに
より、図4で示したJISの暖房の条件に対して、図3
に示すように温水の出口温度は27.3℃〜33.6℃
のある温度に制御されるので、図7で示した、ηの値は
0.99以上となり、温度損失は1%以下になる。さら
に、図4に比べ、図3では、空気出入口部8,7の状態
が同じである一方、温水の温度降下は3〜4倍になるの
で、同じ熱量の暖房負荷に対しては、温水量は1/4〜
1/3となる。
By adjusting the flow rate of the hot water as described above, the heating condition of JIS shown in FIG.
As shown in, the outlet temperature of hot water is 27.3 ° C to 33.6 ° C.
Since the temperature is controlled to a certain temperature, the value of η shown in FIG. 7 becomes 0.99 or more, and the temperature loss becomes 1% or less. Further, compared to FIG. 4, in FIG. 3, the states of the air inlet / outlet portions 8 and 7 are the same, but the temperature drop of the hot water becomes 3 to 4 times, so for the heating load of the same heat quantity, the hot water quantity is Is 1/4 ~
It becomes 1/3.

【0018】従って、図1中のポンプ2の動力を低減で
きるほか、主配管3、4を細くできるので、図1に示す
地域暖房の場合は、経済的であり、また省資源にもな
る。空気の入口温度が変わる場合(負荷の変動)には、
温水流量の制御と同様にファン16の制御(風量制御)
も同じに行なうことにより、負荷変動に対する追従性
(快適性)も損なわれずに省エネルギーとなる。
Therefore, the power of the pump 2 in FIG. 1 can be reduced and the main pipes 3 and 4 can be made thin, so that the district heating shown in FIG. 1 is economical and saves resources. When the air inlet temperature changes (load fluctuation),
Control of fan 16 as well as control of hot water flow rate (air volume control)
By performing the same in the same manner, it is possible to save energy without impairing the followability (comfort) to the load fluctuation.

【0019】なお、上記実施例において、空気加熱器6
を例に説明したが、この空気加熱器6は、ファンコイル
ユニット、エアハンドリングユニット等でもよいことは
当然である。
In the above embodiment, the air heater 6
However, it goes without saying that the air heater 6 may be a fan coil unit, an air handling unit, or the like.

【0020】また、実施例は暖房用のみについて説明し
たが、冷房用の空気冷却器についても同じ効果を奏する
のは無論である。
Further, although the embodiment has been described only for heating, it is needless to say that the same effect can be obtained for an air cooler for cooling.

【0021】[0021]

【発明の効果】以上、説明したように、本発明の水を加
熱流体として用いる空気加熱器及び水を冷却流体として
用いる空気冷却器は、水出口温度と空気入口乾球温度の
差が水入口温度と空気出口乾球温度の差の0.7倍〜
1.4倍に制御できる制御装置を有するように構成され
るので、下記のような優れた効果が得られる。
As described above, in the air heater using water as the heating fluid and the air cooler using water as the cooling fluid according to the present invention, the difference between the water outlet temperature and the air inlet dry-bulb temperature is the water inlet. 0.7 times the difference between the temperature and the air outlet dry bulb temperature
Since it is configured so as to have a control device capable of controlling 1.4 times, the following excellent effects can be obtained.

【0022】 空気加熱器及び空気冷却器の温度損失
が1%以下であり、非常に省エネルギーである。 負荷側の水流量が従来に比べ1/4〜1/3になる
のでポンプ動力の低減と配管サイズを小さくでき、省エ
ネルギー、省資源である。 負荷からの戻り水温が、暖房時は低く冷房時は高い
ので、配管からの放熱損失が少なくなる。 温水や冷水の製造装置に蓄熱槽がある場合は、単位
体積あたりの蓄熱量が増え、夜間電力の有効利用もでき
る。
The temperature loss of the air heater and the air cooler is 1% or less, which is very energy saving. Since the water flow rate on the load side is ¼ to ⅓ of the conventional one, the pump power can be reduced and the pipe size can be reduced, which is energy and resource saving. Since the water temperature returned from the load is low during heating and high during cooling, heat loss from the piping is reduced. When a hot water or cold water production device has a heat storage tank, the amount of heat storage per unit volume increases, and night power can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を用いた地域暖房システム構成を示す図
である。
FIG. 1 is a diagram showing a configuration of a district heating system using the present invention.

【図2】本発明の暖房負荷の構成を示す図である。FIG. 2 is a diagram showing a configuration of a heating load of the present invention.

【図3】本発明の暖房条件を示す図である。FIG. 3 is a diagram showing a heating condition of the present invention.

【図4】JISの暖房条件を示す図である。FIG. 4 is a diagram showing JIS heating conditions.

【図5】別の暖房条件を示す図である。FIG. 5 is a diagram showing another heating condition.

【図6】JISの冷房条件を示す図である。FIG. 6 is a diagram showing JIS cooling conditions.

【図7】ΔT2/ΔT1とηの関係を示す図である。FIG. 7 is a diagram showing a relationship between ΔT 2 / ΔT 1 and η.

【符号の説明】[Explanation of symbols]

1 温水製造装置 2 ポンプ 3 主配管 3−1,2,3・・ 枝配管 4−1,2,3・・ 枝配管 5−1,2,3・・暖房負荷 6 空気加熱器 7 空気入口部 8 空気出口部 9 温水入口部 10 温水出口部 11 電動調節弁 12,13,14,15 温度計測装置 16 ファン 17 熱交換器部 1 Hot water production device 2 Pump 3 Main pipe 3-1, 2, 3 ... Branch pipe 4-1, 2, 3 ... Branch pipe 5-1, 2, 3 ... Heating load 6 Air heater 7 Air inlet part 8 Air Outlet 9 Hot Water Inlet 10 Hot Water Outlet 11 Electric Control Valve 12, 13, 14, 15 Temperature Measuring Device 16 Fan 17 Heat Exchanger

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加熱流体として水を用いる空気加熱器に
おいて、 水出口温度と空気入口乾球温度との温度差と、水入口温
度と空気出口乾球温度との温度差の比が一定の値になる
ように制御する制御手段を設けたことを特徴とする空気
加熱器。
1. An air heater using water as a heating fluid, wherein a ratio of a temperature difference between a water outlet temperature and an air inlet dry-bulb temperature to a temperature difference between the water inlet temperature and the air outlet dry-bulb temperature is a constant value. An air heater provided with a control means for controlling the air heater.
【請求項2】 前記温度差の比が0.7〜1.4の間の
値であることを特徴とする請求項1に記載の空気加熱
器。
2. The air heater according to claim 1, wherein the ratio of the temperature difference is a value between 0.7 and 1.4.
【請求項3】 冷却流体として水を用いる空気冷却器に
おいて、 水出口温度と空気入口乾球温度との温度差と、水入口温
度と空気出口乾球温度との温度差の比が一定の値になる
ように制御する制御手段を設けたことを特徴とする空気
冷却器。
3. In an air cooler using water as a cooling fluid, the ratio of the temperature difference between the water outlet temperature and the air inlet dry-bulb temperature to the temperature difference between the water inlet temperature and the air outlet dry-bulb temperature is a constant value. An air cooler characterized in that a control means for controlling the air cooler is provided.
【請求項4】 前記温度差の比が0.7〜1.4の間の
値であることを特徴とする請求項3に記載の空気冷却
器。
4. The air cooler according to claim 3, wherein the ratio of the temperature difference has a value between 0.7 and 1.4.
JP3336262A 1991-11-26 1991-11-26 Air heater and air cooler Pending JPH05149569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3336262A JPH05149569A (en) 1991-11-26 1991-11-26 Air heater and air cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3336262A JPH05149569A (en) 1991-11-26 1991-11-26 Air heater and air cooler

Publications (1)

Publication Number Publication Date
JPH05149569A true JPH05149569A (en) 1993-06-15

Family

ID=18297306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3336262A Pending JPH05149569A (en) 1991-11-26 1991-11-26 Air heater and air cooler

Country Status (1)

Country Link
JP (1) JPH05149569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409088B1 (en) * 2008-01-14 2014-06-17 엘지전자 주식회사 A Fan Coil Unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409088B1 (en) * 2008-01-14 2014-06-17 엘지전자 주식회사 A Fan Coil Unit

Similar Documents

Publication Publication Date Title
JP2527643B2 (en) A method of controlling the amount of water change in a water heat source air conditioning system
RU2018143500A (en) METHOD FOR CONTROLLING HEAT TRANSFER BETWEEN LOCAL COOLING SYSTEM AND LOCAL HEATING SYSTEM
CN106059323A (en) Cooling system of frequency converter
JP2001241735A (en) Air conditioning system and its controlling method
JPH05149569A (en) Air heater and air cooler
JP2899437B2 (en) Air conditioning system
JPH0131877Y2 (en)
CN111413117B (en) Test system based on inverse temperature working condition of water-cooling water chilling unit
CN209197509U (en) A kind of residual heat reutilizing system avoiding cooling tower coil frost broken
JPS6234147Y2 (en)
CN209371423U (en) Water cold storage regulating system
JPS5852919A (en) Heat pump device
JP3062565B2 (en) Cooling water inlet temperature control method for refrigerator in water heat storage system
JP2003207190A (en) Air conditioning system
JPS63275897A (en) Low temperature utilizing method for liquified natural gas
CN218379615U (en) Heat recovery unit
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump
JPH07174436A (en) River water utilizing heat recovery system
JPH0355752B2 (en)
JP3205409B2 (en) Thermal storage air conditioning system
TWM646530U (en) Energy saving temperature control device
JPS581344B2 (en) Air conditioning/heating water heater
SU1576792A1 (en) System for recovery heat of exhaust air
RU2121114C1 (en) Room heating system
JPS60142133A (en) Operation of air-conditioning equipment