JP2899437B2 - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JP2899437B2
JP2899437B2 JP3095565A JP9556591A JP2899437B2 JP 2899437 B2 JP2899437 B2 JP 2899437B2 JP 3095565 A JP3095565 A JP 3095565A JP 9556591 A JP9556591 A JP 9556591A JP 2899437 B2 JP2899437 B2 JP 2899437B2
Authority
JP
Japan
Prior art keywords
conditioning system
water
header
air conditioning
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3095565A
Other languages
Japanese (ja)
Other versions
JPH04327738A (en
Inventor
徹 合田
礼二 山下
真 石川
純司 長谷川
宅郎 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Dai Dan Co Ltd
Original Assignee
Toyota Motor Corp
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Dai Dan Co Ltd filed Critical Toyota Motor Corp
Priority to JP3095565A priority Critical patent/JP2899437B2/en
Publication of JPH04327738A publication Critical patent/JPH04327738A/en
Application granted granted Critical
Publication of JP2899437B2 publication Critical patent/JP2899437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は往ヘッダー及び還ヘッダ
ーを介して一次側を熱源とし、二次側を負荷とする空調
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system using a primary side as a heat source and a secondary side as a load via an outgoing header and a return header.

【0002】[0002]

【従来の技術】図2は従来の空調システムを示し、ヘッ
ダーを介して一次側を熱源とし、二次側を負荷とする密
閉タイプの空調システムである。すなわち、往ヘッダー
1の送水側には複数のポンプよりなるポンプ可変流量制
御装置2を介して例えば空調機等よりなる負荷3,3が
送水管により連結される。この負荷3,3はそれぞれ対
応したバルブ4,4を介して還ヘッダー5に還水管によ
り連結される。この還ヘッダー5と往ヘッダー1とはバ
ランス管6により連結され、このバランス管6にはバル
ブ7が設けられる。前記還ヘッダー5の出口側には定流
量冷水ポンプ8,8を介して冷凍機9,9が連結され、
この冷凍機9,9は往ヘッダー1の入口側に連結され
る。前記冷凍機9,9には定流量冷却水ポンプ10,1
0を介して冷却塔11,11が連結される。
2. Description of the Related Art FIG. 2 shows a conventional air conditioning system, which is a closed type air conditioning system in which a primary side is used as a heat source via a header and a secondary side is used as a load. That is, loads 3, 3 composed of, for example, an air conditioner or the like are connected to the water supply side of the outgoing header 1 via a pump variable flow control device 2 composed of a plurality of pumps by a water supply pipe. The loads 3, 3 are connected to the return header 5 via corresponding valves 4, 4 by return water pipes. The return header 5 and the forward header 1 are connected by a balance pipe 6, and the balance pipe 6 is provided with a valve 7. Refrigerators 9, 9 are connected to the outlet side of the return header 5 via constant flow chilled water pumps 8, 8,
The refrigerators 9 are connected to the inlet side of the outgoing header 1. The refrigerating machines 9 and 9 have constant flow cooling water pumps 10 and 1 respectively.
The cooling towers 11 and 11 are connected to each other via a zero.

【0003】即ち、往ヘッダー1から送水された冷水は
ポンプ可変流量制御装置2で流量が調整されて負荷3,
3の空調機に流入し冷房作用をする。負荷3,3の空調
機の冷房作用による熱交換で温度上昇した還水は還ヘッ
ダー5に流入する。還ヘッダー5から流出された温度上
昇した冷水は、冷却塔11,11を有する冷凍機9,9
で冷却されて往ヘッダー1に流入する。
That is, the flow rate of the chilled water sent from the outgoing header 1 is adjusted by the pump
The air flows into the air conditioner No. 3 to perform a cooling operation. The return water whose temperature has increased due to heat exchange by the cooling action of the air conditioners of the loads 3 and 3 flows into the return header 5. The cold water whose temperature has risen and has flowed out of the return header 5 is cooled by the refrigerators 9 and 9 having the cooling towers 11 and 11.
And flows into the outbound header 1.

【0004】このような空調システムでは、二次側負荷
3,3の変動に伴い、ポンプにインバ−タを使用したポ
ンプ可変流量制御装置2により、送水量を変化させる二
次側変流量方式を採用し、省エネルギーをはかってき
た。一方、一次側においては、冷凍機9,9の安定的運
転確保の意味から省エネルギーを無視し、冷水側、冷却
水側ともに、定流量冷水ポンプ8,8及び定流量冷却水
ポンプ10,10による定流量方式が採用されてきた。
又、このような空調システムにおいては、負荷3,3の
変動に伴い冷凍機9,9の発停制御が必要となるが、空
調条件を確保するために、二次側送水温度をある値に保
つことが不可欠である。このために採用される従来の制
御方式としては、冷凍機9,9の出口温度による送水温
度補償制御、負荷3,3側の使用熱量演算による制御な
どがある。
[0004] In such an air conditioning system, a secondary variable flow rate system is used in which the water supply amount is changed by a pump variable flow control device 2 using an inverter as a pump in accordance with the fluctuation of the secondary loads 3 and 3. Adopted to save energy. On the other hand, on the primary side, energy saving is neglected in the sense of ensuring stable operation of the refrigerators 9 and 9, and the constant flow cold water pumps 8 and 8 and the constant flow cooling water pumps 10 and 10 are used on both the cold water side and the cooling water side. Constant flow methods have been employed.
Further, in such an air conditioning system, it is necessary to control the start and stop of the refrigerators 9 and 9 in accordance with the fluctuation of the loads 3 and 3. It is essential to keep. Conventional control methods adopted for this purpose include water supply temperature compensation control based on the outlet temperatures of the refrigerators 9 and 9 and control based on calorific value calculation of the loads 3 and 3.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、省エネ
ルギーのためには、冷凍機の安定的運転確保ができるな
らば二次側流量だけでなく、一次側流量においても負荷
の変動に伴い、ポンプにインバータを使用した可変流量
方式の採用が有効である。
However, in order to save energy, if stable operation of the refrigerator can be ensured, not only the flow rate on the secondary side but also the flow rate on the primary side is affected by the fluctuation of the load. It is effective to adopt a variable flow rate method using a.

【0006】又、従来の制御方式では、負荷変動に伴
う、二次側流量の制御と冷凍機の運転停止制御が各々孤
立した制御系になっており、制御のタイミングによって
往ヘッダーと還ヘッダーを結ぶバランス管の流れが往ヘ
ッダーから還ヘッダーへ、またはその逆へと冷水が流
れ、二次側送水温度補償ができなかった。さらに冷凍機
のウォーミングアップ時間の長いものなどでは、冷凍機
冷水出口温度が変化し、その傾向が大きく生じていた。
Further, in the conventional control system, the control of the secondary flow rate and the control of stopping the operation of the refrigerator due to the load fluctuation are respectively independent control systems, and the forward header and the return header are changed depending on the control timing. Cold water flowed from the upstream header to the return header, or vice versa, due to the flow of the connecting balance pipe, and the secondary side water supply temperature could not be compensated. Furthermore, when the warming-up time of the refrigerator is long, the temperature of the refrigerator cold water outlet changes, and this tendency is greatly generated.

【0007】本発明は上記の実情に鑑みなされたもの
で、熱源の安定運転を確保しつつ、省エネルギーをはか
る空調システムを提供することを目的とするとともに、
熱源の発停時における二次側送水温度を補償する空調シ
ステムを提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide an air-conditioning system that saves energy while ensuring stable operation of a heat source.
It is an object of the present invention to provide an air conditioning system that compensates for a secondary water supply temperature when a heat source starts and stops.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するために、往ヘッダー及び還ヘッダーを介して一次側
を熱源とし、二次側を負荷とする空調システムにおい
て、往ヘッダーと還ヘッダーとの間のバランス管に設け
られた流量計と、熱源の入口と出口間に設けられたバル
ブを有するバイパス管と、一次側水流及び二次側水流の
流量を制御する手段とを具備することを特徴とするもの
である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an air conditioning system having a primary side as a heat source and a secondary side as a load via a forward header and a return header. And a bypass pipe having a valve provided between the inlet and the outlet of the heat source, and means for controlling the flow rates of the primary water flow and the secondary water flow. It is characterized by the following.

【0009】又、上記空調システムにおいて、負荷状態
とバランス管内の水の流量状態を検出し、熱源の立上
げ、停止に必要な所定時間後の負荷状態,水の流量状態
を事前に予測推論して熱源を発停制御することを特徴と
するものである。
In the above air conditioning system, the load state and the flow rate of water in the balance pipe are detected, and the load state and the flow rate of water after a predetermined time required for starting and stopping the heat source are predicted and inferred in advance. The heat source is controlled to start and stop.

【0010】[0010]

【作用】上記手段により、熱源の安定運転を確保しつ
つ、変流量方式を一次側水流に採用することにより省エ
ネルギーをはかる。又、負荷予測と一・二次側の水量バ
ランスの予測を行なうことにより、熱源を発停制御し、
さらに熱源の立ち上がりを考慮し、バイパスバルブをコ
ントロールすることにより、熱源の発停時における二次
側送水温度を補償する制御システムを可能とする。
According to the above-mentioned means, energy can be saved by adopting the variable flow rate method for the primary water flow while ensuring stable operation of the heat source. Also, by performing load prediction and prediction of the water balance on the primary and secondary sides, the start and stop control of the heat source is performed,
Further, by controlling the bypass valve in consideration of the rise of the heat source, a control system that compensates for the secondary-side water supply temperature when the heat source starts and stops can be realized.

【0011】[0011]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】図1は本発明空調システムの一実施例で冷
房時を示し、ヘッダーを介して一次側を熱源とし、二次
側を負荷とする密閉タイプの空調システムである。すな
わち、往ヘッダー1の送水側には複数のポンプよりなる
ポンプ可変流量制御装置2を介して例えば空調機等より
なる負荷3,3が送水管により連結される。この負荷
3,3はそれぞれ対応したバルブ4,4を介して還ヘッ
ダー5に還水管により連結される。この還ヘッダー5と
往ヘッダー1とはバランス管6により連結され、このバ
ランス管6には流量計12が設けられる。前記還ヘッダ
ー5の出口側にはバルブ13,13及び可変流量冷水ポ
ンプ14,14を介して冷凍機9,9が連結され、この
冷凍機9,9は往ヘッダー1の入口側に連結される。前
記冷凍機9,9には可変流量冷却水ポンプ15,15を
介して冷却塔11,11が連結される。前記バルブ1
3,13と可変流量冷水ポンプ14,14の連結点と、
前記冷凍機9,9と往ヘッダー1の連結点との間はバイ
パス管16,16でそれぞれ対応して連結され、このバ
イパス管16,16にはそれぞれバルブ17,17が設
けられる。
FIG. 1 shows an embodiment of the air conditioning system according to the present invention at the time of cooling, which is a closed type air conditioning system in which a primary side is used as a heat source via a header and a secondary side is used as a load. That is, loads 3, 3 composed of, for example, an air conditioner or the like are connected to the water supply side of the outgoing header 1 via a pump variable flow control device 2 composed of a plurality of pumps by a water supply pipe. The loads 3, 3 are connected to the return header 5 via corresponding valves 4, 4 by return water pipes. The return header 5 and the forward header 1 are connected by a balance pipe 6, and a flow meter 12 is provided on the balance pipe 6. Refrigerators 9 and 9 are connected to the outlet side of the return header 5 via valves 13 and 13 and variable flow chilled water pumps 14 and 14, and the refrigerators 9 and 9 are connected to the inlet side of the forward header 1. . Cooling towers 11 are connected to the refrigerators 9 via variable flow cooling water pumps 15. The valve 1
Connection points of the variable flow chilled water pumps 14, 14
The refrigerators 9 and 9 and the connection point of the forward header 1 are connected to each other by bypass pipes 16 and 16, respectively. The bypass pipes 16 and 16 are provided with valves 17 and 17, respectively.

【0013】即ち、往ヘッダー1から送水された冷水は
ポンプ可変流量制御装置2で流量が調整されて負荷3,
3の空調機に流入し冷房作用をする。負荷3,3の空調
機の冷房作用による熱交換で温度上昇した還水は還ヘッ
ダー5に流入する。還ヘッダー5から流出された温度上
昇した冷水は、冷却塔11,11を有する冷凍機9,9
で冷却されて往ヘッダー1に流入する。次に、本発明空
調システムの一実施例を従来の空調システムと比較す
る。
That is, the flow rate of the chilled water sent from the outgoing header 1 is adjusted by the pump
The air flows into the air conditioner No. 3 to perform a cooling operation. The return water whose temperature has increased due to heat exchange by the cooling action of the air conditioners of the loads 3 and 3 flows into the return header 5. The cold water whose temperature has risen and has flowed out of the return header 5 is cooled by the refrigerators 9 and 9 having the cooling towers 11 and 11.
And flows into the outbound header 1. Next, an embodiment of the air conditioning system of the present invention will be compared with a conventional air conditioning system.

【0014】従来の空調システムにおいては、一次側冷
水が定流量、二次側冷水が変流量となるため、負荷変動
及び冷凍機の運転、停止により、往ヘッダーと還ヘッダ
ーを結ぶバランス管の流れが往ヘッダーから還ヘッダー
へ、またはその逆へと冷水が流れ、二次側送水温度補償
ができなかったことと、冷凍機への入口水温・水量が急
変することにより冷凍機の能力制御がうまく行われず、
送水温度の乱れを生じていた。
In the conventional air-conditioning system, since the primary chilled water has a constant flow rate and the secondary chilled water has a variable flow rate, the flow of the balance pipe connecting the outgoing header and the return header due to the load fluctuation and the operation and stop of the refrigerator. However, the cold water flows from the outgoing header to the return header or vice versa, and the secondary side water supply temperature compensation could not be performed. Not done,
The water supply temperature was disturbed.

【0015】これに対して、本発明空調システムの一実
施例においては、バランス管6に流量計12を取り付
け、バランス管6内を流れる流量を略0に制御すること
を目標に、可変流量冷水ポンプ14,14により一次冷
水流量を可変とし、負荷3,3の変動による往ヘッダー
1からの二次側送水温度の変化をなくすと同時に、一次
側冷水の可変流量化により可変流量冷水ポンプ14,1
4の搬送動力を削減する。これに冷凍機9,9側の負荷
の減少に伴い、可変流量冷却水ポンプ15,15で冷却
水量を減少させることにより可変流量冷却水ポンプ1
5,15の搬送動力をも削減可能とする。
On the other hand, in one embodiment of the air conditioning system of the present invention, the flow meter 12 is mounted on the balance pipe 6 and the variable flow rate of the chilled water is controlled so that the flow rate in the balance pipe 6 is controlled to substantially zero. The primary chilled water flow rate is made variable by the pumps 14 and 14 to eliminate the change in the secondary-side water supply temperature from the outgoing header 1 due to the fluctuation of the loads 3 and 3, and the variable flow rate chilled water pump 14 and 1
4 to reduce the transfer power. As the load on the refrigerators 9 and 9 decreases, the amount of cooling water is reduced by the variable flow rate cooling water pumps 15 and 15 so that the variable flow rate cooling water pump 1
It is also possible to reduce the transfer power of 5,15.

【0016】又、従来の空調システムにおいては、冷凍
機側冷水入口温度、または負荷側熱量によって冷凍機を
発停しているが、現実には運転開始により、所定の温度
の冷水が得られるまでにはある程度の時間が必要とな
り、それが原因で二次側冷水送水温度が補償できない場
合も生じていた。
Further, in the conventional air conditioning system, the refrigerator is started and stopped according to the temperature of the chilled water inlet of the refrigerator or the calorific value of the load, but actually, until the chilled water of a predetermined temperature is obtained by starting the operation. Required a certain amount of time, which sometimes resulted in inability to compensate for the secondary chilled water supply temperature.

【0017】これに対して、本発明空調システムの一実
施例においては、外気状態と負荷3,3の状態と前記バ
ランス管6内の流量変化をとらえ、冷凍機9,9の立上
げ、停止に必要な例えば30分等の所定時間後の負荷状
態、水の流量状態を事前に図3に示すようなファジィ理
論の応用により予測推論して、冷凍機9,9を発停制御
する。
On the other hand, in one embodiment of the air conditioning system of the present invention, the start-up and stop of the refrigerators 9 and 9 are obtained by capturing the outside air state, the state of the loads 3 and 3 and the change in the flow rate in the balance pipe 6. For example, a load state and a water flow state after a predetermined time such as 30 minutes necessary for the operation are predicted and inferred in advance by applying a fuzzy theory as shown in FIG.

【0018】具体的には図3に示すようなフローによっ
て発停制御される。まず、冷水ポンプのインバータ出力
状態と2次側送水温度還水温度と2次側送水量より得ら
れる2次側負荷熱量及び外気温度、外気湿度より得られ
る外気エンタルピをセンサー情報として、それをもと
に、回帰式を作成し、N分後のポンプ出力状態値、負荷
熱量、外気エンタルピの推定値を算出する。これらの値
を前件部としてファジィ推論を応用し、発停判断を行
う。
Specifically, start / stop is controlled by a flow as shown in FIG. First, the inverter output state of the chilled water pump, the secondary side water supply temperature, the secondary side load heat amount obtained from the return water temperature and the secondary side water supply amount, the outside air temperature, and the outside air enthalpy obtained from the outside air humidity are used as sensor information. Then, a regression equation is created, and estimated values of the pump output state value, the load calorie, and the outside air enthalpy after N minutes are calculated. Using these values as antecedents, fuzzy inference is applied to determine start / stop.

【0019】ファジィ推論は、まず前件部としてN分後
の外気エンタルピ推定値とN分後の熱負荷予測値をもと
に発停判断を行う。これら2つの発停判断結果をもとに
最終的な判断を行う。
In the fuzzy inference, first, a start / stop judgment is performed based on an estimated value of the outside air enthalpy after N minutes and a predicted heat load value after N minutes as an antecedent part. A final judgment is made based on these two start / stop judgment results.

【0020】図4は後者におけるファジィ推論のメンバ
ーシップ関数を示すが、ルール1を簡単に説明すれば、
ポンプ出力状態がN分後も変化なければバランス管の流
量に関係なく、冷凍機は発停しないということを示して
いる。
FIG. 4 shows a membership function of the fuzzy inference in the latter.
If the pump output state does not change even after N minutes, it indicates that the refrigerator does not start and stop regardless of the flow rate of the balance pipe.

【0021】この場合、前記バイパス管16,16のバ
ルブ17,17を制御することにより、冷凍機9,9の
立ち上げ、立ち下げ時に二次側に高い水温の水が混入す
るのを防止し、二次側冷水送水温度の補償を可能とす
る。
In this case, by controlling the valves 17, 17 of the bypass pipes 16, 16, it is possible to prevent high-temperature water from entering the secondary side when the refrigerators 9, 9 are started and shut down. In addition, the secondary chilled water supply temperature can be compensated.

【0022】尚、上記実施例では、冷房時の空調システ
ムについて説明したが、これに限らず、暖房時の空調シ
ステムについても熱源を加熱機として用いることにより
同様にして実施することができる。
In the above embodiment, the air conditioning system for cooling is described. However, the present invention is not limited to this, and the air conditioning system for heating can be similarly implemented by using a heat source as a heater.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、変流
量方式を一次側水流に採用することにより、熱源の安定
運転を確保しつつ、省エネルギーをはかることができ
る。又、負荷予測と一・二次側の水量バランスの予測を
ファジィ理論の応用により行なうことにより、熱源を発
停制御し、さらに熱源の立ち上がりを考慮し、バイパス
バルブをコントロールすることにより、熱源の発停時に
おける二次側送水温度を補償する制御システムを可能と
することができる。
As described above, according to the present invention, by adopting the variable flow rate system for the primary water flow, it is possible to save energy while ensuring stable operation of the heat source. Also, by performing load prediction and prediction of the water balance on the primary and secondary sides by applying fuzzy logic, the start and stop of the heat source is controlled, and the rise of the heat source is considered, and the bypass valve is controlled to control the heat source. A control system for compensating the secondary side water supply temperature at the time of starting and stopping can be made possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成説明図である。FIG. 1 is a configuration explanatory view showing one embodiment of the present invention.

【図2】従来の空調システムを示す構成説明図である。FIG. 2 is a configuration explanatory view showing a conventional air conditioning system.

【図3】本発明の一実施例に係るファジィ推論の一例を
示す説明図である。
FIG. 3 is an explanatory diagram showing an example of fuzzy inference according to one embodiment of the present invention.

【図4】図3のファジィ推論におけるファジィメンバー
シップ関数の一例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of a fuzzy membership function in the fuzzy inference of FIG. 3;

【符号の説明】[Explanation of symbols]

1…往ヘッダー、2…ポンプ可変流量制御装置、3…負
荷、4…バルブ、5…還ヘッダー、6…バランス管、9
…冷凍機、11…冷却塔、13…バルブ、14…可変流
量冷水ポンプ、15…可変流量冷却水ポンプ、16…バ
イパス管、17…バルブ。
DESCRIPTION OF SYMBOLS 1 ... Outgoing header, 2 ... Pump variable flow control device, 3 ... Load, 4 ... Valve, 5 ... Return header, 6 ... Balance pipe, 9
.. Refrigerator, 11 cooling tower, 13 valve, 14 variable flow chilled water pump, 15 variable flow cooling water pump, 16 bypass pipe, 17 valve.

フロントページの続き (72)発明者 石川 真 愛知県豊田市曙町1−20 ダイダン株式 会社豊田支店内 (72)発明者 長谷川 純司 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 児玉 宅郎 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 実開 平1−148549(JP,U) (58)調査した分野(Int.Cl.6,DB名) F24F 5/00,11/02 Continued on the front page (72) Inventor Makoto Ishikawa 1-20 Akebonocho, Toyota City, Aichi Prefecture Daidan Corporation Toyota Branch (72) Inventor Junji Hasegawa 1st Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Invention Person Takuro Kodama 1st Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A 1-148549 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) F24F 5 / 00,11 / 02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 往ヘッダー及び還ヘッダーを介して一次
側を熱源とし、二次側を負荷とする空調システムにおい
て、往ヘッダーと還ヘッダーとの間のバランス管に設け
られた流量計と、熱源の入口と出口間に設けられたバル
ブを有するバイパス管と、一次側水流及び二次側水流の
流量を制御する手段とを具備することを特徴とする空調
システム。
1. An air conditioning system having a primary side as a heat source and a secondary side as a load via an outgoing header and a return header, a flowmeter provided in a balance pipe between the outgoing header and the return header, and a heat source. An air-conditioning system comprising: a bypass pipe having a valve provided between an inlet and an outlet of the air conditioner; and means for controlling the flow rates of the primary water flow and the secondary water flow.
【請求項2】 負荷状態とバランス管内の水の流量状態
を検出し、熱源の立上げ、停止に必要な所定時間後の負
荷状態,水の流量状態を事前に予測推論して熱源を発停
制御することを特徴とする請求項1記載の空調システ
ム。
2. Detecting the load condition and the flow rate of water in the balance pipe, and predicting and in advance predicting the load condition and the flow rate of water after a predetermined time required for starting and stopping the heat source, and starting and stopping the heat source. The air conditioning system according to claim 1, wherein the air conditioning system is controlled.
JP3095565A 1991-04-25 1991-04-25 Air conditioning system Expired - Lifetime JP2899437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095565A JP2899437B2 (en) 1991-04-25 1991-04-25 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095565A JP2899437B2 (en) 1991-04-25 1991-04-25 Air conditioning system

Publications (2)

Publication Number Publication Date
JPH04327738A JPH04327738A (en) 1992-11-17
JP2899437B2 true JP2899437B2 (en) 1999-06-02

Family

ID=14141117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095565A Expired - Lifetime JP2899437B2 (en) 1991-04-25 1991-04-25 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2899437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164684A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Temperature adjusting system, air conditioning system, and control method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550336B2 (en) * 2000-02-10 2004-08-04 ダイダン株式会社 Air conditioning system
JP3534048B2 (en) * 2000-07-27 2004-06-07 日立プラント建設株式会社 Air conditioning system
JP4093821B2 (en) * 2001-08-17 2008-06-04 荏原冷熱システム株式会社 Linked hot / cold water system
HK1086984A2 (en) * 2006-02-23 2006-09-29 David Man Chu Lau An industrial process efficiency method and system
JP4505498B2 (en) * 2007-12-21 2010-07-21 株式会社トーエネック Heat source performance evaluation system for air conditioning
JP5412073B2 (en) * 2008-09-08 2014-02-12 三菱重工業株式会社 Heat source system and control method thereof
CN115095907B (en) * 2022-07-15 2022-11-11 唐山学院 Intelligent heat supply energy-saving regulation and control method and system based on deep learning and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164684A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Temperature adjusting system, air conditioning system, and control method
CN103597290A (en) * 2011-05-31 2014-02-19 三菱电机株式会社 Temperature adjusting system, air conditioning system, and control method
JP5657110B2 (en) * 2011-05-31 2015-01-21 三菱電機株式会社 Temperature control system and air conditioning system
US9562701B2 (en) 2011-05-31 2017-02-07 Mitsubishi Electric Corporation Temperature control system and air conditioning system

Also Published As

Publication number Publication date
JPH04327738A (en) 1992-11-17

Similar Documents

Publication Publication Date Title
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
JP2527643B2 (en) A method of controlling the amount of water change in a water heat source air conditioning system
JP3652974B2 (en) Primary pump heat source variable flow rate system
JP2899437B2 (en) Air conditioning system
JP4864587B2 (en) Heat medium piping system
JP2003121024A (en) Integrated heat source system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP3306612B2 (en) How to control the number of operating heat source units
JP2002162087A (en) Variable flow control system for exhaust heat recovery and heat source
JP2901918B2 (en) Method of controlling ice melting operation of ice thermal storage system
JP2001241735A (en) Air conditioning system and its controlling method
US4817395A (en) Method and apparatus for saving energy in an air conditioning system
JPH038453B2 (en)
JPH04198647A (en) Control system for air conditioning heat source equipment
JP3112596B2 (en) Absorption refrigerator and control method thereof
JPS60155843A (en) Air conditioning control device by heat accumulation in water distributing pipe
JP3270272B2 (en) Control system for heat source system for air conditioning
JPH1183126A (en) Controller for air conditioning facility
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump
JPH07174436A (en) River water utilizing heat recovery system
JP3032276B2 (en) Air conditioning and heating systems
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
JPH0127347B2 (en)
JP2574536B2 (en) Ice storage device
JP2002295918A (en) Control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13