JP3534048B2 - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JP3534048B2
JP3534048B2 JP2000226657A JP2000226657A JP3534048B2 JP 3534048 B2 JP3534048 B2 JP 3534048B2 JP 2000226657 A JP2000226657 A JP 2000226657A JP 2000226657 A JP2000226657 A JP 2000226657A JP 3534048 B2 JP3534048 B2 JP 3534048B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
air
tank
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000226657A
Other languages
Japanese (ja)
Other versions
JP2002039600A (en
Inventor
康博 頭島
匠 杉浦
稔 高橋
昇 大島
義文 杉原
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP2000226657A priority Critical patent/JP3534048B2/en
Publication of JP2002039600A publication Critical patent/JP2002039600A/en
Application granted granted Critical
Publication of JP3534048B2 publication Critical patent/JP3534048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は空調システムに係
り、特に冷熱源と空調機との間を循環する冷媒を一時的
に貯留する冷水槽、温水槽を備えた空調システムに関す
る。 【0002】 【従来の技術】近年、事務所ビルでは多数のOA機器が
導入され、事務所ビルの空調負荷は冷房負荷の占める割
合が大きくなっており、年間冷房を必要とするビルも出
現している。このため、冷房時にエネルギー効率の良い
空調システムが要求されている。 【0003】図3に従来の空調システムの一例を示す。
同図に示すように、従来の空調システムは主として、冷
熱源1、空調機2、2…、冷水槽3及び温水槽4から構
成され、冷水槽3及び温水槽4に冷水が貯留されてい
る。温水槽4に貯留された水は、第1ポンプ5を駆動す
ることによって冷熱源1に供給され、該冷熱源1で7℃
前後に冷却される。この冷水は、冷水槽3に貯留された
後、第2ポンプ6を駆動することによって各空調機2の
冷却コイルに供給され、温水槽4に回収される。各空調
機2は、空調対象領域から吸引したエアを前記冷却コイ
ルの外部に通過させて冷却し、冷却した空調エアを空調
対象空間に戻す。 【0004】各空調機2の吹出口には、空調エアの温度
を検出する温度検出器2Aが設けられ、冷却コイルの供
給口には、冷媒の流量を調節する流量制御弁8が配設さ
れる。そして、温度検出器2A及び流量制御弁8に接続
された制御装置7が、温度検出器2Aの検出値に基づい
て流量制御弁8の開度を調節することによって、空調エ
アを所定の設定温度、例えば15〜16℃に調節する。 【0005】上述した空調システムは、通常、ポンプの
吐出圧を制御する吐出圧制御方式を採用している。即
ち、第2ポンプ6の吐出口に設けた圧力検出計6Aの検
出値に基づいて、コントローラ6Bがインバータ6Cを
制御し、第2ポンプ6の吐出圧を調節する。このとき、
第2ポンプ6の吐出圧は、最大負荷時を想定し、空調機
2が要求する最大量の冷水を搬送できる吐出圧に調節さ
れる。 【0006】ところで、前述した冷水槽3と温水槽4
は、連通管9を介して連通されている。したがって、第
2ポンプ6の吐出量が変動すると、第1ポンプ5と第2
ポンプ6の吐出量の差に応じて、冷水槽3又は温水槽4
内の水が連通管9を介して他方側に流れ、バランスがと
られる。 【0007】 【発明が解決しようとする課題】しかしながら、従来の
空調システムは、温度の異なる冷水槽3内の冷水と温水
槽4内の水とが混合するため、熱エネルギーのロスが大
きく、エネルギー効率が低い欠点があった。また、冷水
槽3内の冷水が温水槽4内に混入した際に、温水槽4内
の水の温度が大きく変動するため、冷熱源1が運転と停
止を頻繁に繰り返し、冷熱源1の負担が大きくなる欠点
があった。 【0008】また、従来の空調システムは、最大負荷時
を想定して制御しているので、部分負荷運転時に冷熱源
1に過剰な水を供給することになり、エネルギー効率が
低くなる欠点があった。 【0009】さらに、従来の空調システムは、空調機2
が要求する最大量の冷水を搬送できる吐出圧で第2ポン
プ6を運転するので、部分負荷運転時に第2ポンプ6が
過大な吐出圧で運転することになり、エネルギーの損失
が大きい欠点があった。 【0010】本発明はこのような事情に鑑みて成された
もので、エネルギー効率の高い空調システムを提供する
ことを目的とする。 【0011】 【課題を解決する為の手段】本発明は前記目的を達成す
るために、冷熱源と複数の空調機との間に冷媒を循環さ
せ、前記冷熱源で前記冷媒を冷却するとともに、前記各
空調機で前記冷媒を用いてエアを冷却することにより空
調を行う空調システムにおいて、前記冷熱源で冷却され
た冷媒を貯留する第1槽と、前記各空調機から回収され
た冷媒を貯留する第2槽と、前記第1槽と前記第2槽と
を連通する連通路と、前記連通路を流れる冷媒の流量を
検出する流量検出手段と、前記第2槽から前記冷熱源に
供給する冷媒の流量を調節する供給流量調節手段と、前
記冷熱源に供給される冷媒の流量を検出する供給流量検
出手段と、前記第1槽から前記各空調機に送水する冷媒
の流量を調節する送水流量調節手段と、前記第1槽と前
記各空調機とを連通する流路にそれぞれ設けられた複数
の流量制御弁と、を備え、制御手段は前記流量検出手段
で検出した冷媒の流量が零になるように、前記供給流量
調節手段を制御するとともに、前記供給流量検出手段の
検出値に基づいて前記複数の流量制御弁のうちの少なく
とも一つが全開となるように、前記送水流量調節手段を
調節することを特徴とする。 【0012】本発明によれば、第2槽と第1槽との連通
路を流れる冷媒の流量が零になるように、冷熱源に供給
する冷媒流量を調節するので、温度の異なる第1槽の冷
媒と第2槽の冷媒とが混合せず、エネルギー効率が高
い。また、冷熱源に適切な流量の冷媒を供給するので、
エネルギー効率が向上する。 【0013】 【発明の実施の形態】以下添付図面に従って、本発明に
係る空調システムの好ましい実施の形態について詳説す
る。 【0014】図1は本実施の形態の空調システム10を
示す概略構成図である。 【0015】同図に示す空調システム10は、冷媒(例
えば水)を冷却する冷熱源12と、冷媒を用いて室内エ
アを冷却する複数台の空調機18、18…との間に冷媒
を循環させることによって室内空調を行う。冷熱源12
は、例えば冷凍機等から成り、冷媒を7℃前後に冷却す
る。一方、空調機18は、冷却した冷媒を冷却コイル1
8A内に通過させるとともに、ファン(図示せず)によ
って室内エアを吸引して前記冷却コイル18Aの外部に
通過させ、15〜16℃に冷却した空調エアを空調対象
空間に供給する。 【0016】また、空調システム10は、冷媒を貯留す
る冷水槽(第1槽に相当)14と温水槽(第2槽に相
当)16とを備えている。冷水槽14には、冷熱源12
で冷却した冷媒が貯留され、温水槽16には、空調機1
8から回収した冷媒が貯留されている。 【0017】温水槽16と冷熱源12とを連通する管路
には、第1ポンプ20と第1流量計22が配設されてお
り、この第1ポンプ20を駆動することによって温水槽
16内の冷媒が冷熱源12に供給される。第1ポンプ2
0には、インバータ24が内蔵され、冷熱源12に供給
する冷媒の流量を調節できる。冷熱源12に供給する冷
媒の流量は、第1流量計22によって検出され、この検
出信号は、後述する制御装置(Diret Digital Controll
er)30に出力される。なお、前記インバータ24は、
制御装置30によって制御される。 【0018】冷熱源12に供給された冷媒は、7℃前後
に冷却された後、冷水槽14に貯留される。冷水槽14
に貯留された冷媒は、第2ポンプ26を駆動することに
よって冷水槽14から取り出され、複数台の空調機1
8、18…に分流して供給される。第2ポンプ26に
は、制御装置30に接続されたインバータ28が内蔵さ
れており、冷水槽14から吐出する冷媒の流量(又は吐
出圧力)を調節できる。第2ポンプ26の吐出口には、
圧力検出器32が設けられ、該圧力検出器32によって
第2ポンプ26の吐出圧力が検出される。制御装置30
は、この検出値に基づいてインバータ28を制御し、第
2ポンプ26の吐出圧力を所定値に調整する。例えば、
制御装置30は、流量計22の検出値と、各流量制御弁
36の開度から、必要な吐出圧力、即ち、各流量制御弁
のうちの少なくとも一つが開度80〜100%で運転で
きるような吐出圧力を演算する。そして、圧力検出器3
2の検出値が演算値になるように、第2ポンプ26のイ
ンバータ28を制御する。これにより、第2ポンプ26
の吐出圧力が必要最低限に抑えられ、第2ポンプ26の
動力を大幅に削減できる。 【0019】空調機18に供給された冷媒は、冷却コイ
ル18Aの内部を通過した際に、冷却コイル18Aの外
部を通過するエアと熱交換して前記エアを冷却する。こ
の冷却エアが室内(不図示)に供給されて空調がなされ
る。 【0020】各空調機18のエア吹出口(又は空調対象
空間)にはそれぞれ、空調エアの温度を検出する温度検
出器34が配設される。また、各空調機18の冷却コイ
ル18Aの供給口には、冷媒の流量を調節する流量制御
弁36が配設される。制御装置30は、温度検出器34
の検出値が所定の設定温度(例えば15〜16℃)にな
るように、流量制御弁36を自動的に開閉する。これに
より、室内が所定の温度に自動空調される。 【0021】空調機18から排出された冷媒は、温水槽
16に集められる。このように、冷媒が冷熱源12、冷
水槽14、空調機18、温水槽16を循環することによ
り、室内空調がなされる。 【0022】ところで、前記冷水槽14と温水槽16
は、連通管38を介して連通されている。したがって、
第1ポンプ20の吐出量と第2ポンプ26の吐出量が異
なった際に、冷水槽14の冷媒貯留量と温水槽16の冷
媒貯留量とに差が生じても、冷媒が連通管38を介して
他方側に流れるので、バランスがとられる。 【0023】連通管38には、冷媒の流量を検出する流
量計40が配設されている。流量計40は制御装置30
に接続され、流量の検出信号を制御装置30に出力す
る。制御装置30は、流量計40の検出値が零になるよ
うに、第1ポンプ20のインバータ24を制御する。 【0024】次に上記の如く構成された空調システム1
0の作用について説明する。 【0025】空調システム10は、制御装置30がイン
バータ24を制御して、冷熱源12に供給される冷媒の
流量を調節することにより、連通管38に冷媒が流れな
いようにしている。したがって、温度の異なる冷水槽1
4内の冷媒と温水槽16内の冷媒とが混合しなくなる。
これにより、冷媒の熱エネルギーのロスが少なくなり、
空調システム10のエネルギー効率を向上させることが
できる。また、冷水槽14内の冷媒が温水槽16内の冷
媒に混入しなくなるので、冷熱源12に供給される冷媒
の温度が安定する。したがって、冷熱源12の運転・停
止の頻度が少なくなり、冷熱源12の運転の省エネ化が
図れる。 【0026】また、空調システム10は、第1ポンプ2
0が適切な流量の冷媒を吐出するので、第1ポンプ20
の動力を大幅に削減することができる。 【0027】また、空調システム10は、各流量制御弁
36のうち一つ以上が開度80〜100%で運転できる
ような第2ポンプ26の吐出圧力に制御しているので、
第2ポンプ26の吐出圧力が必要最低限に抑えられ、第
2ポンプ26の動力を大幅に削減できる。 【0028】なお、上述した実施の形態は、連通管38
を流れる冷媒の流量に基づいて制御を行ったが、冷水槽
14の貯留量と温水槽16の貯留量に基づいて制御を行
ってもよい。例えば、一つの水槽の内部に仕切壁を設け
て冷水槽14と温水槽16を形成した場合、冷水槽14
と温水槽16にそれぞれ液面計を設け、該液面計の検出
値に基づいて第1ポンプ20の吐出量を制御してもよ
い。 【0029】また、第2ポンプ26に必要な吐出圧力の
演算は、各空調機18における温度検出器34の検出
値、及び流量制御弁36の開度と、流量計22の検出値
に基づいて演算してもよい。 【0030】図2は第2の実施の形態の空調システム5
0を示す概略構造図である。 【0031】同図に示すように、各空調機18の冷却コ
イル18Aの吐出口には、それぞれ流量計52が設けら
れている。この流量計52は、空調機18に供給された
冷媒の流量を検出し、該検出値を制御装置30に出力す
る。制御装置30は、この検出値に基づいて、必要最小
の第2ポンプ26の吐出圧力を演算する。そして、圧力
検出器32の検出値がこの演算値になるように、第2ポ
ンプ26のインバータ28を制御する。これにより、第
2ポンプ26の駆動力を必要最小限に抑えることがで
き、第2ポンプ26の動力を削減できる。 【0032】さらに、制御装置30は、流量計52と温
度検出器34の検出値に基づいて、空調エアを所定の温
度に調整するために必要な冷媒の流量を算出する。そし
て、各空調機18の必要流量を加算して、冷熱源12に
供給する冷媒の流量を算出し、該算出値になるように、
第1ポンプ20のインバータ24を制御する。これによ
り、第1ポンプ20の駆動力を必要最小限に抑えること
ができ、第1ポンプ20の動力を削減できる。 【0033】このように第2の実施の形態の空調システ
ム50によれば、各空調機18に流入する冷媒の流量を
検出し、該検出値に基づいて第1ポンプ20と第2ポン
プ26とを制御したので、第1ポンプ20と第2ポンプ
26の動力を削減できる。 【0034】なお、上述した第1、2の実施の形態は、
冷房空調を行う例で説明したが、本発明はこれに限定す
るものではなく、暖房空調を行う空調システムにも適用
することができる。 【0035】 【発明の効果】以上説明したように本発明に係る空調シ
ステムによれば、第1槽と第2槽の連通路を流れる冷媒
の流量が零になるように、冷熱源への冷媒供給量を制御
したので、温度の異なる第1槽の冷媒と第2槽の冷媒が
混合することを防止できるとともに、冷熱源への冷媒供
給量を適切な値に制御することができ、エネルギー効率
を向上させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to a cold water tank and a hot water tank for temporarily storing a refrigerant circulating between a cold heat source and an air conditioner. The present invention relates to an air conditioning system provided. 2. Description of the Related Art In recent years, a large number of office automation equipment have been introduced in office buildings, and the proportion of air conditioning load in office buildings to cooling load has increased, and some buildings require annual cooling. ing. For this reason, an air conditioning system with high energy efficiency during cooling is required. FIG. 3 shows an example of a conventional air conditioning system.
As shown in FIG. 1, the conventional air conditioning system mainly includes a cold heat source 1, air conditioners 2, 2,..., A cold water tank 3 and a hot water tank 4, and cold water is stored in the cold water tank 3 and the hot water tank 4. . The water stored in the hot water tank 4 is supplied to the cold heat source 1 by driving the first pump 5, and the cold water source 1
Cooled back and forth. This cold water is stored in the cold water tank 3 and then supplied to the cooling coils of each air conditioner 2 by driving the second pump 6, and is collected in the hot water tank 4. Each of the air conditioners 2 cools the air sucked from the air conditioning target area by passing the air outside the cooling coil, and returns the cooled air conditioning air to the air conditioning target space. A temperature detector 2A for detecting the temperature of the conditioned air is provided at the outlet of each air conditioner 2, and a flow control valve 8 for adjusting the flow rate of the refrigerant is provided at the supply port of the cooling coil. You. Then, the control device 7 connected to the temperature detector 2A and the flow control valve 8 adjusts the opening of the flow control valve 8 based on the detection value of the temperature detector 2A, so that the air-conditioning air reaches a predetermined set temperature. For example, the temperature is adjusted to 15 to 16 ° C. The above-described air conditioning system usually employs a discharge pressure control method for controlling the discharge pressure of a pump. That is, the controller 6B controls the inverter 6C based on the detection value of the pressure detector 6A provided at the discharge port of the second pump 6, and adjusts the discharge pressure of the second pump 6. At this time,
The discharge pressure of the second pump 6 is adjusted to a discharge pressure at which the maximum amount of cold water required by the air conditioner 2 can be transported, assuming a maximum load. Incidentally, the aforementioned cold water tank 3 and hot water tank 4
Are communicated via a communication pipe 9. Therefore, when the discharge amount of the second pump 6 fluctuates, the first pump 5 and the second pump 6
Depending on the difference in the discharge amount of the pump 6, the cold water tank 3 or the hot water tank 4
The water inside flows to the other side via the communication pipe 9 and is balanced. [0007] However, in the conventional air conditioning system, since the cold water in the cold water tank 3 and the water in the hot water tank 4 having different temperatures are mixed, the heat energy loss is large, There was a disadvantage of low efficiency. Further, when the cold water in the cold water tank 3 is mixed into the hot water tank 4, the temperature of the water in the hot water tank 4 fluctuates greatly. Had the disadvantage of becoming larger. Further, since the conventional air conditioning system is controlled assuming a maximum load, an excessive amount of water is supplied to the cold heat source 1 during a partial load operation, resulting in a decrease in energy efficiency. Was. Further, the conventional air conditioning system includes an air conditioner 2
Operates the second pump 6 at a discharge pressure capable of conveying the maximum amount of cold water required by the second pump 6, so that the second pump 6 operates at an excessive discharge pressure during the partial load operation, resulting in a large energy loss. Was. The present invention has been made in view of such circumstances, and has as its object to provide an air conditioning system with high energy efficiency. According to the present invention, in order to achieve the above object , a refrigerant is circulated between a cold heat source and a plurality of air conditioners.
While cooling the refrigerant with the cold heat source,
The air is cooled by using an air conditioner to cool the air.
In the air conditioning system that performs air conditioning,
A first tank for storing the cooled refrigerant, and recovered from each of the air conditioners.
A second tank for storing the cooled refrigerant, the first tank and the second tank,
And a flow rate of the refrigerant flowing through the communication path.
Flow rate detecting means for detecting, from the second tank to the cold heat source
Supply flow rate adjusting means for adjusting the flow rate of the supplied refrigerant;
Supply flow rate detection to detect the flow rate of refrigerant supplied to the cold heat source
Outlet means, and a refrigerant for sending water from the first tank to each of the air conditioners
A water supply flow rate adjusting means for adjusting a flow rate of the first tank;
A plurality of air conditioners are provided in each of the flow paths communicating with the air conditioners.
A flow control valve, wherein the control means is the flow detection means
So that the flow rate of the refrigerant detected at
While controlling the adjusting means, the supply flow rate detecting means
Based on the detected value, at least one of the plurality of flow control valves
So that one of them is fully opened,
It is characterized by adjusting . According to the present invention, the flow rate of the refrigerant supplied to the cold heat source is adjusted so that the flow rate of the refrigerant flowing through the communication path between the second tank and the first tank becomes zero. And the refrigerant in the second tank are not mixed, and the energy efficiency is high. In addition, since an appropriate flow of refrigerant is supplied to the cold heat source,
Energy efficiency is improved. Preferred embodiments of an air conditioning system according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing an air conditioning system 10 according to the present embodiment. An air conditioning system 10 shown in FIG. 1 circulates a refrigerant between a cold heat source 12 for cooling a refrigerant (for example, water) and a plurality of air conditioners 18, 18,. By doing so, indoor air conditioning is performed. Cold heat source 12
Consists of, for example, a refrigerator or the like, and cools the refrigerant to about 7 ° C. On the other hand, the air conditioner 18 supplies the cooled refrigerant to the cooling coil 1.
While passing through the inside of the cooling coil 18A, the room air is sucked by a fan (not shown) and passed outside of the cooling coil 18A to supply the conditioned air cooled to 15 to 16 ° C to the space to be conditioned. The air conditioning system 10 includes a cold water tank (corresponding to a first tank) 14 for storing a refrigerant and a hot water tank (corresponding to a second tank) 16. The cold water tank 14 includes a cold heat source 12
The refrigerant cooled by the air conditioner is stored in the hot water tank 16.
The refrigerant recovered from 8 is stored. A first pump 20 and a first flow meter 22 are provided in a pipe connecting the hot water tank 16 and the cold heat source 12. Is supplied to the cold heat source 12. First pump 2
At 0, an inverter 24 is built in, and the flow rate of the refrigerant supplied to the cold heat source 12 can be adjusted. The flow rate of the refrigerant to be supplied to the cold heat source 12 is detected by the first flow meter 22, and this detection signal is transmitted to a control device (Diret Digital Control
er) 30. In addition, the inverter 24 includes:
It is controlled by the control device 30. The refrigerant supplied to the cold heat source 12 is cooled to about 7 ° C., and then stored in the cold water tank 14. Cold water tank 14
The refrigerant stored in the air conditioner is taken out of the chilled water tank 14 by driving the second pump 26, and the plurality of air conditioners 1
, And are supplied separately. The second pump 26 has a built-in inverter 28 connected to the control device 30 and can adjust the flow rate (or discharge pressure) of the refrigerant discharged from the cold water tank 14. At the discharge port of the second pump 26,
A pressure detector 32 is provided, and the discharge pressure of the second pump 26 is detected by the pressure detector 32. Control device 30
Controls the inverter 28 based on the detected value to adjust the discharge pressure of the second pump 26 to a predetermined value. For example,
The control device 30 determines from the detected value of the flow meter 22 and the opening of each flow control valve 36 that the required discharge pressure, that is, at least one of the flow control valves can be operated at an opening of 80 to 100%. Calculate the appropriate discharge pressure. And the pressure detector 3
The inverter 28 of the second pump 26 is controlled so that the detected value of 2 becomes the calculated value. Thereby, the second pump 26
Of the second pump 26 can be greatly reduced. When the refrigerant supplied to the air conditioner 18 passes through the inside of the cooling coil 18A, it exchanges heat with air passing outside the cooling coil 18A to cool the air. This cooling air is supplied to a room (not shown) to perform air conditioning. A temperature detector 34 for detecting the temperature of the conditioned air is provided at the air outlet (or the space to be air-conditioned) of each air conditioner 18. Further, a flow control valve 36 for adjusting the flow rate of the refrigerant is provided at a supply port of the cooling coil 18A of each air conditioner 18. The control device 30 includes a temperature detector 34
The flow control valve 36 is automatically opened and closed so that the detected value of the temperature control reaches a predetermined set temperature (for example, 15 to 16 ° C.). Thereby, the room is automatically air-conditioned to a predetermined temperature. The refrigerant discharged from the air conditioner 18 is collected in the hot water tank 16. As described above, the refrigerant circulates through the cold heat source 12, the cold water tank 14, the air conditioner 18, and the hot water tank 16, thereby performing indoor air conditioning. The cold water tank 14 and the hot water tank 16
Are communicated via a communication pipe 38. Therefore,
When the discharge amount of the first pump 20 and the discharge amount of the second pump 26 are different from each other, even if a difference occurs between the refrigerant storage amount of the cold water tank 14 and the refrigerant storage amount of the hot water tank 16, the refrigerant flows through the communication pipe 38. Flow to the other side, so that a balance is achieved. The communication pipe 38 is provided with a flow meter 40 for detecting the flow rate of the refrigerant. The flow meter 40 is a control device 30
And outputs a detection signal of the flow rate to the control device 30. The control device 30 controls the inverter 24 of the first pump 20 so that the detection value of the flow meter 40 becomes zero. Next, the air conditioning system 1 configured as described above
The operation of 0 will be described. In the air conditioning system 10, the control device 30 controls the inverter 24 to adjust the flow rate of the refrigerant supplied to the cold heat source 12, so that the refrigerant does not flow through the communication pipe 38. Therefore, cold water tanks 1 having different temperatures
The refrigerant in 4 and the refrigerant in hot water tank 16 do not mix.
This reduces the loss of heat energy of the refrigerant,
The energy efficiency of the air conditioning system 10 can be improved. Further, since the refrigerant in the cold water tank 14 does not mix with the refrigerant in the hot water tank 16, the temperature of the refrigerant supplied to the cold heat source 12 is stabilized. Therefore, the frequency of operation / stop of the cold heat source 12 is reduced, and energy saving of the operation of the cold heat source 12 can be achieved. The air conditioning system 10 includes the first pump 2
0 discharges the refrigerant at an appropriate flow rate.
Power can be greatly reduced. The air conditioning system 10 controls the discharge pressure of the second pump 26 such that at least one of the flow control valves 36 can be operated at an opening of 80 to 100%.
The discharge pressure of the second pump 26 is suppressed to the minimum necessary, and the power of the second pump 26 can be significantly reduced. In the above-described embodiment, the communication pipe 38
Although the control is performed based on the flow rate of the refrigerant flowing through the water, the control may be performed based on the storage amount of the cold water tank 14 and the storage amount of the hot water tank 16. For example, when a cold water tank 14 and a hot water tank 16 are formed by providing a partition wall inside one water tank,
And the hot water tank 16 may be provided with a liquid level gauge, and the discharge amount of the first pump 20 may be controlled based on the detection value of the liquid level gauge. The calculation of the discharge pressure required for the second pump 26 is performed based on the detection value of the temperature detector 34, the opening of the flow control valve 36, and the detection value of the flow meter 22 in each air conditioner 18. The calculation may be performed. FIG. 2 shows an air conditioning system 5 according to the second embodiment.
FIG. As shown in the figure, a flow meter 52 is provided at the outlet of the cooling coil 18A of each air conditioner 18. The flow meter 52 detects the flow rate of the refrigerant supplied to the air conditioner 18 and outputs the detected value to the control device 30. The control device 30 calculates the required minimum discharge pressure of the second pump 26 based on the detected value. Then, the inverter 28 of the second pump 26 is controlled so that the detection value of the pressure detector 32 becomes the calculated value. Thereby, the driving force of the second pump 26 can be suppressed to a necessary minimum, and the power of the second pump 26 can be reduced. Further, the control device 30 calculates the flow rate of the refrigerant necessary for adjusting the conditioned air to a predetermined temperature based on the values detected by the flow meter 52 and the temperature detector 34. Then, the required flow rate of each air conditioner 18 is added, the flow rate of the refrigerant supplied to the cold heat source 12 is calculated, and the calculated flow rate is set to the calculated value.
The inverter 24 of the first pump 20 is controlled. Thereby, the driving force of the first pump 20 can be suppressed to a necessary minimum, and the power of the first pump 20 can be reduced. As described above, according to the air conditioning system 50 of the second embodiment, the flow rate of the refrigerant flowing into each air conditioner 18 is detected, and based on the detected values, the first pump 20 and the second pump 26 , The power of the first pump 20 and the second pump 26 can be reduced. In the first and second embodiments described above,
Although an example in which cooling air conditioning is performed has been described, the present invention is not limited to this, and can be applied to an air conditioning system performing heating air conditioning. As described above, according to the air conditioning system according to the present invention, the refrigerant to the cold heat source is set so that the flow rate of the refrigerant flowing through the communication path between the first tank and the second tank becomes zero. Since the supply amount is controlled, the refrigerant in the first tank and the refrigerant in the second tank having different temperatures can be prevented from being mixed with each other, and the supply amount of the refrigerant to the cold heat source can be controlled to an appropriate value. Can be improved.

【図面の簡単な説明】 【図1】本発明に係る空調システムの第1の実施の形態
を示す概略構造図 【図2】本発明に係る空調システムの第2の実施の形態
を示す概略構造図 【図3】従来装置を示す概略構造図 【符号の説明】 10…空調システム、12…冷熱源、14…冷水槽、1
6…温水槽、18…空調機、20…第1ポンプ、22…
流量計、24…インバータ、26…第2ポンプ、28…
インバータ、30…制御装置、32…圧力検出器、34
…温度検出器、36…流量制御弁、38…連通管、40
…流量計
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural diagram showing a first embodiment of an air conditioning system according to the present invention. FIG. 2 is a schematic structure showing a second embodiment of an air conditioning system according to the present invention. FIG. 3 is a schematic structural view showing a conventional apparatus.
6 hot water tank, 18 air conditioner, 20 first pump, 22
Flow meter, 24 inverter, 26 second pump, 28
Inverter, 30 ... Control device, 32 ... Pressure detector, 34
... temperature detector, 36 ... flow control valve, 38 ... communication pipe, 40
…Flowmeter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉原 義文 東京都豊島区南大塚3丁目53番11号 今 井三菱ビル内 日和エンジニアリング株 式会社内 (56)参考文献 特開 平10−96544(JP,A) 特開 平4−327738(JP,A) 特開 平4−313629(JP,A) 実開 昭60−79639(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 F24F 5/00 101 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshifumi Sugihara 3-53-11 Minami-Otsuka, Toshima-ku, Tokyo Within the Imai Mitsubishi Building Niwa Engineering Co., Ltd. (56) References JP-A-10-96544 ( JP, a) JP flat 4-327738 (JP, a) JP flat 4-313629 (JP, a) JitsuHiraku Akira 60-79639 (JP, U) (58 ) investigated the field (Int.Cl. 7, DB name) F24F 11/02 102 F24F 5/00 101

Claims (1)

(57)【特許請求の範囲】 【請求項1】冷熱源と複数の空調機との間に冷媒を循環
させ、前記冷熱源で前記冷媒を冷却するとともに、前記
各空調機で前記冷媒を用いてエアを冷却することにより
空調を行う空調システムにおいて、 前記冷熱源で冷却された冷媒を貯留する第1槽と、 前記各空調機から回収された冷媒を貯留する第2槽と、 前記第1槽と前記第2槽とを連通する連通路と、 前記連通路を流れる冷媒の流量を検出する流量検出手段
と、 前記第2槽から前記冷熱源に供給する冷媒の流量を調節
する供給流量調節手段と、 前記冷熱源に供給される冷媒の流量を検出する供給流量
検出手段と、 前記第1槽から前記各空調機に送水する冷媒の流量を調
節する送水流量調節手段と、 前記第1槽と前記各空調機とを連通する流路にそれぞれ
設けられた複数の流量制御弁と、を備え、 制御手段は前記流量検出手段で検出した冷媒の流量が零
になるように、前記供給流量調節手段を制御するととも
に、前記供給流量検出手段の検出値に基づいて前記複数
の流量制御弁のうちの少なくとも一つが全開となるよう
に、前記送水流量調節手段を調節する ことを特徴とす
調システム。
(57) [Claims 1] A refrigerant is circulated between a cold heat source and a plurality of air conditioners.
And cooling the refrigerant with the cold heat source,
By cooling the air using the refrigerant in each air conditioner
In an air conditioning system that performs air conditioning, a first tank that stores refrigerant cooled by the cold heat source, a second tank that stores refrigerant recovered from each air conditioner, the first tank, and the second tank And a flow rate detecting means for detecting a flow rate of the refrigerant flowing through the communication path.
And the flow rate of the refrigerant supplied from the second tank to the cold heat source is adjusted.
Supply flow rate adjusting means, and a supply flow rate detecting a flow rate of the refrigerant supplied to the cold heat source.
Detecting means for controlling a flow rate of the refrigerant to be supplied from the first tank to each of the air conditioners;
Water supply flow rate adjusting means, and a flow path connecting the first tank and each of the air conditioners.
A plurality of flow control valves provided, wherein the control means controls the flow rate of the refrigerant detected by the flow rate detection means to be zero.
Controlling the supply flow rate adjusting means so that
At the same time, based on the detection value of the supply flow rate detecting means,
At least one of the flow control valves is fully open
To, you and adjusting the water flow rate control means
Air-conditioning system.
JP2000226657A 2000-07-27 2000-07-27 Air conditioning system Expired - Fee Related JP3534048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226657A JP3534048B2 (en) 2000-07-27 2000-07-27 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226657A JP3534048B2 (en) 2000-07-27 2000-07-27 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2002039600A JP2002039600A (en) 2002-02-06
JP3534048B2 true JP3534048B2 (en) 2004-06-07

Family

ID=18720235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226657A Expired - Fee Related JP3534048B2 (en) 2000-07-27 2000-07-27 Air conditioning system

Country Status (1)

Country Link
JP (1) JP3534048B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917468B2 (en) * 2006-03-31 2012-04-18 三機工業株式会社 Refrigerator system
JP4917467B2 (en) * 2006-03-31 2012-04-18 三機工業株式会社 Refrigerator system
JP5043583B2 (en) * 2007-10-05 2012-10-10 高砂熱学工業株式会社 Cooling water supply system and flow control system
JP2013148244A (en) * 2012-01-17 2013-08-01 Aisin Seiki Co Ltd Cooling system
JP5337284B2 (en) * 2012-07-12 2013-11-06 高砂熱学工業株式会社 Cooling water supply system and flow control system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079639U (en) * 1983-11-09 1985-06-03 東洋熱工業株式会社 Air conditioning heat source equipment
JP2577668B2 (en) * 1991-04-11 1997-02-05 高砂熱学工業株式会社 Water temperature control device for heat source water for air conditioning
JP2899437B2 (en) * 1991-04-25 1999-06-02 ダイダン株式会社 Air conditioning system
JPH1096544A (en) * 1996-09-24 1998-04-14 Hino Motors Ltd Controller for cold water temperature and cold water amount in heat storage water tank

Also Published As

Publication number Publication date
JP2002039600A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP6570746B2 (en) Heat medium circulation system
JP2723953B2 (en) Air conditioner
JP6156245B2 (en) Ventilation device and ventilation air conditioning system
JP2008064439A (en) Air conditioner
JP2012141113A (en) Air conditioning/water heating device system
JP6681896B2 (en) Refrigeration system
JP6221198B2 (en) External control device
JP3534048B2 (en) Air conditioning system
KR20210131237A (en) Air conditioner system and control method
JP7374633B2 (en) Air conditioners and air conditioning systems
JP6024726B2 (en) External control device
JP3170507B2 (en) Air conditioning equipment
JP4477914B2 (en) Air conditioning system
CN100436970C (en) Air conditioner and its control method for the pressure equilibrium
JP2004003866A (en) Ventilation air conditioning system
EP3671055A1 (en) Heat exchanging ventilation device
KR101029988B1 (en) Method for automatic controlling air volum of blower by change of refrigerant flow of direct expansion air handling unit
JP3518015B2 (en) Ventilation air conditioner
JPH08303877A (en) Air conditioner
JP2960237B2 (en) Air conditioner
JP3169782B2 (en) Air conditioner
JP7439629B2 (en) air conditioning system
JPH0814685A (en) Air-conditioner
KR100625471B1 (en) Multi-chamber type air conditioner and control method thereof it
JPH09113015A (en) Control device for under-floor air conditioning system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees