JP2901918B2 - Method of controlling ice melting operation of ice thermal storage system - Google Patents

Method of controlling ice melting operation of ice thermal storage system

Info

Publication number
JP2901918B2
JP2901918B2 JP8101664A JP10166496A JP2901918B2 JP 2901918 B2 JP2901918 B2 JP 2901918B2 JP 8101664 A JP8101664 A JP 8101664A JP 10166496 A JP10166496 A JP 10166496A JP 2901918 B2 JP2901918 B2 JP 2901918B2
Authority
JP
Japan
Prior art keywords
ice
heat
water
cold
chilled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8101664A
Other languages
Japanese (ja)
Other versions
JPH09287797A (en
Inventor
和彦 藤井
徹郎 三浦
英司 睦好
雅博 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP8101664A priority Critical patent/JP2901918B2/en
Publication of JPH09287797A publication Critical patent/JPH09287797A/en
Application granted granted Critical
Publication of JP2901918B2 publication Critical patent/JP2901918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、夜間に製氷し、昼
間に解氷して冷熱源として利用する氷蓄熱システムの解
氷運転制御方法、とくにすべての氷を完全に解氷するた
めの方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the operation of an ice storage system for making ice at night and then freezing it during the day and using it as a cold heat source, and in particular, a method for completely thawing all ice. About.

【0002】[0002]

【従来の技術】近年、都市空間内で夏季を快適に過ごす
アメニティ指向と、オフィスビルなどのインテリジェン
ト化やOA化によって、夏季の冷房負荷が増大する傾向
にある。冷房負荷の増大は、空調用冷熱源機器の大容量
化だけでなく、電力負荷の昼夜間の格差を大きくする。
氷蓄熱システムは、夜間の電力を利用して製氷し、昼間
に解氷して冷房用の冷熱源として利用することができる
ので、空調用冷熱源機器の小型化と電力負荷の平準化の
効果とを期待することができる。また、氷蓄熱システム
では、水の顕熱に加えて氷の潜熱を利用するので、コン
パクトな蓄熱槽で大きな冷熱量を蓄積することができ、
ビルの空調用冷熱源システムや地域冷暖房システムへの
導入が進められている。
2. Description of the Related Art In recent years, there has been a tendency to increase the cooling load in summer due to the amenity orientation for spending the summer comfortably in an urban space and the intelligent and office automation of office buildings. The increase in the cooling load not only increases the capacity of the cooling and heat source equipment for air conditioning, but also increases the difference in power load between day and night.
The ice heat storage system can make ice using nighttime electricity, and can be used during the daytime as a cooling heat source for cooling, so the effects of downsizing cooling heat source equipment for air conditioning and leveling the power load. And can be expected. In addition, the ice heat storage system uses the latent heat of ice in addition to the sensible heat of water, so a large amount of cold energy can be stored in a compact heat storage tank.
Introduction to building air-conditioning cooling and heat source systems and district cooling and heating systems is being promoted.

【0003】夜間電力を有効に利用するためには、夜間
に製造された氷を昼間に完全に解氷させることが必要で
ある。次の製氷開始時まで前日に製氷した氷が残るよう
な場合は、前日の夜間に蓄積した冷熱を完全に利用しな
かったことになり、製氷の際の熱損失や氷蓄熱槽内での
熱損失による効率低下を招く。特に氷蓄熱槽を簡易な構
造のアイスオンコイル型としている氷蓄熱システムで
は、残氷があると氷が大きく成長してブロック化しやす
くなり、氷蓄熱槽としての運転に必要な解氷時の低冷水
の流通が妨げられ、蓄積された冷熱を有効に利用するこ
とができなくなってしまう。
In order to make effective use of nighttime power, it is necessary to completely thaw ice produced at nighttime during the day. If the ice made on the previous day remains until the next ice making starts, it means that the cold heat accumulated during the night before the day was not completely used, resulting in heat loss during ice making and heat in the ice storage tank. Loss of efficiency results in loss of efficiency. In particular, in an ice heat storage system in which the ice heat storage tank has a simple structure, an ice-on-coil type, if there is residual ice, the ice will grow large and it will be easier to block. The circulation of cold water is hindered, and the accumulated cold heat cannot be used effectively.

【0004】氷蓄熱システムの解氷を完全に行わせるた
めの先行技術は、たとえば特開平4−158137に開
示されている。この先行技術では複数の冷水熱交換器を
冷凍器やヒートポンプなどの冷熱源機器に対し冷水配管
を並列に接続することによってシステムを構成し、冷水
熱交換器や冷熱源機器の発停を台数制御して冷熱負荷の
変化に対応させる。特に解氷を促進させるためには、冷
水熱交換器の運転台数を増加させる。
A prior art for completely thawing an ice heat storage system is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-158137. In this prior art, a system is constructed by connecting multiple chilled water heat exchangers in parallel with chilled water source equipment such as refrigerators and heat pumps to control the number of chilled water heat exchangers and chilled heat source equipment. To respond to changes in cooling load. In particular, in order to promote defrosting, the number of operating chilled water heat exchangers is increased.

【0005】特開平7−133944には、他の先行技
術として、蓄熱系と非蓄熱系とを冷水配管で直列に接続
するシステムが開示されている。
Japanese Patent Application Laid-Open No. Hei 7-133944 discloses, as another prior art, a system in which a heat storage system and a non-heat storage system are connected in series by a cold water pipe.

【0006】また、蓄熱量を検知するためには、氷蓄熱
槽の水位を検知する方法が一般的である。製氷時と解氷
時とでは冷熱の蓄積量、すなわち蓄熱量が同等に水位と
対応するものとして、蓄熱量を検知するようにしている
のが一般的である。
In order to detect the amount of heat storage, a method of detecting the water level of an ice heat storage tank is generally used. In general, the amount of accumulated heat is detected between the time of ice making and the time of melting ice, that is, the amount of accumulated heat, that is, the amount of accumulated heat is equivalent to the water level.

【0007】[0007]

【発明が解決しようとする課題】氷蓄熱システムで昼間
に氷を完全に解氷させるための先行技術として、特開平
4−158137に示されるシステムでは、冷水熱交換
器の運転台数を増減させる必要があるので、冷水熱交換
器が1系列の場合には適用することができない。1系列
の冷水熱交換器に循環させる冷水流量を増減させて、変
流量制御によって解氷を促進する方法も可能であるけれ
ども、冷水熱交換器だけでなく冷水ポンプや冷水配管も
大容量に対応する必要があり、大きなコストアップを招
く。
As a prior art for completely thawing ice in the daytime with an ice heat storage system, in the system disclosed in Japanese Patent Application Laid-Open No. 4-158137, it is necessary to increase or decrease the number of operating chilled water heat exchangers. Therefore, it cannot be applied when the chilled water heat exchanger is one line. It is also possible to increase or decrease the flow rate of chilled water circulating through a series of chilled water heat exchangers to promote de-icing by variable flow control. However, not only chilled water heat exchangers but also chilled water pumps and chilled water pipes support large volumes. Must be performed, resulting in a significant cost increase.

【0008】特開平7−133944の先行技術に示す
ように、蓄熱系と非蓄熱系とを冷水配管で直列に接続す
る場合は、非蓄熱系の運転を停止することによって蓄熱
系の負荷を増加させることができるけれども、冷熱源機
器の能力を変更させたり、全体の能力を向上させたりす
るシステムの変更を円滑に行うことが困難となる。ま
た、氷蓄熱槽の水位は、製氷時と解氷時とでの蓄熱量に
対して同様の変化を示すものとして蓄熱量を検知する先
行技術では、実際には製氷時と解氷時とで蓄熱量に対応
する氷蓄熱槽の水位が異なるので、解氷時の蓄熱残量を
正確に検知することができない。
As shown in the prior art of JP-A-7-133944, when a heat storage system and a non-heat storage system are connected in series by a cold water pipe, the operation of the non-heat storage system is stopped to increase the load on the heat storage system. However, it is difficult to smoothly change the system to change the capacity of the cold heat source equipment or to improve the overall capacity. Further, in the prior art that detects the heat storage amount assuming that the water level of the ice heat storage tank shows the same change with respect to the heat storage amount at the time of ice making and at the time of ice melting, actually, there is a difference between the ice making time and the ice melting time. Since the water level of the ice heat storage tank corresponding to the amount of heat storage is different, it is not possible to accurately detect the remaining amount of heat storage at the time of melting ice.

【0009】本発明の目的は、簡単な構成で昼間に氷を
完全に解氷させることができ、夜間電力の有効利用を図
ることができる氷蓄熱システムの解氷運転制御方法を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for controlling the operation of an ice storage system in an ice heat storage system, which can completely defrost ice during the daytime with a simple configuration and can effectively use electric power at night. is there.

【0010】[0010]

【課題を解決するための手段】本発明は、夜間の製氷に
よって冷熱を氷蓄熱槽に蓄積し、昼間の解氷によって発
生する冷熱を利用するために、解氷および冷熱源機器の
運転状態を予め設定される計画に従って行う氷蓄熱シス
テムの解氷運転制御方法において、氷蓄熱槽内の低冷水
を冷水熱交換器の冷熱源側に循環させ、冷水熱交換器の
冷熱源側とは分離した負荷側と他の冷熱源機器の負荷側
とを並列に接続し、並列に接続された冷水熱交換器およ
び他の冷熱源機器と冷熱負荷との間に定流量の冷水を循
環させ、蓄熱残量の減少量を氷蓄熱槽内の水位に基づい
て監視し、減少量が計画よりも少なく、かつ他の冷熱源
機器が運転されているとき、冷水熱交換器の負荷側の冷
水出口温度を低下させるように制御することを特徴とす
る氷蓄熱システムの解氷運転制御方法である。本発明に
従えば、冷熱源側とは分離した冷水熱交換器の負荷側と
他の冷熱源機器の負荷側とが並列に接続され、冷熱負荷
との間には定流量の冷水が循環するので、冷水熱交換器
の負荷側の冷水出口温度を低下させれば、他の冷熱源機
器に対しての負荷は相対的に増加する。氷蓄熱システム
から冷熱負荷に相対的に多く供給する冷熱は、蓄熱残量
の減少量を増大させることによって供給されるので、解
氷を促進し、蓄熱残量を減少させることができる。解氷
の促進を、冷水熱交換器の熱交換能力を向上させるだけ
で行うことができ、冷水の流量を制御するような構成に
比較して低コストかつ簡単な制御で解氷促進運転を行う
ことができる。
SUMMARY OF THE INVENTION According to the present invention, in order to accumulate cold heat in an ice heat storage tank by ice making at night and to use the cold heat generated by melting ice during the day, the operation state of the ice melting and cold heat source equipment is controlled. In the method for controlling the deicing operation of an ice heat storage system performed according to a preset plan, the low-temperature water in the ice heat storage tank is circulated to the cold heat source side of the cold water heat exchanger, and separated from the cold heat source side of the cold water heat exchanger. The load side is connected in parallel with the load side of other chilled heat source equipment, and a constant flow of chilled water is circulated between the chilled water heat exchanger and the other chilled heat source equipment and the chilled heat load connected in parallel. The amount of decrease is monitored based on the water level in the ice storage tank, and when the amount of decrease is less than planned and other chilled heat source equipment is operating, the chilled water outlet temperature on the load side of the chilled water heat exchanger is monitored. Ice heat storage system characterized by control to reduce A thawing operation control method. According to the present invention, the load side of the chilled water heat exchanger separated from the chilled heat source side and the load side of another chilled heat source device are connected in parallel, and a constant flow of chilled water is circulated between the load side and the chilled heat load. Therefore, if the temperature of the chilled water outlet on the load side of the chilled water heat exchanger is reduced, the load on other chilled heat source devices relatively increases. Since a relatively large amount of cold heat supplied from the ice heat storage system to the cold load is supplied by increasing the decrease amount of the remaining heat storage amount, it is possible to promote thawing and reduce the remaining heat amount. Thawing can be promoted simply by improving the heat exchange capacity of the chilled water heat exchanger, and the deicing promotion operation is performed at a lower cost and simpler control compared to a configuration that controls the flow rate of chilled water. be able to.

【0011】また本発明は、冷水熱交換器の負荷側の冷
水出口温度の制御を、冷水熱交換器の冷熱源側に供給す
る低冷水の流量を調整して行うことを特徴とする。また
本発明で製氷による冷熱の蓄積は、アイスオンコイル型
氷蓄熱槽を用いて行うことを特徴とする。本発明に従え
ば、アイスオンコイル型の氷蓄熱槽と冷水熱交換器の冷
熱源側との間に循環する低冷水を、冷水熱交換器の負荷
側と冷熱負荷との間で循環する冷水から分離することが
できるので、氷蓄熱槽の水位に対する外乱が少なく、氷
蓄熱槽内の氷の残量を水位から精度よく把握し、適切な
解氷運転を行うことができる。
Further, the present invention is characterized in that the control of the chilled water outlet temperature on the load side of the chilled water heat exchanger is performed by adjusting the flow rate of the low chilled water supplied to the chilled heat source side of the chilled water heat exchanger. In the present invention, the accumulation of cold heat by ice making is performed using an ice-on-coil type ice heat storage tank. According to the present invention, the low chilled water circulating between the ice-on-coil type ice heat storage tank and the cold heat source side of the chilled water heat exchanger is cooled by the chilled water circulating between the load side of the chilled water heat exchanger and the chilled heat load. Therefore, the disturbance to the water level of the ice heat storage tank is small, the remaining amount of ice in the ice heat storage tank can be accurately grasped from the water level, and an appropriate deicing operation can be performed.

【0012】さらに本発明は、夜間の製氷によって氷蓄
熱槽内に冷熱を蓄積し、昼間の解氷によって発生する冷
熱を冷水熱交換器を介して利用する氷蓄熱システムの解
氷運転制御方法において、冷水熱交換器では、冷熱源側
と負荷側とを分離して、氷蓄熱槽内の低冷水を該冷熱源
側に循環させるように氷蓄熱システムを構成しておき、
予め氷蓄熱槽内の水位の変化を、製氷時および解氷時に
ついてそれぞれ測定しておき、氷蓄熱槽内の蓄熱残量
を、製氷時の水位の変化に従って求められる製氷終了時
の水位から、解氷運転終了時の水位まで直線的に変化す
る水位に対応させて検知し、検知された蓄熱残量が解消
されるように解氷を行うことを特徴とする氷蓄熱システ
ムの解氷運転制御方法である。本発明に従えば、氷蓄熱
槽内には、夜間に製氷した氷が水と共存する状態で蓄積
される。氷は冷却管の周囲に付着する状態などで、水中
に存在するので、氷の量が増大するとともに水位も上昇
する。しかしながら、解氷時には、氷蓄熱槽内の水の温
度が必ずしも均一化されないので、解氷運転時の蓄熱量
に対応する水位は、同一の蓄熱量に対応する製氷運転時
の水位よりも高めとなる。解氷運転終了時は氷蓄熱槽内
の水温が高く若干氷が残っている状態であり、時間をお
けば均一化されて氷が完全に解けて基準水位となる。製
氷運転時と解氷運転時との水位の変化を予め測定してお
き、水位の差を考慮して蓄熱残量を検知し、解氷運転を
行うので、簡単な構成で確実に解氷を促進することがで
きる。氷蓄熱槽内の低冷水は、冷水熱交換器で負荷側と
分離して循環するので、低冷水が負荷側に直接流出する
ことはなく、水位の異常変化の可能性を小さくすること
ができる。
Further, the present invention relates to a method for controlling the deicing operation of an ice heat storage system in which cold heat is accumulated in an ice heat storage tank by ice making at night and cold generated by defrosting during the day is utilized via a cold water heat exchanger. In the cold water heat exchanger, the cold heat source side and the load side are separated, and an ice heat storage system is configured to circulate the low cold water in the ice heat storage tank to the cold heat source side,
The water level change in the ice heat storage tank is measured in advance for ice making and ice melting, and the remaining heat storage amount in the ice heat storage tank is calculated from the water level at the end of ice making obtained according to the water level change during ice making. Defrosting operation control of an ice heat storage system characterized by detecting in accordance with the water level that changes linearly to the water level at the end of the defrosting operation, and performing defrosting so that the detected remaining amount of heat storage is eliminated Is the way. According to the present invention, ice produced at night is stored in the ice heat storage tank in a state where the ice coexists with water. Since ice is present in water in a state where it is attached to the periphery of the cooling pipe, the amount of ice increases and the water level rises. However, at the time of melting ice, the temperature of the water in the ice heat storage tank is not always uniform, so the water level corresponding to the heat storage amount during the ice melting operation is higher than the water level during the ice making operation corresponding to the same heat storage amount. Become. At the end of the thawing operation, the temperature of the water in the ice storage tank is high and some ice remains, and after a while, the ice is completely homogenized and the ice is completely melted to reach the reference water level. The change in water level between the ice making operation and the thaw operation is measured in advance, and the remaining amount of stored heat is detected in consideration of the difference in the water level, and the thaw operation is performed. Can be promoted. Since the low chilled water in the ice storage tank is circulated separately from the load side in the chilled water heat exchanger, the low chilled water does not flow directly to the load side, and the possibility of abnormal changes in the water level can be reduced. .

【0013】また本発明は、氷蓄熱槽内に蓄積された冷
熱を、冷水熱交換器の冷熱源側に氷蓄熱槽との間で低冷
水を循環させ、冷水熱交換器の負荷側から冷水として取
出す際に、冷水の出口温度によって解氷量を制御するこ
とを特徴とする。本発明に従えば、氷蓄熱槽と冷水熱交
換器との冷熱源側との間を循環する低冷水と、冷水熱交
換器の負荷側から取出す冷水とは分離されているので、
氷蓄熱槽の水位は、冷水熱交換器の負荷側から冷熱負荷
に供給する冷水系の漏れ、たとえば冷水ポンプの軸シー
ル部からの漏れ等や温度変化に起因する体積変化等によ
る外乱を受けず、残存する氷の量に対応して精度よく検
知することができる。冷水熱交換器の負荷側の冷水の出
口温度を低く制御すると、冷水熱交換器の負荷側から冷
熱源側に冷熱が多く移行し、氷蓄熱槽内の解氷を促進す
ることができる。
[0013] Further, the present invention circulates the low-temperature water accumulated in the ice heat storage tank to the cold heat source side of the cold water heat exchanger with the low temperature water between the ice heat storage tank and the cold water from the load side of the cold water heat exchanger. When taking out, the amount of deicing is controlled by the outlet temperature of the cold water. According to the present invention, the low chilled water circulating between the ice heat storage tank and the chilled water source side of the chilled water heat exchanger and the chilled water taken out from the load side of the chilled water heat exchanger are separated.
The water level of the ice heat storage tank is not affected by a leakage of a chilled water system supplied to the chilled heat load from the load side of the chilled water heat exchanger, for example, a leak from a shaft seal portion of the chilled water pump or a volume change due to a temperature change. , Can be accurately detected in accordance with the amount of remaining ice. When the outlet temperature of the chilled water on the load side of the chilled water heat exchanger is controlled to be low, a large amount of cold heat is transferred from the load side of the chilled water heat exchanger to the cold heat source side, thereby facilitating melting of ice in the ice heat storage tank.

【0014】また本発明は、冷水熱交換器の負荷側と他
の冷熱源機器の負荷側とを並列に接続し、並列に接続さ
れた冷水熱交換器および他の冷熱源機器と冷熱負荷との
間に定流量の冷水を循環させ、解氷および冷熱源機器の
運転状態を予め設定される計画に従って行う際に、蓄熱
残量の減少量を監視し、減少量が計画よりも少なく、か
つ他の冷熱源機器が運転されているとき、冷水熱交換器
の負荷側の冷水出口温度を低下させるように制御するこ
とを特徴とする。本発明に従えば、氷蓄熱槽が冷熱源側
に接続される冷水熱交換器の負荷側を、他の冷熱源装置
と並列に接続し、氷蓄熱槽内の解氷および冷熱源機器の
運転状態を、予め設定される計画に従って行いながら氷
蓄熱システム本来の目的を達成する。蓄熱残量の減少量
を監視しながら、減少量が計画よりも少なく、かつ他の
冷熱源機器が運転されているときには、冷水熱交換器の
負荷側の冷水出口温度を低下させ、氷蓄熱システムから
の冷熱供給量を他の冷熱源機器よりも多くし、氷蓄熱槽
内の解氷を促進し、他の冷熱源機器の負荷を軽減するこ
とができる。
According to the present invention, the load side of the chilled water heat exchanger and the load side of another chilled heat source device are connected in parallel, and the chilled water heat exchanger and other chilled heat source devices connected in parallel are connected to the chilled heat load. While circulating cold water at a constant flow rate, when performing the defrosting and the operation state of the cold heat source equipment according to a preset plan, monitor the reduction amount of the remaining heat storage, the reduction amount is less than planned, and When the other chilled water source device is operated, the chilled water heat exchanger is controlled so as to lower the chilled water outlet temperature on the load side. According to the present invention, the load side of the chilled water heat exchanger in which the ice heat storage tank is connected to the cold heat source side is connected in parallel with another cold heat source device, and the ice in the ice heat storage tank and the operation of the cold heat source device are operated. The intended purpose of the ice thermal storage system is achieved while performing the state according to a preset plan. While monitoring the amount of decrease in the remaining amount of heat storage, when the amount of decrease is smaller than planned and other chilled heat source equipment is operating, the temperature of the chilled water outlet on the load side of the chilled water heat exchanger is reduced, and the ice heat storage system is reduced. The amount of cold heat supplied from the chiller can be made larger than that of other cold heat source equipment, and the melting of ice in the ice heat storage tank can be promoted, and the load on other cold heat source equipment can be reduced.

【0015】[0015]

【発明の実施の形態】図1は、本発明の実施の一形態と
しての氷蓄熱システムの解氷運転制御方法を適用する空
調用熱源システムの構成を示す。氷蓄熱システムと並列
に運転される冷熱源機器として、No.1ヒートポンプ
1、No.2ヒートポンプ2およびNo.3ヒートポン
プ3が設けられる。氷蓄熱システムからの冷熱は、冷水
熱交換器4の負荷側4aから取出される。冷水熱交換器
4の冷熱源側4bには、アイスオンコイル型の氷蓄熱槽
5が接続される。氷蓄熱槽5内には、製氷コイル6が配
置され、その周囲の水7を凍らせて冷熱を蓄積する。氷
は製氷コイル6の周囲に形成されるので、氷の存在量に
応じて水位8が変化する。冷水熱交換器4の冷熱源側4
bには流量制御弁9が接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of a heat source system for air conditioning to which a method for controlling an ice melting operation of an ice heat storage system according to an embodiment of the present invention is applied. As the cold heat source device operated in parallel with the ice heat storage system, No. 1 heat pump 1, no. 2 heat pump 2 and no. Three heat pumps 3 are provided. Cold heat from the ice heat storage system is extracted from the load side 4a of the chilled water heat exchanger 4. An ice-on-coil type ice heat storage tank 5 is connected to the cold heat source side 4 b of the cold water heat exchanger 4. In the ice heat storage tank 5, an ice making coil 6 is arranged, and freezes water 7 therearound to accumulate cold heat. Since ice is formed around the ice making coil 6, the water level 8 changes in accordance with the amount of ice. Cold heat source side 4 of cold water heat exchanger 4
The flow control valve 9 is connected to b.

【0016】冷水熱交換器4の負荷側4aからは冷水管
路10、No.1ヒートポンプ1、No.2ヒートポン
プ2およびNo.3ヒートポンプ3からは冷温水管路1
1,12,13がそれぞれ供給ヘッダ管14および戻り
ヘッダ管15に接続される。供給ヘッダ管14と戻りヘ
ッダ管15との間には、空調負荷16およびバイパスラ
イン17が並列に接続される。バイパスライン17には
バイパス弁18が設けられ、供給ヘッダ管14の圧力を
検出する圧力コントローラ19によって制御される。冷
水管路10および冷温水管路11,12,13には冷水
ポンプ20および冷温水ポンプ21,22,23が設け
られる。
From the load side 4a of the chilled water heat exchanger 4, the chilled water pipe 10, No. No. 1 heat pump 1, no. 2 heat pump 2 and no. 3 Heat pump 3 from cold and hot water pipe 1
1, 12, 13 are connected to a supply header tube 14 and a return header tube 15, respectively. An air conditioning load 16 and a bypass line 17 are connected in parallel between the supply header pipe 14 and the return header pipe 15. A bypass valve 18 is provided in the bypass line 17 and is controlled by a pressure controller 19 that detects the pressure of the supply header pipe 14. The cold water pipe 10 and the cold / hot water pipes 11, 12, 13 are provided with a cold water pump 20 and cold / hot water pumps 21, 22, 23.

【0017】図1に示す空調用熱源システムでは、冷温
水系として供給ヘッダ管14および戻りヘッダ管15の
2管方式で熱媒体である水を空調負荷16に供給する。
夏季には冷房用の冷水を供給し、冬季には暖房用の温水
を切換えて供給する。冷房用の冷水は、No.1ヒート
ポンプ1、No.2ヒートポンプ2およびNo.3ヒー
トポンプ3と冷水熱交換器4とから供給する。冷水の温
度はたとえば7℃であり、流量は空調負荷16であるビ
ル側の空調器のファンコイルユニットやエアーハンドリ
ングユニットの負荷に見合った量を供給する。空調負荷
16に供給される冷水の流量は、供給ヘッダ管14から
戻りヘッダ管15にバイパスライン17を介して流れる
バイパス流量によって調整する。空調負荷16側からの
戻り冷水の温度は10〜12℃であり、バイパス流と合
流した後、戻りヘッダ管15を介して各ヒートポンプ1
〜3および冷水熱交換器4に循環され、各ヒートポンプ
と冷水熱交換器でそれぞれ7℃に制御される。暖房用の
温水は、各ヒートポンプ1〜3から約45℃で供給す
る。
In the air-conditioning heat source system shown in FIG. 1, water as a heat medium is supplied to the air-conditioning load 16 in a two-pipe system of a supply header pipe 14 and a return header pipe 15 as a cold / hot water system.
Cold water for cooling is supplied in summer and hot water for heating is switched in winter. The cold water for cooling is no. No. 1 heat pump 1, no. 2 heat pump 2 and no. 3 Heat is supplied from the heat pump 3 and the cold water heat exchanger 4. The temperature of the chilled water is, for example, 7 ° C., and the flow rate is an amount suitable for the load of the fan coil unit or the air handling unit of the air conditioner on the building side, which is the air conditioning load 16. The flow rate of the chilled water supplied to the air conditioning load 16 is adjusted by the bypass flow rate flowing from the supply header pipe 14 to the return header pipe 15 via the bypass line 17. The temperature of the return cold water from the air conditioning load 16 side is 10 to 12 ° C., and after joining with the bypass flow, each heat pump 1
33 and the chilled water heat exchanger 4, and each is controlled at 7 ° C. by each heat pump and chilled water heat exchanger. Hot water for heating is supplied from each of the heat pumps 1 to 3 at about 45 ° C.

【0018】各ヒートポンプ1〜3および氷蓄熱システ
ムの制御のために、制御装置25が設けられる。制御装
置25には、負荷予測制御装置26から目標蓄熱量と解
氷運転のスケジュールとが与えられる。制御装置25
は、与えられた目標蓄熱量に対応する量の氷を夜間電力
を利用してNo.1ヒートポンプ1およびNo.2ヒー
トポンプ2を運転させて氷蓄熱槽5内に蓄積する。氷蓄
熱槽5内に蓄積された氷は、解氷運転スケジュールに従
って解氷され、翌日の昼間に取出される。夜間電力で製
氷し、昼間に冷熱として取出すことができるので、冷熱
源機器であるヒートポンプ1〜3の冷却能力を補って昼
間のピークの冷熱負荷に対応させることができ、空調に
必要な冷熱源機器の小型化と電力負荷の平準化とを図る
ことができる。
A control device 25 is provided for controlling each of the heat pumps 1 to 3 and the ice heat storage system. The control device 25 is provided with the target heat storage amount and the schedule of the ice melting operation from the load prediction control device 26. Control device 25
No. uses the nighttime electric power to supply ice of an amount corresponding to the given target heat storage amount. 1 heat pump 1 and no. 2 Operate the heat pump 2 to accumulate in the ice heat storage tank 5. The ice accumulated in the ice heat storage tank 5 is thawed according to the thaw operation schedule, and is taken out during the day on the following day. Since ice can be made with nighttime electricity and taken out as cold heat in the daytime, the cooling capacity of heat pumps 1 to 3 can be supplemented to meet the peak daytime cold load, and the cold heat source required for air conditioning can be provided. The downsizing of the device and the leveling of the power load can be achieved.

【0019】解氷時の氷蓄熱槽5内の蓄熱残量は、氷蓄
熱槽5の水位8により判断する。水位8は水位検出器2
7によって検出され、制御装置25に入力される。制御
装置25は、解氷運転のスケジュールによって計画され
た蓄熱残量よりも、氷蓄熱槽5の水位8によって検知さ
れる蓄熱残量の方が大きいときには、温度コントローラ
24の制御温度を低下させ、冷水熱交換器4の負荷側4
aの冷水出口温度を低下させる。冷水熱交換器4の負荷
側4aの冷水出口温度を低下させるためには、冷水熱交
換器4の冷熱源側4bに低冷水を流す低冷水管路28か
ら流量制御弁9に流れる低冷水の量を減少させ、冷水熱
交換器4の冷熱源側4bに流す低冷水の量を増大させる
制御を行う。本実施形態では、冷水管路10、冷温水管
路11〜12を定流量とするため、定流量弁29〜32
がそれぞれ設置されている。冷水管路10および冷温水
管路11〜12を定流量化することによって、複数の冷
熱源機器が関連する制御を単純化して簡易に行うことが
できる。冷水管路10および冷温水管路11〜13が定
流量化されているので、供給ヘッダ管14および戻りヘ
ッダ管15に流れる冷温水の流量も一定に維持される。
低冷水の循環のために、低冷水ポンプ33が設けられ
る。
The remaining amount of heat stored in the ice heat storage tank 5 at the time of thawing is determined by the water level 8 of the ice heat storage tank 5. Water level 8 is water level detector 2
7 and input to the control device 25. The control device 25 lowers the control temperature of the temperature controller 24 when the remaining heat storage amount detected by the water level 8 of the ice heat storage tank 5 is larger than the remaining heat storage amount planned according to the schedule of the ice melting operation, Load side 4 of cold water heat exchanger 4
a) Reduce the cold water outlet temperature. In order to lower the chilled water outlet temperature on the load side 4 a of the chilled water heat exchanger 4, the low chilled water flowing from the low chilled water pipe 28 to the flow control valve 9 through the low chilled water pipe 28 for flowing the low chilled water to the cold source side 4 b of the chilled water heat exchanger 4. Control is performed to decrease the amount and increase the amount of low chilled water flowing to the cold heat source side 4b of the chilled water heat exchanger 4. In the present embodiment, the constant flow valves 29 to 32 are used to make the cold water pipeline 10 and the cold and hot water pipelines 11 to 12 have a constant flow rate.
Are installed respectively. By making the flow rates of the cold water pipe 10 and the cold / hot water pipes 11 to 12 constant, control related to a plurality of cold heat source devices can be simplified and easily performed. Since the flow rates of the cold water pipe 10 and the cold / hot water pipes 11 to 13 are made constant, the flow rate of the cold / hot water flowing through the supply header pipe 14 and the return header pipe 15 is also kept constant.
For circulating the low chilled water, a low chilled water pump 33 is provided.

【0020】本実施形態では、冷水熱交換器の冷熱源側
の低冷水流量を、流量制御弁9により制御しているが、
低冷水ポンプをインバータモータ駆動のポンプとして制
御することも可能である。
In the present embodiment, the low chilled water flow rate on the chilled heat source side of the chilled water heat exchanger is controlled by the flow rate control valve 9.
It is also possible to control the low chilled water pump as an inverter motor driven pump.

【0021】No.1ヒートポンプ1およびNo.2ヒ
ートポンプ2は、ブライン管路34,35を介してそれ
ぞれ氷蓄熱槽5内で製氷を行うためのブライン管路36
に接続される。たとえば22時から翌日の8時までの時
間帯で、夜間電力を利用してブラインを冷却し、氷蓄熱
槽5内の水7を凍らせて冷熱を蓄積する。ブラインは、
たとえばエチレングリコールの40〜50%水溶液であ
り、−7℃程度まで冷却される。ブラインポンプ37,
38を作動させ、氷蓄熱槽5にブラインを循環させるこ
とによって、水7を凍らせて製氷コイル6の外表面に氷
を形成する。ブラインの流量は、定流量弁39,40に
よって一定量に保つ。ヒートポンプ1,2の運転台数
は、目標蓄熱量に対応して決定する。
No. 1 heat pump 1 and no. The heat pump 2 includes a brine line 36 for making ice in the ice heat storage tank 5 via brine lines 34 and 35, respectively.
Connected to. For example, during the time period from 22:00 to 8:00 on the following day, the brine is cooled using the nighttime electric power, and the water 7 in the ice heat storage tank 5 is frozen to accumulate cold heat. Brine
For example, a 40 to 50% aqueous solution of ethylene glycol is cooled to about -7 ° C. Brine pump 37,
By activating 38 and circulating brine through the ice heat storage tank 5, the water 7 is frozen to form ice on the outer surface of the ice making coil 6. The flow rate of the brine is kept constant by the constant flow valves 39 and 40. The number of operating heat pumps 1 and 2 is determined according to the target heat storage amount.

【0022】氷蓄熱槽5は、簡単な構造のアイスオンコ
イル型とする。アイスオンコイル型では、製氷コイル6
の外表面の氷が相互にブリッジを形成しないようにする
必要がある。定格の潜熱蓄熱容量まで製氷しても、低冷
水が氷の周囲を流れることができる必要があり、低冷水
の流れが滞ると蓄積された冷熱の取り出しの障害とな
る。氷のブリッジ形成は、前日に製氷した氷が昼間に全
部解氷されずに残存する状態で、再び製氷を開始すると
生じやすい。このため、いったん製氷したら、次の製氷
開始時までに完全に解氷させることが重要である。
The ice heat storage tank 5 is of an ice-on-coil type having a simple structure. In the ice-on-coil type, the ice making coil 6
The ice on the outer surface of the car must not form a bridge with each other. Even if ice is made up to the rated latent heat storage capacity, the low chilled water needs to be able to flow around the ice, and if the flow of the low chilled water is interrupted, it becomes an obstacle to take out the accumulated cold heat. The formation of an ice bridge is likely to occur when ice making is started again in a state where the ice made on the previous day remains unmelted during the daytime. For this reason, once ice is made, it is important that the ice be completely thawed by the start of the next ice making.

【0023】図2は、冷水熱交換器4の動作状態を示
す。図2(1)の正常運転時は、負荷側4aと冷熱源側
4bとの温度差△t1=5℃とする。図2(2)の最大
放熱時は、温度差△t2=3℃=0.6×△t1とす
る。冷水の流量をFm3 /hで一定とすると、正常運転
時に交換される熱量は、 Q1=F×(12−7)=5×F Mcal/h となる。最大放熱時に交換される熱量は、 Q2=F×(12−5)=7×F=1.4×Q1 Mc
al/h となる。したがって、冷水熱交換器4に最大放熱時に必
要な伝熱面積A2は、正常運転に必要な伝熱面積A1に
比較して、次に示すように2.33倍になる。
FIG. 2 shows an operation state of the chilled water heat exchanger 4. In the normal operation shown in FIG. 2A, the temperature difference Δt1 between the load side 4a and the cold heat source side 4b is set to 5 ° C. At the time of the maximum heat radiation in FIG. 2B, the temperature difference is Δt2 = 3 ° C. = 0.6 × Δt1. Assuming that the flow rate of the cold water is constant at Fm 3 / h, the amount of heat exchanged during normal operation is as follows: Q1 = F × (12−7) = 5 × F Mcal / h The amount of heat exchanged at the time of maximum heat dissipation is: Q2 = F × (12-5) = 7 × F = 1.4 × Q1 Mc
al / h. Therefore, the heat transfer area A2 required for the maximum heat radiation to the chilled water heat exchanger 4 is 2.33 times as shown below as compared with the heat transfer area A1 required for normal operation.

【0024】 A2=A1×Q2/Q1×△t1/△t2 =1.4/0.6×A1 =2.33×A1 実際には、A2の伝熱面積を有する冷水熱交換器4を使
用し、正常運転時は図1に示す流量制御弁9によって冷
熱源側4bに流れる低冷水の流量を減少させる。流量制
御弁9により、冷熱源側4bに流れる低冷水量をすくな
くすれば、交換される熱量が減少する。流量制御弁9に
より冷熱源側4bに流れる低冷水量を多くすれば、負荷
側4aの熱を奪って冷水の出口温度を低下させる。
A2 = A1 × Q2 / Q1 × △ t1 / △ t2 = 1.4 / 0.6 × A1 = 2.33 × A1 Actually, a chilled water heat exchanger 4 having a heat transfer area of A2 is used. During normal operation, the flow rate of the low-cooling water flowing to the cold heat source side 4b is reduced by the flow control valve 9 shown in FIG. If the amount of low chilled water flowing to the cold heat source side 4b is reduced by the flow control valve 9, the amount of heat exchanged decreases. If the flow rate control valve 9 increases the amount of low chilled water flowing to the chilled heat source side 4b, the heat of the load side 4a is deprived and the outlet temperature of the chilled water is lowered.

【0025】図3は、図1の制御装置25による蓄熱運
転および解氷運転の動作を示す。図1および図3を参照
して、負荷予測制御装置26から翌日分の目標蓄熱量お
よび解氷運転のスケジュールが入力されると、ステップ
b1から動作を開始する。たとえば22時などの蓄熱運
転開始時刻になると、ステップb2で製氷による蓄熱運
転を開始する。目標蓄熱量からヒートポンプ1,2の運
転台数を1台にするか2台にするか決定する。製氷によ
って氷蓄熱槽5内に氷が形成されて蓄積されると、水位
8が上昇する。ステップb3で水位検出を行い、ステッ
プb4で目標水位に到達しないときは、ステップb3に
戻る。ステップb4で目標水位に到達すると、ステップ
b5で蓄熱運転を停止する。ステップb6では、解氷運
転のスケジュールで示される解氷開始時刻に到達するの
を待つ。
FIG. 3 shows the operation of the heat storage operation and the deicing operation by the control device 25 of FIG. With reference to FIGS. 1 and 3, when the target heat storage amount and the schedule of the deicing operation for the next day are input from the load prediction control device 26, the operation is started from step b1. For example, at the heat storage operation start time such as 22:00, the heat storage operation by ice making is started in step b2. From the target heat storage amount, it is determined whether the number of operating heat pumps 1 and 2 is one or two. When ice is formed and accumulated in the ice heat storage tank 5 by ice making, the water level 8 rises. The water level is detected in step b3, and if the target water level is not reached in step b4, the process returns to step b3. When the target water level is reached in step b4, the heat storage operation is stopped in step b5. In step b6, the process waits until the defrosting start time indicated in the defrosting operation schedule is reached.

【0026】翌日の昼間の解氷開始時刻に到達すると、
ステップb7で冷水ポンプ20および低冷水ポンプ33
を起動し、解氷運転を開始する。解氷運転中は、冷水熱
交換器4を常に第1の優先順位とし、ヒートポンプ1,
2,3は第2以降の優先順位とする。運転する冷熱源機
器の台数は、バイパス弁18の開度と、供給ヘッダ管1
4および戻りヘッダ管15を流れる冷水の流量および温
度差から演算して求められる負荷冷熱量とを、両者とも
満足させるように制御装置25によって決定される。
When the defrosting start time in the daytime of the next day is reached,
In step b7, the chilled water pump 20 and the low chilled water pump 33
And start the defrosting operation. During the de-icing operation, the chilled water heat exchanger 4 is always given the first priority,
2, 3 are the second and subsequent priorities. The number of the cold heat source devices to be operated depends on the opening degree of the bypass valve 18 and the supply header pipe 1.
The control device 25 determines the load cooling heat amount calculated from the flow rate and the temperature difference of the cold water flowing through the return header pipe 4 and the return header pipe 15 so as to satisfy both of them.

【0027】解氷運転の結果、氷蓄熱槽5内の氷が減少
すると、水位8が低下する。ステップb8でピーク時間
帯を経過しているか否かを判断する。たとえば13時〜
16時の冷房負荷のピーク時間帯を経過していれば、ス
テップb9で水位検出を行い、計画水位に比べて高い場
合はステップb11で温度コントローラ24の設定値S
Vを低下させる。温度コントローラ24は、冷水熱交換
器4の負荷側4aの冷水出口温度の検出値PVを設定値
SVと比較し、偏差が解消されるように出力値MVで流
量制御弁9の開度を調整する。この結果、冷水出口温度
が低下する。ステップb12で低冷水取出し温度が上昇
したときは、ステップb14で解氷運転を終了する。
When the ice in the ice heat storage tank 5 decreases as a result of the thawing operation, the water level 8 decreases. In step b8, it is determined whether or not the peak time period has elapsed. For example, from 13:00
If the peak time zone of the cooling load at 16:00 has elapsed, the water level is detected in step b9, and if it is higher than the planned water level, the set value S of the temperature controller 24 is determined in step b11.
V is reduced. The temperature controller 24 compares the detected value PV of the chilled water outlet temperature on the load side 4a of the chilled water heat exchanger 4 with the set value SV, and adjusts the opening of the flow control valve 9 with the output value MV so as to eliminate the deviation. I do. As a result, the cold water outlet temperature decreases. When the low chilled water discharge temperature rises in step b12, the ice-drying operation is ended in step b14.

【0028】冷水熱交換器4の負荷側4aからの冷水出
口温度が低下すると、供給ヘッダ管14および戻りヘッ
ダ管15の水温も低下する。他の冷熱源であるヒートポ
ンプ1,2,3の運転も行われている場合、ヒートポン
プ1,2,3側は冷却能力を低下させ、相対的に氷蓄熱
槽5からの冷熱の供給量が相対的に増加する。氷蓄熱槽
5からの冷熱の供給量の増加は、蓄積された氷の解氷を
促進する。
When the temperature of the chilled water outlet from the load side 4a of the chilled water heat exchanger 4 decreases, the water temperatures of the supply header pipe 14 and the return header pipe 15 also decrease. When the heat pumps 1, 2, and 3, which are other cold heat sources, are also operating, the heat pumps 1, 2, and 3 have reduced cooling capacity, and the supply amount of the cold heat from the ice heat storage tank 5 is relatively small. Increase. The increase in the amount of cold heat supplied from the ice storage tank 5 promotes the thawing of the accumulated ice.

【0029】図4は、図1に示す氷蓄熱槽5内の水位8
と蓄熱量の関係を示す。図1および図4を参照して、氷
蓄熱槽5内に氷が全く存在しないときを基準水位0とす
る。蓄熱時には、→→のように氷蓄熱槽5内の状
態が変化する。→では、氷蓄熱槽5内の水7の温度
が約5℃から0℃まで冷却され、水7の顕熱として冷熱
が蓄積される。水位8は、基準水位のままである。→
は、製氷による冷熱が潜熱として蓄積され、これに伴
い、水位は直線的にL3まで上昇する。本実施形態で
は、氷蓄熱槽5の潜熱蓄熱容量は500USRT・hで
あり、この定格能力まで蓄熱を行うと、水位8は約85
mm上昇する。水位検出器27が目標蓄熱量Q3に相当
する水位L3に到達したことを検出すれば、制御装置2
5はヒートポンプ1,2による製氷を停止する。
FIG. 4 shows the water level 8 in the ice heat storage tank 5 shown in FIG.
And the relationship between the amount of stored heat and the heat storage. Referring to FIG. 1 and FIG. 4, when there is no ice in the ice heat storage tank 5, the reference water level is set to 0. At the time of heat storage, the state in the ice heat storage tank 5 changes as indicated by →→. In the case of →, the temperature of the water 7 in the ice heat storage tank 5 is cooled from about 5 ° C. to 0 ° C., and cold heat is accumulated as sensible heat of the water 7. Water level 8 remains at the reference water level. →
In, the cold heat generated by ice making is accumulated as latent heat, and accordingly, the water level rises linearly to L3. In this embodiment, the latent heat storage capacity of the ice heat storage tank 5 is 500 USRT · h, and when the heat storage is performed up to this rated capacity, the water level 8 becomes about 85
mm. When the water level detector 27 detects that the water level L3 corresponding to the target heat storage amount Q3 has been reached, the control device 2
5 stops ice making by the heat pumps 1 and 2.

【0030】解氷時には、→のように氷蓄熱槽5内
の状態が変化する。供給ヘッダ管14へ7℃の冷水を供
給する場合、氷蓄熱槽5からの低冷水取り出し温度が5
℃になる時点で解氷運転終了と判断する。このときの状
態がであり、氷蓄熱槽5内には潜熱蓄熱容量の3%程
度の氷がまだ残っている。水位8は基準水位まで戻ら
ず、約2.5mmの水位L4だけ高くなる。これは氷蓄
熱槽5内の温度の不均一性による。時間が経過すれば、
氷蓄熱槽5内の温度の均一化によって氷が解け、水位8
は基準水位となる。
At the time of thawing, the state in the ice heat storage tank 5 changes as indicated by →. When cold water of 7 ° C. is supplied to the supply header tube 14, the temperature of taking out low-cooled water from the ice heat storage tank 5 is 5
It is judged that the de-icing operation is completed when the temperature reaches ℃. This is the state at this time, and ice of about 3% of the latent heat storage capacity still remains in the ice heat storage tank 5. The water level 8 does not return to the reference water level, but rises by a water level L4 of about 2.5 mm. This is due to the non-uniformity of the temperature in the ice heat storage tank 5. If time passes,
The ice melts due to the equalization of the temperature in the ice thermal storage tank 5 and the water level 8
Is the reference water level.

【0031】解氷時の水位8のL3からL4までの変化
は、蓄熱量に対してほぼ直線的であることは確認されて
いるけれども、上述のように、解氷運転終了時の水位L
4は基準水位とは一致しない。解氷運転終了時の水位L
4は、蓄熱量がL3’として示すように少ない場合であ
っても、ほとんど変わらず、’→とほぼ直線的に変
化する。本実施形態では、予め水位と蓄熱量との関係を
実測しておき、解氷時の蓄熱残量を水位のみで検知す
る。冷水熱交換器4を設置して、氷蓄熱槽5内の低冷水
が空調負荷16側に流れる冷水と混ざらないようにして
いるので、氷蓄熱槽5内の水位8は、冷水系からの外乱
を受けることがない。冷水系では、冷水ポンプ20や冷
温水ポンプ21,22,23の軸シール部などからの漏
れが発生したり、供給ヘッダ管14や戻りヘッダ管15
が温度変化に起因して容積変化したりして、氷蓄熱槽5
が直結していると水位8に対する外乱が発生する可能性
がある。本実施形態では、低冷水ポンプ33をメカニカ
ルシール方式としているので、水位8は外乱の影響をほ
とんど受けることはない。
Although it has been confirmed that the change of the water level 8 from L3 to L4 at the time of deicing is substantially linear with respect to the heat storage amount, as described above, the water level L at the end of the deicing operation is determined.
4 does not match the reference water level. Water level L at the end of thaw operation
No. 4 hardly changes even when the heat storage amount is small as indicated by L3 ', and changes almost linearly to' →. In the present embodiment, the relationship between the water level and the amount of heat storage is actually measured in advance, and the remaining amount of heat storage at the time of melting ice is detected only by the water level. Since the cold water heat exchanger 4 is installed so that the low cold water in the ice heat storage tank 5 does not mix with the cold water flowing to the air conditioning load 16 side, the water level 8 in the ice heat storage tank 5 is affected by disturbance from the cold water system. I do not receive. In the chilled water system, leakage from the shaft seals of the chilled water pump 20 and the chilled / heated water pumps 21, 22, and 23 may occur, and the supply header pipe 14 and the return header pipe 15 may be used.
Changes in volume due to temperature change, and the ice heat storage tank 5
Is directly connected, a disturbance to the water level 8 may occur. In this embodiment, since the low-cooling water pump 33 is of a mechanical seal type, the water level 8 is hardly affected by disturbance.

【0032】冷房負荷のピーク時間帯経過後で、解氷運
転のスケジュールに基づいて計画された水位と実際に検
出される水位とを比較するのは、当日の冷房負荷が予測
よりも少ない場合に、解氷の促進を行うか否かを判断す
るためである。当日の冷房負荷の減少によって、蓄熱残
量の減少が計画よりも少ないと判断され、かつ、冷水熱
交換器4の他に1台以上のヒートポンプ1,2,3も同
時に運転されている場合に、冷水出口温度低下による解
氷の促進が行われる。冷水熱交換器4やヒートポンプ
1,2,3の運転台数は変化させず、冷水出口温度の設
定値のみを自動的に下げる。
After the peak period of the cooling load has elapsed, the water level planned based on the schedule of the de-icing operation is compared with the actually detected water level when the cooling load on the current day is lower than expected. This is for judging whether or not to promote the thawing. When it is determined that the decrease in the remaining heat storage amount is smaller than planned due to the decrease in the cooling load on the day, and one or more heat pumps 1, 2, and 3 in addition to the chilled water heat exchanger 4 are simultaneously operated. In addition, the deicing is promoted by lowering the cold water outlet temperature. The operating number of the chilled water heat exchanger 4 and the heat pumps 1, 2, 3 is not changed, and only the set value of the chilled water outlet temperature is automatically reduced.

【0033】設定温度の下げ方は、たとえば1℃などの
一定量ずつ下げる方法と、冷水供給温度がたとえば7±
1℃のときに6℃以上となるように、運転されている冷
熱源機器全体からの冷水供給温度の下限以上となるよう
に下げる方法とがある。後者の方法では、同時に運転さ
れているヒートポンプ1,2,3の台数と冷水循環量と
から計算して、冷水供給温度の下限以上となるように設
定温度を下げる。冷水熱交換器4とヒートポンプ1,
2,3との冷水循環量が同じで、冷水熱交換器4の他に
はヒートポンプ1が1台だけ運転されている場合は、冷
水熱交換器4側は5℃まで設定温度を下げることができ
る。この場合、図2(2)に示すように、冷水熱交換器
4の伝熱面積A2は、図2(1)に示す設定温度が7℃
のときの伝熱面積A1より2.3倍程度大きくするだけ
でよい。冷水熱交換器4はプレート式熱交換器であり、
伝熱面積増大のためのコストアップは小さい。伝熱面積
を大きくするだけで、冷水ポンプ20や冷水管路10は
大容量対応とする必要はなく、従来の方法に比較してコ
スト低減が可能となる。また、ヒートポンプ1,2,3
側の設定温度を同時に上げる制御を行えば、さらに冷水
出口温度を低下させることもできる。
The set temperature can be lowered by, for example, a method of lowering the temperature by a fixed amount such as 1 ° C.
There is a method of lowering the temperature so as to be 6 ° C. or more at 1 ° C. so as to be equal to or higher than the lower limit of the chilled water supply temperature from the entire operating cold source device. In the latter method, the temperature is calculated from the number of heat pumps 1, 2 and 3 operating at the same time and the amount of circulating chilled water, and the set temperature is reduced so as to be equal to or higher than the lower limit of the chilled water supply temperature. Chilled water heat exchanger 4 and heat pump 1,
When the amount of circulating chilled water is the same as that of the chilled water heat exchangers 2 and 3 and only one heat pump 1 is operated in addition to the chilled water heat exchanger 4, the set temperature of the chilled water heat exchanger 4 can be lowered to 5 ° C. it can. In this case, as shown in FIG. 2 (2), the heat transfer area A2 of the chilled water heat exchanger 4 is such that the set temperature shown in FIG.
It is only necessary to increase the heat transfer area A1 by about 2.3 times. The cold water heat exchanger 4 is a plate heat exchanger,
The cost increase for increasing the heat transfer area is small. By simply increasing the heat transfer area, the chilled water pump 20 and the chilled water pipe 10 do not need to be compatible with a large capacity, and cost can be reduced as compared with the conventional method. Heat pumps 1, 2, 3
If the control for simultaneously increasing the set temperature on the side is performed, the chilled water outlet temperature can be further reduced.

【0034】なお、昼間の時間帯にも負荷予測を行え
ば、前日に計画された冷房負荷を補正して、残り時間の
運転計画をより高精度に修正することができる。その運
転計画に、予定時刻までに解氷が終了しないと判断され
た時点で、設定温度を変更する解氷促進の考え方を含め
ることができる。
If the load is predicted even during the daytime, the cooling load planned for the previous day can be corrected, and the operation plan for the remaining time can be corrected with higher accuracy. The operation plan may include a concept of accelerating the thaw by changing the set temperature when it is determined that the thaw is not completed by the scheduled time.

【0035】図5は、本発明の実施の他の形態による冷
水熱交換器4の負荷側4aの冷水出口温度制御のための
構成を示す。図1の実施形態では、冷水熱交換器4の冷
熱源側4bに流す低冷水を、三方弁を使用する流量制御
弁9によって調節しているけれども、本実施形態では、
2つの二方弁41,42を温度コントローラ44によっ
て制御し、流量調節を行う。二方弁41,42は、一方
の開度を大きくするときには他方の開度を小さくし、両
方の二方弁41,42を流れる低冷水の流量は一定に保
つ。このような構成であっても、図1の実施形態と同様
に動作させることができる。
FIG. 5 shows a configuration for controlling the chilled water outlet temperature on the load side 4a of the chilled water heat exchanger 4 according to another embodiment of the present invention. In the embodiment of FIG. 1, the low chilled water flowing to the cold heat source side 4b of the chilled water heat exchanger 4 is adjusted by the flow control valve 9 using a three-way valve.
The two two-way valves 41 and 42 are controlled by the temperature controller 44 to adjust the flow rate. When increasing the opening of one of the two-way valves 41 and 42, the opening of the other is reduced, and the flow rate of the low-temperature water flowing through both the two-way valves 41 and 42 is kept constant. Even with such a configuration, operation can be performed in the same manner as the embodiment of FIG.

【0036】[0036]

【発明の効果】以上のように本発明によれば、冷水熱交
換器と冷熱源機器とが冷熱負荷に対して並列に接続さ
れ、冷水熱交換器と各冷熱源機器とには冷水を定流量で
循環させるので、冷水熱交換器の冷水出口温度を下げれ
ば、氷蓄熱システムの解氷が促進され、冷熱源機器の負
荷を軽減することができる。氷蓄熱システムとしては、
冷水熱交換器の能力を予め大きくしておく必要があるけ
れども、冷水の流量は制御する必要がないので、冷水の
流量を制御する構成に比較すればコストの低減が可能で
あり、制御も簡単に行うことができる。冷水熱交換器は
1系統のみを用いても解氷運転の促進を行うことができ
る。
As described above, according to the present invention, a chilled water heat exchanger and a chilled heat source device are connected in parallel to a chilled heat load, and chilled water is defined between the chilled water heat exchanger and each chilled heat source device. Since the circulation is performed at the flow rate, if the temperature of the chilled water outlet of the chilled water heat exchanger is reduced, the thawing of the ice heat storage system is promoted, and the load on the chilled heat source device can be reduced. As an ice thermal storage system,
Although it is necessary to increase the capacity of the chilled water heat exchanger in advance, it is not necessary to control the flow rate of the chilled water, so the cost can be reduced compared to the configuration that controls the flow rate of the chilled water, and the control is simple. Can be done. The use of only one chilled water heat exchanger can promote the deicing operation.

【0037】また本発明によれば、アイスオンコイル型
で氷蓄熱槽を構成するので、氷蓄熱槽の構成を簡素化す
ることができ、解氷を確実に行うことができるので、製
氷および解氷の制御も簡単に行うことができる。
Further, according to the present invention, since the ice heat storage tank is constituted by an ice-on-coil type, the structure of the ice heat storage tank can be simplified, and the ice can be reliably thawed. Ice control is also easy.

【0038】さらに本発明によれば、氷蓄熱槽内の水位
の変化から蓄熱残量を容易に検知し、解氷運転を簡単に
行うことができる。
Further, according to the present invention, it is possible to easily detect the remaining amount of heat storage from a change in the water level in the ice heat storage tank, and to easily perform the thawing operation.

【0039】また本発明によれば、氷蓄熱槽と冷水熱交
換器の冷熱源側とを循環する低冷水は、冷水熱交換器の
負荷側に流れる冷水とは分離されているので、氷蓄熱槽
内の水位は負荷側に供給される冷水系の漏れや体積変化
の外乱の影響を受けず、精度よく蓄熱量を検知できる。
解氷運転の制御を、正確な蓄熱残量に基づいて行うこと
ができるので、簡単かつ高精度で解氷運転の制御を行う
ことができる。
According to the present invention, the low-temperature water circulating between the ice heat storage tank and the cold heat source side of the cold water heat exchanger is separated from the cold water flowing to the load side of the cold water heat exchanger. The water level in the tank is not affected by leakage of the chilled water system supplied to the load side or disturbance due to volume change, and the amount of heat storage can be accurately detected.
Since the control of the defrosting operation can be performed based on the accurate remaining heat storage amount, the control of the defrosting operation can be performed easily and with high accuracy.

【0040】また本発明によれば、氷蓄熱槽の水位によ
って蓄熱残量を検知し、氷の減少量が計画よりも少ない
ときには、冷水熱交換器の負荷側の冷水出口温度を下
げ、氷蓄熱システムからの冷熱供給量を並列に接続され
る冷熱源機器からの冷熱供給量よりも相対的に多くして
解氷の促進を図ることができる。
Further, according to the present invention, the remaining amount of heat storage is detected based on the water level of the ice heat storage tank, and when the amount of reduced ice is smaller than planned, the temperature of the chilled water outlet on the load side of the chilled water heat exchanger is lowered, Thawing can be promoted by relatively increasing the amount of cold heat supplied from the system to the amount of cold heat supplied from the cold heat source devices connected in parallel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を適用する空調用熱源シ
ステムの構成を示す配管系統図である。
FIG. 1 is a piping diagram showing a configuration of an air conditioning heat source system to which an embodiment of the present invention is applied.

【図2】図1の冷水熱交換器4の動作を示す模式図であ
る。
FIG. 2 is a schematic diagram showing the operation of the chilled water heat exchanger 4 of FIG.

【図3】図1の制御装置25の動作を示すフローチャー
トである。
FIG. 3 is a flowchart showing an operation of the control device 25 of FIG. 1;

【図4】図1の氷蓄熱槽5の水位と蓄熱量との関係を示
すグラフである。
FIG. 4 is a graph showing a relationship between a water level of the ice heat storage tank 5 of FIG. 1 and a heat storage amount.

【図5】本発明の実施の他の形態における冷水出口温度
制御のための構成を示す部分的な配管系統図である。
FIG. 5 is a partial piping system diagram showing a configuration for controlling chilled water outlet temperature in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2,3 ヒートポンプ 4 冷水熱交換器 4a 負荷側 4b 冷熱源側 5 氷蓄熱槽 6 製氷コイル 7 水 8 水位 9 流量制御弁 18 バイパス弁 14 供給ヘッダ管 15 戻りヘッダ管 16 空調負荷 19 圧力コントローラ 20 冷水ポンプ 21,22,23 冷温水ポンプ 44 温度コントローラ 25 制御装置 26 負荷予測制御装置 27 水位検出器 41,42 二方弁 1, 2, 3 heat pump 4 cold water heat exchanger 4a load side 4b cold heat source side 5 ice storage tank 6 ice making coil 7 water 8 water level 9 flow control valve 18 bypass valve 14 supply header pipe 15 return header pipe 16 air conditioning load 19 pressure controller Reference Signs List 20 cold water pump 21, 22, 23 cold / hot water pump 44 temperature controller 25 control device 26 load prediction control device 27 water level detector 41, 42 two-way valve

フロントページの続き (72)発明者 森口 雅博 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社 神戸工場内 (56)参考文献 特開 平8−35692(JP,A) 特開 昭62−162839(JP,A) 特開 平9−33090(JP,A) 特開 昭63−183336(JP,A) (58)調査した分野(Int.Cl.6,DB名) F24F 11/02 102 F24F 5/00 102 Continuation of front page (72) Inventor Masahiro Moriguchi 3-1-1, Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries, Ltd. Kobe Plant (56) References JP-A-8-35692 (JP, A) 62-162839 (JP, A) JP-A-9-33090 (JP, A) JP-A-63-183336 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F24F 11 / 02 102 F24F 5/00 102

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 夜間の製氷によって冷熱を氷蓄熱槽に蓄
積し、昼間の解氷によって発生する冷熱を利用するため
に、解氷および冷熱源機器の運転状態を予め設定される
計画に従って行う氷蓄熱システムの解氷運転制御方法に
おいて、 氷蓄熱槽内の低冷水を冷水熱交換器の冷熱源側に循環さ
せ、 冷水熱交換器の冷熱源側とは分離した負荷側と他の冷熱
源機器の負荷側とを並列に接続し、並列に接続された冷
水熱交換器および他の冷熱源機器と冷熱負荷との間に定
流量の冷水を循環させ、 蓄熱残量の減少量を氷蓄熱槽内の水位に基づいて監視
し、 減少量が計画よりも少なく、かつ他の冷熱源機器が運転
されているとき、 冷水熱交換器の負荷側の冷水出口温度を低下させるよう
に制御することを特徴とする氷蓄熱システムの解氷運転
制御方法。
1. An ice storage device for accumulating cold heat in an ice heat storage tank by making ice at night and using the cold heat generated by melting ice during daytime to perform the operation of the ice melting and the operation of the cold heat source device according to a preset plan. In the method for controlling the de-icing operation of a heat storage system, the low-temperature water in the ice heat storage tank is circulated to the cold heat source side of the cold water heat exchanger, and the load side separated from the cold heat source side of the cold water heat exchanger and other cold heat source equipment. And a constant flow of cold water between the chilled heat load and the chilled water heat exchanger and other chilled heat source equipment connected in parallel. Monitoring based on the water level in the chilled water, and controlling to reduce the chilled water outlet temperature on the load side of the chilled water heat exchanger when the amount of reduction is less than planned and other chilled heat source equipment is operating. A method for controlling an ice melting operation of an ice heat storage system.
【請求項2】 冷水熱交換器の負荷側の冷水出口温度の
制御を、冷水熱交換器の冷熱源側に供給する低冷水の流
量を調整して行うことを特徴とする請求項1記載の氷蓄
熱システムの解氷運転制御方法。
2. The cooling water outlet temperature on the load side of the chilled water heat exchanger is controlled by adjusting the flow rate of low chilled water supplied to the chilled heat source side of the chilled water heat exchanger. A method for controlling the defrosting operation of an ice heat storage system.
【請求項3】 製氷による冷熱の蓄積は、アイスオンコ
イル型氷蓄熱槽を用いて行うことを特徴とする請求項1
または2記載の氷蓄熱システムの解氷運転制御方法。
3. The method according to claim 1, wherein the accumulation of cold heat by ice making is performed using an ice-on-coil type ice heat storage tank.
Or the method for controlling the deicing operation of the ice storage system according to item 2.
【請求項4】 夜間の製氷によって氷蓄熱槽内に冷熱を
蓄積し、昼間の解氷によって発生する冷熱を冷水熱交換
器を介して利用する氷蓄熱システムの解氷運転制御方法
において、 冷水熱交換器では、冷熱源側と負荷側とを分離して、氷
蓄熱槽内の低冷水を該冷熱源側に循環させるように氷蓄
熱システムを構成しておき、 予め氷蓄熱槽内の水位の変化を、製氷時および解氷時に
ついてそれぞれ測定しておき、 氷蓄熱槽内の蓄熱残量を、製氷時の水位の変化に従って
求められる製氷終了時の水位から、解氷運転終了時の水
位まで直線的に変化する水位に対応させて検知し、 検知された蓄熱残量が解消されるように解氷を行うこと
を特徴とする氷蓄熱システムの解氷運転制御方法。
4. A method for controlling the defrosting operation of an ice regenerative storage system in which cold heat is accumulated in an ice heat storage tank by ice making at night and cold generated by defrosting during the day is used via a cold water heat exchanger. In the exchanger, the cold heat source side and the load side are separated, and an ice heat storage system is configured to circulate the low cold water in the ice heat storage tank to the cold heat source side, and the water level in the ice heat storage tank is previously determined. The change is measured for ice making and ice melting, respectively, and the amount of heat stored in the ice storage tank is calculated from the water level at the end of ice making, which is determined according to the change in water level at ice making, to the water level at the end of ice melting operation. A method for controlling ice melting operation of an ice heat storage system, wherein the ice melting is performed in accordance with a water level that changes linearly, and the ice is melted so that the detected remaining amount of heat storage is eliminated.
【請求項5】 氷蓄熱槽内に蓄積された冷熱を、冷水熱
交換器の冷熱源側に氷蓄熱槽との間で低冷水を循環さ
せ、冷水熱交換器の負荷側から冷水として取出す際に、
冷水の出口温度によって解氷量を制御することを特徴と
する請求項4記載の氷蓄熱システムの解氷運転制御方
法。
5. A method for circulating low-temperature water stored in an ice heat storage tank with low-temperature water between an ice heat storage tank and a cold heat source side of a cold water heat exchanger, and extracting cold water from a load side of the cold water heat exchanger. To
5. The method of controlling the defrosting operation of an ice heat storage system according to claim 4, wherein the amount of defrosting is controlled by an outlet temperature of the cold water.
【請求項6】 冷水熱交換器の負荷側と他の冷熱源機器
の負荷側とを並列に接続し、並列に接続された冷水熱交
換器および他の冷熱源機器と冷熱負荷との間に定流量の
冷水を循環させ、解氷および冷熱源機器の運転状態を予
め設定される計画に従って行う際に、 蓄熱残量の減少量を監視し、 減少量が計画よりも少なく、かつ他の冷熱源機器が運転
されているとき、 冷水熱交換器の負荷側の冷水出口温度を低下させるよう
に制御することを特徴とする請求項5記載の氷蓄熱シス
テムの解氷運転制御方法。
6. A load side of a chilled water heat exchanger and a load side of another chilled heat source device are connected in parallel, and between the chilled water heat exchanger and the other chilled heat source devices connected in parallel and the chilled heat load. When circulating chilled water at a constant flow rate and performing the operation of deicing and the operation of chilled heat source equipment in accordance with a preset plan, monitor the amount of decrease in the remaining amount of stored heat, 6. The method according to claim 5, wherein when the source device is operated, the temperature of the chilled water outlet on the load side of the chilled water heat exchanger is controlled to be reduced.
JP8101664A 1996-04-23 1996-04-23 Method of controlling ice melting operation of ice thermal storage system Expired - Fee Related JP2901918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8101664A JP2901918B2 (en) 1996-04-23 1996-04-23 Method of controlling ice melting operation of ice thermal storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8101664A JP2901918B2 (en) 1996-04-23 1996-04-23 Method of controlling ice melting operation of ice thermal storage system

Publications (2)

Publication Number Publication Date
JPH09287797A JPH09287797A (en) 1997-11-04
JP2901918B2 true JP2901918B2 (en) 1999-06-07

Family

ID=14306649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8101664A Expired - Fee Related JP2901918B2 (en) 1996-04-23 1996-04-23 Method of controlling ice melting operation of ice thermal storage system

Country Status (1)

Country Link
JP (1) JP2901918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196186A (en) * 2013-03-13 2013-07-10 广西比迪光电科技工程有限责任公司 Central air conditioning system with water storage tank

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091019A (en) * 1999-09-17 2001-04-06 Hitachi Ltd Regenerative air conditioner and transmitting medium
JP2002257384A (en) * 2001-02-27 2002-09-11 Hitachi Ltd Ice thermal storage type heat source device
JP2004218892A (en) * 2003-01-14 2004-08-05 Hitachi Ltd Heat storage type air conditioner
JP5508668B2 (en) * 2007-09-05 2014-06-04 高砂熱学工業株式会社 Heat medium supply system
US8151579B2 (en) 2007-09-07 2012-04-10 Duncan Scot M Cooling recovery system and method
JP5464947B2 (en) * 2009-09-02 2014-04-09 三菱電機株式会社 Thermal storage control method for ice thermal storage unit
JP6250195B2 (en) * 2015-01-15 2017-12-20 三菱電機株式会社 Thermal storage air conditioning system
US11662106B2 (en) 2018-02-23 2023-05-30 Scot M. Duncan High efficiency dehumidification system and method
US11333372B2 (en) 2018-03-09 2022-05-17 Scot Matthew Duncan Energy recovery high efficiency dehumidification system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196186A (en) * 2013-03-13 2013-07-10 广西比迪光电科技工程有限责任公司 Central air conditioning system with water storage tank

Also Published As

Publication number Publication date
JPH09287797A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
US9562701B2 (en) Temperature control system and air conditioning system
JP4934349B2 (en) Operation control method of ice heat storage system
JP2901918B2 (en) Method of controlling ice melting operation of ice thermal storage system
JP2010175136A (en) Geothermal heat pump device
CN110588278A (en) Distributed driving electric automobile heat management system for optimizing heat energy distribution
JP2003121024A (en) Integrated heat source system
JP5508668B2 (en) Heat medium supply system
JP5286479B2 (en) Cold water circulation system
JP3404133B2 (en) Thermal storage type air conditioner
US5275010A (en) Control method and apparatus of absorption chiller heater
JP3304010B2 (en) Ice storage refrigerator and operation method
JP2899437B2 (en) Air conditioning system
JP3304265B2 (en) Operation control method of ice storage type air conditioner
JP5404945B2 (en) Heat medium supply system renovation method
JPH09159232A (en) Controlling method for ice storage type water chiller
JP2001227780A (en) Air conditioning system
JP2921632B2 (en) Cold water supply method and equipment for cooling air conditioning of nuclear power plants
JP2015078820A (en) Refrigeration system and method for controlling number of refrigeration units for the same
JP2637510B2 (en) Thermal storage cooling and heating system
JPH0477216B2 (en)
JPH0477218B2 (en)
JP3146027B2 (en) Ice heat storage type heat source device and heat storage amount control method thereof
JP3272146B2 (en) Ice storage system
JPH08145437A (en) Storage type cooler/heater, and controlling method therefor
JPH07269911A (en) Ice-based regenerative heat source apparatus and antifreezing control

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees