JPH0477216B2 - - Google Patents

Info

Publication number
JPH0477216B2
JPH0477216B2 JP1007795A JP779589A JPH0477216B2 JP H0477216 B2 JPH0477216 B2 JP H0477216B2 JP 1007795 A JP1007795 A JP 1007795A JP 779589 A JP779589 A JP 779589A JP H0477216 B2 JPH0477216 B2 JP H0477216B2
Authority
JP
Japan
Prior art keywords
cold water
temperature
brine
heat
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1007795A
Other languages
Japanese (ja)
Other versions
JPH02192538A (en
Inventor
Seishiro Igarashi
Akira Gomasa
Rikuo Tamura
Sadaichi Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Shimizu Construction Co Ltd
Original Assignee
Ebara Corp
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Shimizu Construction Co Ltd filed Critical Ebara Corp
Priority to JP1007795A priority Critical patent/JPH02192538A/en
Publication of JPH02192538A publication Critical patent/JPH02192538A/en
Publication of JPH0477216B2 publication Critical patent/JPH0477216B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷水製造装置に係わり、特に空調用
の冷房、工業用プロセスの冷却等に用いて、効率
的な冷水製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a chilled water production apparatus, and more particularly to an efficient chilled water production apparatus that can be used for cooling in air conditioning, industrial process cooling, and the like.

〔従来の技術〕[Conventional technology]

冷凍機又はヒートポンプで冷水を製造する場
合、従来は水の凍結による伝熱チユーブの破損事
故を懸念して、冷水温度は5℃が下限であつた。
空調の分野では、5〜7℃の冷水を空調機に送
り、冷風と熱交換し、約10〜12℃に上昇して戻る
という循環が一般的である。又、蓄熱機を介する
場合でも蓄熱の有効温度差は10℃−5℃又は12℃
−5℃の5℃〜7℃の範囲であつた。
When producing chilled water using a refrigerator or a heat pump, the lower limit of the chilled water temperature has conventionally been 5° C. due to concerns about damage to heat transfer tubes due to freezing of the water.
In the field of air conditioning, a common cycle is to send cold water at 5 to 7 degrees Celsius to an air conditioner, exchange heat with cold air, raise the temperature to about 10 to 12 degrees Celsius, and return. Also, even when using a heat storage device, the effective temperature difference for heat storage is 10℃ - 5℃ or 12℃
The temperature was in the range of -5°C to 7°C.

一方、工業分野では、プロセスによつて、冷却
する液体の温度は異なるが、マイルド・ブライン
と称される使用温度範囲が最も多い。マイルド・
ブラインとは、エチレングリコール水溶液、プロ
ピレングリコール水溶液、塩化カルシウム水溶液
等である。これらの不凍液は約5℃〜−30℃の範
囲で使用されている。
On the other hand, in the industrial field, the temperature of the liquid to be cooled varies depending on the process, but the most commonly used temperature range is called mild brine. mild·
The brine is an ethylene glycol aqueous solution, a propylene glycol aqueous solution, a calcium chloride aqueous solution, or the like. These antifreezes are used at temperatures ranging from about 5°C to -30°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

空調分野においては、空調に利用される循環水
の温度差を大きくすることにより、循環水量の減
少、輸送管径の縮少により、省エネルギと設備費
の減少が望まれる。更に、都市のビル地下室に設
けられる蓄熱槽もその大きさに制限があるので、
大きさを同じにして蓄熱容量を増大することがで
きれば、深夜電力を利用した安価な電力料金が利
用できるから、このような蓄熱機の普及が望まれ
ている。
In the field of air conditioning, it is desired to save energy and reduce equipment costs by increasing the temperature difference of circulating water used for air conditioning, reducing the amount of circulating water, and reducing the diameter of transport pipes. Furthermore, there are restrictions on the size of heat storage tanks installed in the basements of urban buildings.
If the heat storage capacity can be increased while keeping the size the same, it is possible to use late-night electricity at a lower price, so it is hoped that such heat storage devices will become more widespread.

また、工業用途においても、伝熱が悪く、液の
粘性も高く、かつ腐食性のある不凍液はできる限
り水に代えることによつて、省エネルギとなり保
守管理もしやすくなることは明らかであつた。
Furthermore, in industrial applications, it has become clear that energy can be saved and maintenance management can be made easier by replacing antifreeze, which has poor heat transfer, high liquid viscosity, and corrosive properties, with water as much as possible.

しかしながら、従来技術においては、冷水の冷
却度を上げると凍結による伝熱チユーブの破損の
問題が生じ、冷水の温度は十分に低下することは
できなかつた。
However, in the prior art, increasing the degree of cooling of the cold water causes the problem of damage to the heat transfer tube due to freezing, and the temperature of the cold water cannot be lowered sufficiently.

本発明は、上記の要望に鑑み、凍結破損等の必
配のない冷水の温度が0℃近くまで冷却できる冷
水製造装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned needs, an object of the present invention is to provide a cold water production device that can cool the cold water to a temperature close to 0° C. without causing freezing damage or the like.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、冷凍機又はヒートポンプと、ブライ
ンと冷水との熱交換器と、前記両者を連結するブ
ライン配管、ブライン循環ポンプ及びブラインタ
ンク等からなるブライン循環系の設備と、熱交換
器に連結する冷水配管、冷水供給ポンプ及び冷水
蓄熱槽等からなる冷水循環系の設備とからなる冷
水製造及び冷水蓄熱装置において、熱交換器出口
における冷水温度を0℃近くに維持するために、
該熱交換器出口の冷水温度を検出する手段と前記
冷凍機又はヒートポンプの蒸発器出口のブライン
温度を検出する手段との両手段を設け、前記冷水
温度検出手段の出力に応じて前記冷凍機又はヒー
トポンプの容量を制御する手段と、ブライン温度
検出手段が予め定めた下限温度に達したとき前記
冷凍機又はヒートポンプの容量を減少させブライ
ン温度を上昇させるように制御する手段とを有す
る制御装置を備えてなる冷水製造装置である。
The present invention provides equipment for a brine circulation system consisting of a refrigerator or a heat pump, a heat exchanger for brine and cold water, brine piping connecting the two, a brine circulation pump, a brine tank, etc., and a brine circulation system connected to the heat exchanger. In a cold water production and cold water heat storage device consisting of cold water circulation system equipment consisting of cold water piping, a cold water supply pump, a cold water heat storage tank, etc., in order to maintain the cold water temperature at the heat exchanger outlet near 0°C,
Means for detecting the chilled water temperature at the outlet of the heat exchanger and means for detecting the brine temperature at the outlet of the evaporator of the refrigerator or heat pump are provided, and the chiller or A control device having means for controlling the capacity of the heat pump, and means for controlling the capacity of the refrigerator or the heat pump to decrease and increase the brine temperature when the brine temperature detection means reaches a predetermined lower limit temperature. This is a cold water production device.

次に、本発明を詳細に説明する。 Next, the present invention will be explained in detail.

本発明では、予め、実機試験を行つて、その結
果により熱交換器のブライン入口におけるブライ
ン温度の下限を定めておき、通常運転中は冷水出
口温度で冷凍機又はヒートポンプの圧縮機の容量
を容量制御装置で制御しているが、同時にブライ
ン入口温度も検出しておき、前述の予め定めたブ
ライン下限温度に達したならば、容量制御手段を
冷水出口温度制御からブライン入口温度制御に切
り換えてブライン温度をわずかに上昇させるもの
である。
In the present invention, the lower limit of the brine temperature at the brine inlet of the heat exchanger is determined by conducting an actual machine test in advance and determining the lower limit of the brine temperature at the brine inlet of the heat exchanger based on the results. It is controlled by a control device, but the brine inlet temperature is also detected at the same time, and when the brine inlet temperature reaches the predetermined lower limit temperature mentioned above, the capacity control means is switched from chilled water outlet temperature control to brine inlet temperature control to stop the brine. It raises the temperature slightly.

以上の基本制御によつて、負荷変動等が生じて
も凍結せず、0℃近くの冷水が製造できるもので
ある。
With the above basic control, it is possible to produce cold water at a temperature close to 0° C. without freezing even if load fluctuations occur.

更に、本発明では、制御装置の追従性より急激
な負荷変動をも考慮して、ブライン入口温度が下
限値となり、ブライン入口温度制御に切り換わつ
たときに、冷水流量を一時的に強制増大させる方
式を併用するのがよく、このために、熱交換器の
冷水入口に可変制御装置を設けることによつて、
凍結を未然に防止することができる。この場合、
冷水ポンプは回転数制御が行える装置を設置する
必要がある。
Furthermore, in the present invention, taking into account sudden load fluctuations due to the followability of the control device, when the brine inlet temperature reaches the lower limit value and switching to brine inlet temperature control, the cold water flow rate is temporarily forcibly increased. For this purpose, a variable control device is installed at the cold water inlet of the heat exchanger.
Freezing can be prevented. in this case,
It is necessary to install a device that can control the rotation speed of the cold water pump.

また、同様に、流量を増大させる換りに冷水入
口温度を一時的に強制上昇させても同じ効果があ
る。この方式は計画した冷水入口温度よりも高温
の冷水を混合して行うものである。このために、
冷水蓄熱槽内の温度分布を考慮して、最も高温部
分の冷水を混合する手段を設けておくのがよい。
Similarly, the same effect can be obtained by temporarily forcibly increasing the cold water inlet temperature instead of increasing the flow rate. This method involves mixing cold water with a temperature higher than the planned cold water inlet temperature. For this,
It is preferable to consider the temperature distribution within the cold water heat storage tank and provide a means for mixing the cold water in the hottest part.

〔作 用〕[Effect]

本発明では、冷凍機又はヒートポンプによつ
て、−3℃程度のブラインを製造し、このブライ
ンを熱交換器のチユーブ内に通し、チユーブ外に
は冷水を通水し、冷水を冷却する装置において、
この冷水出口を凍結させるに0℃近くの温度に保
つように制御するものである。
In the present invention, brine at about -3°C is produced using a refrigerator or a heat pump, this brine is passed through a tube of a heat exchanger, and cold water is passed outside the tube. ,
This cold water outlet is controlled to be kept at a temperature close to 0°C to freeze it.

ところで、冷水が凍結した場合を考察すると、
冷水出口温度は冷水と氷表面との伝熱によつて、
凍結しても0℃を保つ。ところが、ブラインは、
凍結した氷によつて伝熱が阻害され、熱交換量が
減少することによつてブライン温度が低下し、
増々凍結を促進させることになる。
By the way, if we consider the case where cold water freezes,
The cold water outlet temperature is determined by heat transfer between the cold water and the ice surface.
Maintains 0℃ even when frozen. However, brine
Frozen ice inhibits heat transfer, reducing the amount of heat exchange and lowering the brine temperature.
This will further promote freezing.

そこで、本発明では、冷水出口温度とともにブ
ライン入口温度をも検出しておき、ブライン温度
によつて冷水の凍結を防止するように制御するも
のである。
Therefore, in the present invention, the brine inlet temperature is detected as well as the cold water outlet temperature, and control is performed to prevent the cold water from freezing based on the brine temperature.

〔実施例〕〔Example〕

以下、本発明を具体的に図面を用いて説明する
が、本発明はこの実施例に限定されるものではな
い。
The present invention will be specifically described below with reference to the drawings, but the present invention is not limited to these embodiments.

実施例 1 第1図は、本発明の一実施例を示す冷水製造装
置のフロー概略図である。
Embodiment 1 FIG. 1 is a schematic flow diagram of a cold water production apparatus showing an embodiment of the present invention.

第1図において、1は冷凍機又はヒートポン
プ、2はブラインと冷水との熱交換器、7は冷水
蓄熱槽である。冷凍機又はヒートポンプ内におい
て、17はクーラを、18は圧縮機を表わし、ブ
ラインはクーラ17において冷却されて、熱交換
器2で冷水との間の熱交換が行なわれ、ブライン
タンク4で貯蔵されて、ブラインポンプ3によ
り、クーラ17へと循環するサイクルをとる。一
方冷水は冷水蓄熱槽7の高温側aから冷水1次ポ
ンプ5により熱交換器2に送られ、ここでブライ
ンにより冷却されて、冷水蓄熱槽7の低温側bに
戻される。そして、この冷水蓄熱槽7の低温側b
の冷水が、冷水2次ポンプ8,10により、空調
負荷9,11に送られて、温度の上昇した冷水が
冷水蓄熱槽7の高温側aに循環される。
In FIG. 1, 1 is a refrigerator or a heat pump, 2 is a heat exchanger between brine and cold water, and 7 is a cold water heat storage tank. In the refrigerator or heat pump, 17 represents a cooler and 18 represents a compressor, brine is cooled in the cooler 17, heat exchanged with cold water in a heat exchanger 2, and stored in a brine tank 4. Then, a cycle is performed in which the brine is circulated to the cooler 17 by the brine pump 3. On the other hand, cold water is sent from the high temperature side a of the cold water heat storage tank 7 to the heat exchanger 2 by the cold water primary pump 5, where it is cooled by brine and returned to the low temperature side b of the cold water heat storage tank 7. Then, the low temperature side b of this cold water heat storage tank 7
The cold water is sent to the air conditioning loads 9 and 11 by the cold water secondary pumps 8 and 10, and the cold water whose temperature has increased is circulated to the high temperature side a of the cold water heat storage tank 7.

ところで、このような循環系において、通常の
操作では熱交換器2の冷水出口温度を検出器12
によつて検出し、冷水温度を0℃近くに保つよう
に、冷凍機1の圧縮機18を容量制御する。この
ため、冷水出口温度コントローラ13から指令し
て容量制御装置16を可動させるものである。
By the way, in such a circulation system, in normal operation, the cold water outlet temperature of the heat exchanger 2 is detected by the detector 12.
The capacity of the compressor 18 of the refrigerator 1 is controlled so as to keep the cold water temperature close to 0°C. For this reason, the capacity control device 16 is operated by commands from the chilled water outlet temperature controller 13.

一方、ブライン入口温度の下限は、予め実機試
験により冷水の凍結しない温度を定めておき、ブ
ライン入口温度は検出器14により検出してお
く。そして、何かの異常によつてその検出値が、
予め定めた下限以下となつた場合は、圧縮機の容
量制御を冷水出口温度による制御から、ブライン
入口温度コントローラ15による制御に切り換え
て、ブライン温度を少し上昇させて凍結を回避さ
せるものである。さらに、この場合に、同時に、
可変速制御装置6を制御することにより、冷水1
次ポンプの容量を上げて、冷水流量を一時的に増
量させることより有効に凍結が回避できる。
On the other hand, the lower limit of the brine inlet temperature is determined in advance by an actual machine test at a temperature at which the cold water does not freeze, and the brine inlet temperature is detected by the detector 14. Then, due to some abnormality, the detected value becomes
When the temperature falls below a predetermined lower limit, the capacity control of the compressor is switched from control based on the cold water outlet temperature to control using the brine inlet temperature controller 15 to slightly increase the brine temperature and avoid freezing. Furthermore, in this case, at the same time,
By controlling the variable speed control device 6, the cold water 1
Freezing can be effectively avoided by increasing the capacity of the next pump and temporarily increasing the flow rate of cold water.

〔発明の効果〕〔Effect of the invention〕

本発明においては、凍結せずに0℃近い冷水が
製造できる。従来、空調分野においては、5℃の
冷水を送り空調機から10℃で戻し、冷凍機で再び
5℃迄冷却する冷水循環系であるが、この場合10
−5=5℃の温度差を利用していたわけであり、
本発明のように0℃の水が得られれば10−0=10
℃の温度差が利用出来る。
In the present invention, cold water close to 0° C. can be produced without freezing. Conventionally, in the air conditioning field, a chilled water circulation system sends 5℃ cold water, returns it at 10℃ from an air conditioner, and cools it again to 5℃ in a refrigerator, but in this case, 10℃ is used.
The temperature difference of -5 = 5℃ was used,
If water at 0℃ can be obtained as in the present invention, 10-0=10
A temperature difference of ℃ can be used.

前記のように、本発明においては、従来のもの
より2倍の温度差が利用できるから、次式から、
循環水量が半分で済み、ポンプ動力(搬送動力)、
配管径の縮少が可能となる効果がある。
As mentioned above, in the present invention, twice the temperature difference can be used compared to the conventional one, so from the following equation,
The amount of circulating water is reduced to half, and the pump power (conveying power) is reduced by half.
This has the effect of making it possible to reduce the pipe diameter.

Q=G×△T×γ×h ………(1) (Q:熱交換量、△T:温度差、G:循環量、 γ:流体の比重、h:流体の比熱) 一方、蓄熱容量も(1)式のGを蓄熱槽内保有水量
に置き換えることによつて、有効利用できる温度
差△Tが培増することによつて蓄熱容量も培増で
きる。
Q=G×△T×γ×h……(1) (Q: heat exchange amount, △T: temperature difference, G: circulation amount, γ: specific gravity of fluid, h: specific heat of fluid) On the other hand, heat storage capacity By replacing G in equation (1) with the amount of water held in the heat storage tank, the temperature difference ΔT that can be effectively used increases, and the heat storage capacity can also be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す冷水製造装置
のフロー概略図である。 1…冷凍機又はヒートポンプ、2…熱交換器、
3…ブラインポンプ、4…ブラインタンク、5…
冷水1次ポンプ、6…可変速制御装置、7…冷水
蓄熱槽、8,10…冷水2次ポンプ、9,11…
空調負荷、12…冷水出口温度検出器、13…冷
水出口温度コントローラ、14…ブライン入口温
度検出器、15…ブライン入口温度コントロー
ラ、16…容量制御装置、17…クーラ、18…
圧縮機、a…蓄熱槽高温側、b…蓄熱槽低温側。
FIG. 1 is a schematic flow diagram of a cold water production apparatus showing an embodiment of the present invention. 1... Refrigerator or heat pump, 2... Heat exchanger,
3...Brine pump, 4...Brine tank, 5...
Cold water primary pump, 6... variable speed control device, 7... cold water heat storage tank, 8, 10... cold water secondary pump, 9, 11...
Air conditioning load, 12... Chilled water outlet temperature detector, 13... Chilled water outlet temperature controller, 14... Brine inlet temperature detector, 15... Brine inlet temperature controller, 16... Capacity control device, 17... Cooler, 18...
Compressor, a...high temperature side of the heat storage tank, b...low temperature side of the heat storage tank.

Claims (1)

【特許請求の範囲】 1 冷凍機又はヒートポンプと、ブラインと冷水
との熱交換器と、前記両者を連結するブライン配
管、ブライン循環ポンプ及びブラインタンク等か
らなるブライン循環系の設備と、熱交換器に連結
する冷水配管、冷水供給ポンプ及び冷水蓄熱槽等
からなる冷水循環系の設備とからなる冷水製造及
び冷水蓄熱装置において、熱交換器出口における
冷水温度を0℃近くに維持するために、該熱交換
器出口の冷水温度を検出する手段と前記冷凍機又
はヒートポンプの蒸発器出口のブライン温度を検
出する手段との両手段を設け、前記冷水温度検出
手段の出力に応じて前記冷凍機又はヒートポンプ
の容量を制御する手段と、ブライン温度検出手段
が予め定めた下限温度に達したとき前記冷凍機又
はヒートポンプの容量を減少させブライン温度を
上昇させるように制御する手段とを有する制御装
置を備えてなる冷水製造装置。 2 請求項1記載の冷水製造装置において、ブラ
イン温度検出手段が予め定めた下限温度に達した
ときに冷水流量を所定時間増量させる制御装置を
も備えたことを特徴とする冷水製造装置。 3 請求項1又は2記載の冷水製造装置におい
て、更に、ブライン温度検出手段が予め定めた下
限温度に達したときに、高温の冷水を混合して冷
水温度を所定時間増量させる制御装置をも備えた
ことを特徴とする冷水製造装置。
[Scope of Claims] 1. Brine circulation system equipment consisting of a refrigerator or heat pump, a heat exchanger between brine and cold water, brine piping connecting the two, a brine circulation pump, a brine tank, etc., and a heat exchanger. In a cold water production and cold water heat storage system consisting of a cold water circulation system consisting of cold water pipes connected to a cold water supply pump, a cold water heat storage tank, etc., in order to maintain the cold water temperature at the heat exchanger outlet near 0°C, Means for detecting the chilled water temperature at the outlet of the heat exchanger and means for detecting the brine temperature at the outlet of the evaporator of the refrigerator or heat pump are provided, and the temperature of the chiller or heat pump is determined according to the output of the chilled water temperature detecting means. and means for controlling the capacity of the refrigerator or heat pump to increase the brine temperature by decreasing the capacity of the refrigerator or heat pump when the brine temperature detection means reaches a predetermined lower limit temperature. Cold water production equipment. 2. The chilled water production apparatus according to claim 1, further comprising a control device that increases the flow rate of chilled water for a predetermined period of time when the brine temperature detection means reaches a predetermined lower limit temperature. 3. The chilled water production apparatus according to claim 1 or 2, further comprising a control device that increases the chilled water temperature for a predetermined time by mixing high temperature chilled water when the brine temperature detection means reaches a predetermined lower limit temperature. A cold water production device characterized by:
JP1007795A 1989-01-18 1989-01-18 Low temperature cold water making device Granted JPH02192538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007795A JPH02192538A (en) 1989-01-18 1989-01-18 Low temperature cold water making device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007795A JPH02192538A (en) 1989-01-18 1989-01-18 Low temperature cold water making device

Publications (2)

Publication Number Publication Date
JPH02192538A JPH02192538A (en) 1990-07-30
JPH0477216B2 true JPH0477216B2 (en) 1992-12-07

Family

ID=11675581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007795A Granted JPH02192538A (en) 1989-01-18 1989-01-18 Low temperature cold water making device

Country Status (1)

Country Link
JP (1) JPH02192538A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133693A (en) * 1991-11-12 1993-05-28 Daikin Ind Ltd Water cooling device
WO2011064840A1 (en) * 2009-11-25 2011-06-03 三菱電機株式会社 Auxiliary heater control device and heated fluid using system and auxiliary heater control method
EP2933588B1 (en) 2012-12-11 2019-10-02 Mitsubishi Electric Corporation Air conditioning hot water supply composite system
JP6314262B1 (en) * 2017-01-27 2018-04-18 スリーベネフィッツ株式会社 Heat source system control device and control method thereof

Also Published As

Publication number Publication date
JPH02192538A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
CN104320953A (en) Secondary water-loop server cabinet cooling system
JP2010175136A (en) Geothermal heat pump device
CN110802996A (en) LNG air conditioner refrigerating system
CN212179341U (en) Water circulation type cooling system
JP2901918B2 (en) Method of controlling ice melting operation of ice thermal storage system
JPH0477216B2 (en)
CN105115214A (en) Direct evaporation ice slurry circulation dynamic ice production device
CN102003836B (en) Low-temperature water source heat pump unit
CN104252187B (en) A kind of control method of secondary water loops server cabinet cooling system
CN214566099U (en) LNG (liquefied Natural gas) vehicle and ship refrigeration micro-power air conditioning system
JPH0477218B2 (en)
CN216204594U (en) Frostless freezing and refrigerating system
JPH0477217B2 (en)
CN204373256U (en) Heat pump type air conditioning system
CN104807248B (en) A kind of centralized cold and heat source system for workshop circulation
JPH03102130A (en) Frozen state sensing method in low temperature cold water producing device
CN113148097A (en) LNG (liquefied Natural gas) vehicle and ship refrigeration micro-power air conditioning system
CN203911666U (en) Internal-circulation cooling device of wind power motor
JPH1038347A (en) Heat accumulative type air conditioner
JP4399309B2 (en) Ice heat storage device
CN217685324U (en) Refrigerating unit for grain depot
JP3947780B2 (en) Remodeling existing air conditioning system
CN216292003U (en) Liquid cooling system
JP2023143354A (en) Cold water heat source system and control method for cold water heat source
CN107014124A (en) A kind of ice making method and ice-making system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees