JPH0477217B2 - - Google Patents

Info

Publication number
JPH0477217B2
JPH0477217B2 JP1007796A JP779689A JPH0477217B2 JP H0477217 B2 JPH0477217 B2 JP H0477217B2 JP 1007796 A JP1007796 A JP 1007796A JP 779689 A JP779689 A JP 779689A JP H0477217 B2 JPH0477217 B2 JP H0477217B2
Authority
JP
Japan
Prior art keywords
cold water
temperature
brine
chilled water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1007796A
Other languages
Japanese (ja)
Other versions
JPH02192539A (en
Inventor
Seishiro Igarashi
Akira Gomasa
Rikuo Tamura
Sadaichi Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Shimizu Construction Co Ltd
Original Assignee
Ebara Corp
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Shimizu Construction Co Ltd filed Critical Ebara Corp
Priority to JP1007796A priority Critical patent/JPH02192539A/en
Publication of JPH02192539A publication Critical patent/JPH02192539A/en
Publication of JPH0477217B2 publication Critical patent/JPH0477217B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷水製造装置に係わり、特に空調用
の冷房、工業用プロセスの冷却等に用いて、効率
的な冷水製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a chilled water production apparatus, and more particularly to an efficient chilled water production apparatus that can be used for cooling in air conditioning, industrial process cooling, and the like.

〔従来の技術〕[Conventional technology]

冷凍機又はヒートポンプで冷水を製造する場
合、従来は水の凍結による伝熱チユーブの破損事
故を懸念して、冷水温度は5℃が下限であつた。
空調の分野では、5〜7℃の冷水を空調機に送
り、冷風と熱交換し、約10〜12℃に上昇して戻る
という循環が一般的である。又、蓄熱機を介する
場合でも蓄熱の有効温度差は10℃−5℃又は12℃
−5℃の5℃〜7℃の範囲であつた。
When producing chilled water using a refrigerator or a heat pump, the lower limit of the chilled water temperature has conventionally been 5° C. due to concerns about damage to heat transfer tubes due to freezing of the water.
In the field of air conditioning, a common cycle is to send cold water at 5 to 7 degrees Celsius to an air conditioner, exchange heat with cold air, raise the temperature to about 10 to 12 degrees Celsius, and return. Also, even when using a heat storage device, the effective temperature difference for heat storage is 10℃ - 5℃ or 12℃
The temperature was in the range of -5°C to 7°C.

一方、工業分野では、プロセスによつて、冷却
する液体の温度は異なるが、マイルド・ブライン
と称される使用温度範囲が最も多い。マイルド・
ブラインとは、エチレングリコール水溶液、プロ
ピレングリコール水溶液、塩化カルシウム水溶液
等である。これらの不凍液は約5℃〜−30℃の範
囲で使用されている。
On the other hand, in the industrial field, the temperature of the liquid to be cooled varies depending on the process, but the most commonly used temperature range is called mild brine. mild·
The brine is an ethylene glycol aqueous solution, a propylene glycol aqueous solution, a calcium chloride aqueous solution, or the like. These antifreezes are used at temperatures ranging from about 5°C to -30°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

空調分野においては、空調に利用される循環水
の温度差を大きくすることにより、循環水量の減
少、輸送管径の縮少により、省エネルギと設備費
の減少が望まれる。更に、都市のビル地下室に設
けられる蓄熱槽もその大きさに制限があるので、
大きさを同じにして蓄熱容量を増大することがで
きれば、深夜電力を利用した安価な電力料金が利
用できるから、このような蓄熱機の普及が望まれ
ている。
In the field of air conditioning, it is desired to save energy and reduce equipment costs by increasing the temperature difference of circulating water used for air conditioning, reducing the amount of circulating water, and reducing the diameter of transport pipes. Furthermore, there are restrictions on the size of heat storage tanks installed in the basements of urban buildings.
If the heat storage capacity can be increased while keeping the size the same, it is possible to use late-night electricity at a lower price, so it is hoped that such heat storage devices will become more widespread.

また、工業用途においても、伝熱が悪く、液の
粘性も高く、かつ腐食性のある不凍液はできる限
り水に代えることによつて、省エネルギとなり保
守管理もしやすくなることは明らかであつた。
Furthermore, in industrial applications, it has become clear that energy can be saved and maintenance management can be made easier by replacing antifreeze, which has poor heat transfer, high liquid viscosity, and corrosive properties, with water as much as possible.

しかしながら、従来技術においては、冷水の冷
却度を上げると凍結による伝熱チユーブの破損の
問題が生じ、冷水の温度は十分に低下することは
できなかつた。
However, in the prior art, increasing the degree of cooling of the cold water causes the problem of damage to the heat transfer tube due to freezing, and the temperature of the cold water cannot be lowered sufficiently.

本発明は、上記の要望に鑑み、凍結破損等の必
配のない冷水の温度が0℃近くまで冷却できる冷
水製造装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned needs, an object of the present invention is to provide a cold water production device that can cool the cold water to a temperature close to 0° C. without causing freezing damage or the like.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、冷凍機又はヒートポンプと、ブライ
ンと冷水との熱交換器と、前記両者を連結するブ
ライン配管、ブライン循環ポンプ及びブラインタ
ンク等からなるブライン循環系の設備と、熱交換
器に連結する冷水配管、冷水供給ポンプ及び冷水
蓄熱槽等からなる冷水循環系の設備とからなる冷
水製造及び冷水蓄熱装置において、熱交換器出口
における冷水温度を0℃近くに維持するために、
クーラ出口のブライン温度を検出する手段を設
け、該検出値が所定温度になるように前記冷凍機
又はヒートポンプの容量を制御する手段と、熱交
換器出口の冷水温度を検出する手段を設け、該検
出値が所定温度になるように冷水供給ポンプから
の冷水の流量を制御する手段とを有する制御装置
を備えてなる冷水製造装置である。
The present invention provides equipment for a brine circulation system consisting of a refrigerator or a heat pump, a heat exchanger for brine and cold water, brine piping connecting the two, a brine circulation pump, a brine tank, etc., and a brine circulation system connected to the heat exchanger. In a cold water production and cold water heat storage device consisting of cold water circulation system equipment consisting of cold water piping, a cold water supply pump, a cold water heat storage tank, etc., in order to maintain the cold water temperature at the heat exchanger outlet near 0°C,
A means for detecting the brine temperature at the outlet of the cooler is provided, a means for controlling the capacity of the refrigerator or the heat pump so that the detected value becomes a predetermined temperature, and a means for detecting the temperature of the chilled water at the outlet of the heat exchanger. This cold water production apparatus includes a control device having means for controlling the flow rate of cold water from a cold water supply pump so that the detected value becomes a predetermined temperature.

次に、本発明を詳細に説明する。 Next, the present invention will be explained in detail.

本発明では、冷凍機又はヒートポンプによつ
て、0℃以下のブラインを製造して、このブライ
ンを熱交換器のチユーブ内に通し、チユーブ外に
は冷水を通水して、冷却した冷水を得る装置にお
いて、冷水出口温度を凍結させずに0℃近くの温
度に保つように制御するものである。
In the present invention, brine at a temperature of 0°C or lower is produced using a refrigerator or a heat pump, this brine is passed through a tube of a heat exchanger, and cold water is passed outside the tube to obtain cooled water. In the device, the temperature of the cold water outlet is controlled to be maintained at a temperature close to 0° C. without freezing.

そこで、冷凍機又はヒートポンプは、所定の熱
交換量と所定の冷水入口温度、冷水流量に基づい
て、冷水出口温度が凍結せずに0℃近くとなるよ
うにブライン温度を設定し、この設定した温度を
維持するように制御を行なうものである。一方、
前記制御と同時に冷水側の制御をも行ない、冷水
出口温度を0℃に近ずけるような制御を行なう。
Therefore, based on a predetermined amount of heat exchange, a predetermined cold water inlet temperature, and a cold water flow rate, the refrigerator or heat pump sets the brine temperature so that the cold water outlet temperature is close to 0°C without freezing. Control is performed to maintain the temperature. on the other hand,
Simultaneously with the above control, control on the cold water side is also performed to bring the cold water outlet temperature close to 0°C.

上記、冷水側の制御とは、可変速制御装置を有
する冷水ポンプを冷水入口側に設置し、冷水出口
温度を検出して、冷水出口温度が0℃近くとなる
ように温度制御器の出力を可変速制御装置に与え
て冷水ポンプの冷水流量を変えるものである。
The above-mentioned control on the chilled water side means that a chilled water pump with a variable speed control device is installed on the chilled water inlet side, detects the chilled water outlet temperature, and adjusts the output of the temperature controller so that the chilled water outlet temperature is close to 0°C. This is applied to a variable speed control device to change the chilled water flow rate of the chilled water pump.

ここで、熱交換器出口における冷水温度が0℃
に近いということは、熱交換器内部の一部では0
℃以下のいわゆる過冷却の状態にあるので、冷水
入口温度の低下による熱交換量の減少は、最も凍
結を起こさせ易い条件となる。
Here, the cold water temperature at the heat exchanger outlet is 0°C.
Close to 0 means that there is a part inside the heat exchanger that is close to 0.
Since it is in a so-called supercooled state below .degree. C., a decrease in the amount of heat exchange due to a decrease in the cold water inlet temperature is the condition most likely to cause freezing.

そこで、本発明では、冷水入口温度が低下した
とき、まず、冷水ポンプ可変速装置を働かせ冷水
流量を増加させることによつて熱交換器を一定に
保つように制御する。そして、この可変速装置が
最大の回転数となり、なお、冷水入口温度が低下
する傾向を示すならば、供給する冷水に冷水蓄熱
槽の更に温度の高い冷水を混合させて、冷水入口
温度を所定の温度に保つように制御する。
Therefore, in the present invention, when the cold water inlet temperature decreases, first, the cold water pump variable speed device is activated to increase the cold water flow rate, thereby controlling the heat exchanger to be kept constant. If this variable speed device reaches the maximum rotation speed and the cold water inlet temperature shows a tendency to decrease, the cold water to be supplied is mixed with higher temperature cold water from the cold water heat storage tank to maintain the cold water inlet temperature at a predetermined level. control to maintain the temperature at

また、もう一つの制御方式は、冷水入口温度を
常時検出して、冷水入口温度が所定値より低下し
た場合、冷凍機又はヒートポンプで冷却するブラ
インの冷却熱量を減少させ、冷水側の負荷に合致
させて制御する方式である。
Another control method is to constantly detect the chilled water inlet temperature, and when the chilled water inlet temperature drops below a predetermined value, the cooling heat amount of the brine cooled by the refrigerator or heat pump is reduced to match the load on the chilled water side. This is a method to control the

具体的には、冷凍機又はヒートポンプの容量制
御機構は、通常はブライン温度(熱交換器入口)
で制御し、冷水入口温度が低下した場合、所定の
冷水入口温度と実際の入口温度との偏差分を、ブ
ライン温度制御器に与えて、ブライン温度を上昇
させる、即ち冷凍機又はヒートポンプによるブラ
インの冷却熱量を減少させ、もつて、冷水との熱
交換量を減少させるように制御するものである。
Specifically, the capacity control mechanism of a refrigerator or heat pump typically controls the brine temperature (heat exchanger inlet).
When the cold water inlet temperature decreases, the deviation between the predetermined cold water inlet temperature and the actual inlet temperature is given to the brine temperature controller to increase the brine temperature. Control is performed to reduce the amount of cooling heat and thus the amount of heat exchanged with cold water.

〔実施例〕〔Example〕

以下、本発明を具体的に図面を用いて説明する
が、本発明はこの実施例に限定されるものではな
い。
The present invention will be specifically described below with reference to the drawings, but the present invention is not limited to these embodiments.

実施例 1 第1図は、本発明の一実施例を示す冷水製造装
置のフロー概略図である。
Embodiment 1 FIG. 1 is a schematic flow diagram of a cold water production apparatus showing an embodiment of the present invention.

第1図において、1は冷凍機又はヒートポン
プ、2はブラインと冷水との熱交換器、7は冷水
蓄熱槽である。冷凍機又はヒートポンプ内におい
て、17はクーラを、18は圧縮機を表わし、ブ
ラインはクーラ17において冷却されて、熱交換
器2で冷水との間の熱交換が行なわれ、ブライン
タンク4で貯蔵されて、ブラインポンプ3によ
り、クーラ17へと循環するサイクルをとる。一
方冷水は冷水蓄熱槽7の高温側aから冷水1次ポ
ンプ5により熱交換器2に送られ、ここでブライ
ンにより冷却されて、冷水蓄熱槽7の低温側bに
戻される。そして、この冷水蓄熱槽7の低温側b
の冷水が、冷水2次ポンプ8,10により、空調
負荷9,11に送られて、温度の上昇した冷水が
冷水蓄熱槽7の高温側aに循環される。
In FIG. 1, 1 is a refrigerator or a heat pump, 2 is a heat exchanger between brine and cold water, and 7 is a cold water heat storage tank. In the refrigerator or heat pump, 17 represents a cooler and 18 represents a compressor, brine is cooled in the cooler 17, heat exchanged with cold water in a heat exchanger 2, and stored in a brine tank 4. Then, a cycle is performed in which the brine is circulated to the cooler 17 by the brine pump 3. On the other hand, cold water is sent from the high temperature side a of the cold water heat storage tank 7 to the heat exchanger 2 by the cold water primary pump 5, where it is cooled by brine and returned to the low temperature side b of the cold water heat storage tank 7. Then, the low temperature side b of this cold water heat storage tank 7
The cold water is sent to the air conditioning loads 9 and 11 by the cold water secondary pumps 8 and 10, and the cold water whose temperature has increased is circulated to the high temperature side a of the cold water heat storage tank 7.

ところで、このような循環系において、通常の
操作ではクーラ出口のブライン温度を、温度検出
器12′により検出し、この温度を一定に保つよ
うにブライン入口温度コントローラ12から指令
して容量制御装置16を可動させて冷凍機1の圧
縮機18を容量制御する。一方、熱交換器の冷水
出口温度を温度検出器13′で検出し、この温度
を0℃近くに維持するように、冷水出口コントロ
ーラ13から指令して可変速制御装置6を可動さ
せて、冷水1次ポンプ5の冷水流量を調節するも
のである。
By the way, in such a circulation system, in normal operation, the brine temperature at the outlet of the cooler is detected by the temperature detector 12', and the brine inlet temperature controller 12 instructs the capacity control device 16 to keep this temperature constant. is operated to control the capacity of the compressor 18 of the refrigerator 1. On the other hand, the chilled water outlet temperature of the heat exchanger is detected by the temperature detector 13', and the chilled water outlet controller 13 commands to operate the variable speed control device 6 to maintain this temperature near 0°C. This is to adjust the flow rate of cold water of the primary pump 5.

そして、冷水ポンプ可変速装置6を可動させ、
最大の回転数としても、なお、冷水入口温度検出
器14′により検出した冷水入口温度が低下する
傾向を示す場合は、冷水入口コントローラ14か
ら指令して、冷水蓄熱槽7の高温側aの冷水をモ
ータにより混合して冷水入口温度を所定の温度に
保つ。
Then, move the cold water pump variable speed device 6,
Even if the rotation speed is the maximum, if the cold water inlet temperature detected by the cold water inlet temperature detector 14' shows a tendency to decrease, a command is issued from the cold water inlet controller 14 to turn off the cold water on the high temperature side a of the cold water heat storage tank 7. is mixed by a motor to maintain the cold water inlet temperature at a predetermined temperature.

また、別の制御方式としては、冷水入口温度を
温度検出器15′で常時検出して、冷水入口温度
が所定値より低下した場合、所定の冷水入口温度
と実際の入口温度との偏差分を冷水入口温度カス
ケード積算器15で読み取り、その分だけブライ
ン温度(熱交換器入口)を上昇させるように容量
制御装置16を可動制御し、冷水との熱交換容量
を減少させるものである。
Another control method is to constantly detect the chilled water inlet temperature with a temperature detector 15', and when the chilled water inlet temperature falls below a predetermined value, the deviation between the predetermined chilled water inlet temperature and the actual inlet temperature is detected. The cold water inlet temperature is read by the cascade integrator 15, and the capacity control device 16 is movably controlled to increase the brine temperature (heat exchanger inlet) by that amount, thereby reducing the heat exchange capacity with the cold water.

〔発明の効果〕〔Effect of the invention〕

本発明においては、凍結せずに0℃近い冷水が
製造できる。従来、空調分野においては、5℃の
冷水を送り空調機から10℃で戻し、冷凍機で再び
5℃迄冷却する冷水循環系であるが、この場合10
−5=5℃の温度差を利用していたわけであり、
本発明のように0℃の水が得られれば10−0=10
℃の温度差が利用出来る。
In the present invention, cold water close to 0° C. can be produced without freezing. Conventionally, in the air conditioning field, a chilled water circulation system sends 5℃ cold water, returns it at 10℃ from an air conditioner, and cools it again to 5℃ in a refrigerator, but in this case, 10℃ is used.
The temperature difference of -5 = 5℃ was used,
If water at 0℃ can be obtained as in the present invention, 10-0=10
A temperature difference of ℃ can be used.

前記のように、本発明においては、従来のもの
より2倍の温度差が利用できるから、次式から、
循環水量が半分で済み、ポンプ動力(搬送動力)、
配管径の縮少が可能となる効果がある。
As mentioned above, in the present invention, twice the temperature difference can be used compared to the conventional one, so from the following equation,
The amount of circulating water is reduced to half, and the pump power (conveying power) is reduced by half.
This has the effect of making it possible to reduce the pipe diameter.

Q=G×△T×γ×h ………(1) (Q:熱交換量、△T:温度差、G:循環量、 γ:流体の比重、h:流体の比熱) 一方、蓄熱容量も(1)式のGを蓄熱槽内保有水量
に置き換えることによつて、有効利用できる温度
差△Tが培増することによつて蓄熱容量も培増で
きる。
Q=G×△T×γ×h……(1) (Q: heat exchange amount, △T: temperature difference, G: circulation amount, γ: specific gravity of fluid, h: specific heat of fluid) On the other hand, heat storage capacity By replacing G in equation (1) with the amount of water held in the heat storage tank, the temperature difference ΔT that can be effectively used increases, and the heat storage capacity can also be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷水製造装置
のフロー概略図である。 1…冷凍機又はヒートポンプ、2…熱交換器、
3…ブラインポンプ、4…ブラインタンク、5…
冷水1次ポンプ、6…可変速制御装置、7…冷水
蓄熱槽、8,10…冷水2次ポンプ、9,11…
空調負荷、12′,13′,14′,15′…温度検
出器、12…ブライン入口温度コントローラ、1
3…冷水出口コントローラ、14…冷水入口コン
トローラ、15…冷水入口温度カスケード積算
器、16…容量制御装置、17…クーラ、18…
圧縮機、a…高温側、b…低温側。
FIG. 1 is a schematic flow diagram of a cold water production apparatus showing an embodiment of the present invention. 1... Refrigerator or heat pump, 2... Heat exchanger,
3...Brine pump, 4...Brine tank, 5...
Cold water primary pump, 6... variable speed control device, 7... cold water heat storage tank, 8, 10... cold water secondary pump, 9, 11...
Air conditioning load, 12', 13', 14', 15'...Temperature detector, 12...Brine inlet temperature controller, 1
3... Chilled water outlet controller, 14... Chilled water inlet controller, 15... Chilled water inlet temperature cascade integrator, 16... Capacity control device, 17... Cooler, 18...
Compressor, a...high temperature side, b...low temperature side.

Claims (1)

【特許請求の範囲】 1 冷凍機又はヒートポンプと、ブラインと冷水
との熱交換器と、前記両者を連結するブライン配
管、ブライン循環ポンプ及びブラインタンク等か
らなるブライン循環系の設備と、熱交換器に連結
する冷水配管、冷水供給ポンプ及び冷水蓄熱槽等
からなる冷水循環系の設備とからなる冷水製造及
び冷水蓄熱装置において、熱交換器出口における
冷水温度を0℃近くに維持するために、クーラ出
口のブライン温度を検出する手段を設け、該検出
値が所定温度になるように前記冷凍機又はヒート
ポンプの容量を制御する手段と、熱交換器出口の
冷水温度を検出する手段を設け、該検出値が所定
温度になるように冷水供給ポンプからの冷水の流
量を制御する手段とを有する制御装置を備えてな
る冷水製造装置。 2 請求項1記載の冷水製造装置において、熱交
換器入口の冷水温度を検出する手段を有し、該検
出値が所定温度になるように冷水蓄熱槽内の温度
の異なる冷水を混合する制御装置をも備えたこと
を特徴とする冷水製造装置。 3 請求項1記載の冷水製造装置において、熱交
換器入口の冷水温度を検出する手段を有し、該検
出値が所定温度より低下したときに、冷凍機又は
ヒートポンプの容量を減少させて冷水入口温度が
低下した分だけブライン温度を上昇させる制御装
置をも備えたことを特徴とする冷水製造装置。
[Scope of Claims] 1. Brine circulation system equipment consisting of a refrigerator or heat pump, a heat exchanger between brine and cold water, brine piping connecting the two, a brine circulation pump, a brine tank, etc., and a heat exchanger. In a cold water production and cold water heat storage system consisting of cold water circulation system equipment including cold water piping connected to a cold water supply pump, cold water heat storage tank, etc., in order to maintain the cold water temperature at the heat exchanger outlet near 0°C, the cooler A means for detecting the brine temperature at the outlet is provided, a means for controlling the capacity of the refrigerator or the heat pump so that the detected value becomes a predetermined temperature, and a means for detecting the chilled water temperature at the outlet of the heat exchanger is provided, 1. A chilled water production apparatus comprising: a control device having means for controlling the flow rate of chilled water from a chilled water supply pump so that the flow rate of chilled water reaches a predetermined temperature. 2. The chilled water production apparatus according to claim 1, comprising means for detecting the temperature of the chilled water at the inlet of the heat exchanger, and a control device for mixing the chilled waters of different temperatures in the chilled water heat storage tank so that the detected value becomes a predetermined temperature. A cold water production device characterized by also being equipped with. 3. The chilled water production apparatus according to claim 1, further comprising means for detecting the chilled water temperature at the inlet of the heat exchanger, and when the detected value falls below a predetermined temperature, the capacity of the refrigerator or heat pump is reduced to reduce the chilled water inlet. A cold water production device characterized by further comprising a control device that increases the brine temperature by the amount that the temperature decreases.
JP1007796A 1989-01-18 1989-01-18 Low temperature cold water making device Granted JPH02192539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007796A JPH02192539A (en) 1989-01-18 1989-01-18 Low temperature cold water making device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007796A JPH02192539A (en) 1989-01-18 1989-01-18 Low temperature cold water making device

Publications (2)

Publication Number Publication Date
JPH02192539A JPH02192539A (en) 1990-07-30
JPH0477217B2 true JPH0477217B2 (en) 1992-12-07

Family

ID=11675607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007796A Granted JPH02192539A (en) 1989-01-18 1989-01-18 Low temperature cold water making device

Country Status (1)

Country Link
JP (1) JPH02192539A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525327A1 (en) * 1995-07-12 1997-01-16 Wilo Gmbh Device for regulating the temperature of a heating device

Also Published As

Publication number Publication date
JPH02192539A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
KR102214259B1 (en) Systems and methods for controlling refrigeration systems
TWI387716B (en) Precision temperature-control device
US7178346B2 (en) Constant temperature refrigeration system for extensive temperature range application and control method thereof
US6349552B2 (en) Temperature control device for thermal medium fluid
JP4877988B2 (en) Cooling medium cooling refrigeration equipment
CN1051971A (en) Be used to regulate the method for air and supplying hot/cold water
JP2011012904A (en) Cold source device for free cooling, cooling system and cooling method
JP2010175136A (en) Geothermal heat pump device
JP2008164240A (en) Heat pump system
JP5098046B2 (en) Temperature control system
JP2901918B2 (en) Method of controlling ice melting operation of ice thermal storage system
JPH0477216B2 (en)
JPH0477217B2 (en)
CN214566099U (en) LNG (liquefied Natural gas) vehicle and ship refrigeration micro-power air conditioning system
JPH0477218B2 (en)
JPH03102130A (en) Frozen state sensing method in low temperature cold water producing device
JPH1038347A (en) Heat accumulative type air conditioner
JP2921632B2 (en) Cold water supply method and equipment for cooling air conditioning of nuclear power plants
JP2531507Y2 (en) Super cooling water production equipment
JP3947780B2 (en) Remodeling existing air conditioning system
JP4399309B2 (en) Ice heat storage device
JP2004085008A (en) Hydrate slurry manufacturing system and its operation method
JPH0570069B2 (en)
KR910007579Y1 (en) Heat collection system
JP2551817B2 (en) Refrigeration system using ice heat storage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees