JPH03102130A - Frozen state sensing method in low temperature cold water producing device - Google Patents

Frozen state sensing method in low temperature cold water producing device

Info

Publication number
JPH03102130A
JPH03102130A JP1236908A JP23690889A JPH03102130A JP H03102130 A JPH03102130 A JP H03102130A JP 1236908 A JP1236908 A JP 1236908A JP 23690889 A JP23690889 A JP 23690889A JP H03102130 A JPH03102130 A JP H03102130A
Authority
JP
Japan
Prior art keywords
cold water
temperature
heat exchanger
freezing
frozen state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1236908A
Other languages
Japanese (ja)
Other versions
JPH0617757B2 (en
Inventor
Rikuo Tamura
田村 陸男
Seishiro Igarashi
五十嵐 征四郎
Masaya Tachibana
雅哉 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Ebara Corp
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Shimizu Construction Co Ltd, Shimizu Corp filed Critical Ebara Corp
Priority to JP1236908A priority Critical patent/JPH0617757B2/en
Publication of JPH03102130A publication Critical patent/JPH03102130A/en
Publication of JPH0617757B2 publication Critical patent/JPH0617757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable a rapid defreezing operation to be carried out before a trouble of a device or the like may occur even if an inside part of a heat exchanger is frozen by a method wherein an operation at a cold water side is also properly combined in addition to an operation at brine side. CONSTITUTION:An initial frozen state is sensed by temperature sensors 13' arranged at outlet passages of a plurality of cold water tubes by detecting an over-cooled state temperature at an outlet passage of each of cold water tubes of a heat exchanger 2 and an increased temperature caused by a condensation heat of water when iced. In this case, since a temperature increasing in each of the cold water tubes is also increased through a lifting-up of anti-freeze liquid flowing into the heat exchanger, a flowing-in temperature of the anti- freeze liquid is detected simultaneously and a variation in temperature of cold water is corrected under a condition of an increased temperature of the cold water and a temperature of the anti-freeze liquid. When the frozen state is detected, the frozen state is released by controlling the anti-freeze liquid to a temperature more than 0 deg.C or temporarily increasing a flow rate of cold water as a releasing means for defreezing state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温度冷水の製造に係り、特に空調用の冷房
、工業用プロセスの冷却等に用いて効率的な低温度冷水
製造装置の凍結検出方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the production of low-temperature cold water, and in particular to an efficient low-temperature cold water production device for use in cooling for air conditioning, industrial process cooling, etc. Relating to a freezing detection method.

〔従来の技術〕[Conventional technology]

冷凍機又はヒートポンプで冷水を製造する場合、従来は
水の凍結による伝熱チューブの破損事故を懸念して、冷
水温度は5℃が下限であった。空調の分野では、5〜7
℃の冷水を空調機に送り、冷風と熱交換し、約10〜1
2℃に上昇して戻るという循環が一般的である。又、蓄
熱機を介する場合でも蓄熱の有効温度差は1ot−5℃
又は12℃−5℃の5℃〜7℃の範囲であった。
When producing chilled water using a refrigerator or a heat pump, the lower limit of the chilled water temperature has conventionally been 5° C. due to concerns about damage to heat transfer tubes due to freezing of the water. In the field of air conditioning, 5 to 7
℃ cold water is sent to the air conditioner and exchanges heat with cold air, approximately 10 to 1
A cycle of rising to 2°C and returning is common. Also, even when using a heat storage device, the effective temperature difference for heat storage is 1ot-5℃.
or in the range of 5°C to 7°C of 12°C to 5°C.

一方、工業分野では、プロセスによって、冷却する液体
の温度は異なるが、マイルド・ブラインと称される使用
温度範囲が最も多い。マイルド・ブラインとは、エチレ
ングリコール水溶液、ブロビレングリコール水溶液、塩
化カルシウム水溶液等である。これらの不凍液は約5℃
〜−30℃の範囲で使用されている。
On the other hand, in the industrial field, the temperature of the liquid to be cooled varies depending on the process, but the most commonly used temperature range is called mild brine. Mild brines include ethylene glycol aqueous solution, brobylene glycol aqueous solution, calcium chloride aqueous solution, and the like. These antifreezes are approximately 5℃
It is used in the range of -30°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

空調分野においては、空調に利用される循環水の温度差
を大きくすることにより、循環水量の減少、輸送管径の
縮少により、省エネルギと設備費の減少が望まれる。更
に、都市のビル地下室に設けられた蓄熱槽もその大きさ
に制限があるので、大きさを同じにして蓄熱容量を増大
することができれば、深夜電力を利用した安価な電力料
金が利用できるから、このような蓄熱機の普及が望まれ
ている。
In the field of air conditioning, it is desired to save energy and reduce equipment costs by increasing the temperature difference of circulating water used for air conditioning, reducing the amount of circulating water, and reducing the diameter of transport pipes. Furthermore, there is a limit to the size of heat storage tanks installed in the basements of city buildings, so if the heat storage capacity can be increased while keeping the size the same, it will be possible to use late-night electricity at cheaper electricity rates. It is desired that such heat storage devices become widespread.

また、工業用途においても、伝熱が悪く、液の粘性も高
く、かつ腐食性のある不凍液はできる限り水に代えるこ
とによって、省エネルギとなり保守管理もしやすくなる
ことは明らかであった。
Furthermore, in industrial applications, it has become clear that energy can be saved and maintenance management can be made easier by replacing antifreeze, which has poor heat transfer, high liquid viscosity, and corrosive properties, with water as much as possible.

しかしながら、従来技術においては、冷水の冷却度を上
げると凍結による伝熱チューブの破損の問題が生じ、冷
水の温度は十分に低下することはできなかった。
However, in the prior art, increasing the degree of cooling of the cold water causes the problem of damage to the heat transfer tubes due to freezing, and the temperature of the cold water cannot be lowered sufficiently.

そこで、本発明は、上記の要望に鑑み、従来利用不可能
と考えられていた5℃〜D℃の間のまさに凍結寸前の冷
水の製造装置において、凍結した場合の事故(故障)を
防止するために、常時冷水の凍結状態を検出する凍結検
出方法を提供することを目的とするものである。
Therefore, in view of the above-mentioned needs, the present invention prevents accidents (failures) in the case of freezing in an apparatus for producing cold water that is on the verge of freezing between 5°C and D°C, which was previously thought to be unusable. Therefore, it is an object of the present invention to provide a freeze detection method that constantly detects the frozen state of cold water.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達或するために、本発明では、チューブ内を
通る被冷却流体である冷水を、チューブ外を流れるO℃
以下の不凍液で冷却し、0℃に限りなく近い冷水を製造
する熱交換器を含む低温度冷水製造装置における凍結を
検出する方法において、熱交換器の複数本の冷水チュー
ブの出口通路における、過冷却状態の温度と結氷時の水
の凝固熱による温度上昇とを検知して、冷水の凍結状態
を検出することを特徴とする低温度冷水製造装置の凍結
検出方法としたものである。また、本発明では、前記に
おいて、熱交換器に流入する不凍液の温度を検出して、
冷水チューブの出口通路における温度変化を修正して冷
水の凍結状態を検出することを特徴とする低温度冷水製
造装置の凍結検出方法としたものである。
In order to achieve the above object, in the present invention, cold water, which is a fluid to be cooled, passing through the tube is heated to 0°C flowing outside the tube.
In the following method for detecting freezing in a low-temperature cold water production device including a heat exchanger that produces cold water as close to 0°C as possible by cooling with antifreeze, A freezing detection method for a low-temperature cold water production apparatus is characterized in that the freezing state of cold water is detected by detecting the temperature in the cooling state and the temperature rise due to the heat of solidification of the water when it freezes. Further, in the present invention, in the above, the temperature of the antifreeze flowing into the heat exchanger is detected,
A freezing detection method for a low-temperature cold water production apparatus is characterized in that the frozen state of cold water is detected by correcting temperature changes in the outlet passage of a cold water tube.

本発明における低温度冷水製造装置としては、冷凍機又
はヒートポンブと、不凍液(ブライン)と冷水との熱交
換器と、前記両者を連結するブライン配管、ブライン循
環ポンプ及びブラインタンク等からなるブライン循環系
の設備と、熱交換器に連結する冷水配管、冷水供給ボン
ブ及び冷水蓄熱槽等からなる冷水循環系の設備とからな
る冷水製造及び冷水蓄熱装置が使用できる。
The low-temperature cold water production device in the present invention includes a brine circulation system comprising a refrigerator or heat pump, a heat exchanger between antifreeze (brine) and cold water, brine piping connecting the two, a brine circulation pump, a brine tank, etc. A cold water production and cold water heat storage device can be used, which consists of equipment for a cold water circulation system consisting of equipment such as cold water piping connected to a heat exchanger, a cold water supply bomb, a cold water heat storage tank, etc.

次に、本発明を詳細に説明する。Next, the present invention will be explained in detail.

本発明の冷水製造装置においては、冷凍機又はヒートボ
ンブによって、O℃以下のブラインを製造して、このブ
ラインを熱交換器のチューブ外に通し、チューブ内には
冷水を通して、冷水を冷却する装置であり、冷水出口温
度を凍結させずに0℃近くの温度に保つように制御する
ものである。
In the cold water production apparatus of the present invention, brine at a temperature of 0°C or lower is produced using a refrigerator or a heat bomb, and this brine is passed outside the tube of a heat exchanger, and cold water is passed inside the tube to cool the chilled water. It controls the cold water outlet temperature to maintain it at around 0°C without freezing.

そのために、冷凍機又はヒートポンプは、所定の熱交換
量と所定の冷水入口温度、冷水流量に基づいて、冷水出
口温度が凍結せずに0℃近くとなるブライン温度に保持
し、この温度を維持するように制御を行うものである。
To this end, the refrigerator or heat pump maintains the brine temperature at which the cold water outlet temperature is close to 0°C without freezing, based on a predetermined amount of heat exchange, a predetermined cold water inlet temperature, and a cold water flow rate, and maintains this temperature. It is controlled so that

また、同時に冷水側でも制御して、冷水出口温度を0℃
に近づけるものである。この冷水側の制御は、可変速制
御装置を有する冷水ポンプを設置し、熱交換器からの冷
水出口温度を検出して冷水出口温度が0℃近くになるよ
うに温度制御器の出力を可変速制御装置に与えて、冷水
ボンブの冷水流量を変化させて制御するものである。
At the same time, the cold water side is also controlled to reduce the cold water outlet temperature to 0℃.
It brings us closer to. To control this chilled water side, a chilled water pump with a variable speed control device is installed, and the temperature of the chilled water outlet from the heat exchanger is detected and the output of the temperature controller is adjusted to a variable speed so that the chilled water outlet temperature is close to 0°C. The flow rate of cold water from the cold water bomb is changed and controlled by the control device.

このような制御において、熱交換器出口における冷水温
度が0℃に近いということは、熱交換器内部の一部では
0℃以下のいわゆる過冷却の状態であり、凍結を起こさ
せ易い条件となっている。
In this type of control, if the chilled water temperature at the heat exchanger outlet is close to 0°C, a part of the inside of the heat exchanger is in a so-called supercooled state below 0°C, which is a condition that is likely to cause freezing. ing.

そこで、凍結しても装置の事故や故障を起こさせずに、
すばやく解凍することができ、再び0℃近くの冷水が得
られれば、0℃近くの冷水製造のプロセスは或立するこ
とになる。
Therefore, even if it freezes, the equipment will not cause accidents or breakdowns.
If it can be thawed quickly and cold water near 0°C can be obtained again, the process of producing cold water near 0°C will be established.

本発明では、初期凍結状態を検出して、凍結をすばやく
解凍させようとするものであり、初期凍結状態の検出を
熱交換器の冷水チューブの出口通路における過冷却状態
の温度と結氷時の水の凝固熱による温度上昇とを複数本
の冷水チューブの出口通路に設備した温度センサーによ
って検知して行うものであり、またこの場合、冷水チュ
ーブの温度上昇は、熱交換器に流入する不凍液(ブライ
ン)の上昇によっても上昇するから、不凍液の流入温度
を同時に検出しておき、冷水の温度上昇と不凍液の温度
変化の関係を条件に入れて、冷水の温度変化を修正して
おくとよい。
The present invention attempts to quickly thaw the frozen state by detecting the initial frozen state, and detects the initial frozen state based on the temperature of the supercooled state in the outlet passage of the cold water tube of the heat exchanger and the water temperature at the time of freezing. This is done by detecting the temperature rise due to the solidification heat of the cold water tubes using temperature sensors installed in the outlet passages of the multiple cold water tubes. ), it is better to detect the inflow temperature of the antifreeze at the same time and correct the temperature change of the cold water by taking into account the relationship between the temperature rise of the cold water and the temperature change of the antifreeze.

そして、凍結を検出した場合は、凍結のすばやい解除手
段として、不凍液(ブライン)側を0℃以上の温度に制
御するとか、冷水流量を一時的に増大させるように制御
することにより凍結を解除することができる。
When freezing is detected, as a quick way to release the freeze, the antifreeze (brine) side is controlled to a temperature of 0°C or higher, or the cold water flow rate is temporarily increased to release the freeze. be able to.

〔実施例〕〔Example〕

以下、本発明を具体的に図面を用いて説明するが、本発
明はこの実施例に限定されるものではない。
The present invention will be specifically described below with reference to the drawings, but the present invention is not limited to these embodiments.

実施例1 第1図は本発明の一実施例を示す冷水製造装置のフロー
概略図である。
Embodiment 1 FIG. 1 is a schematic flow diagram of a cold water production apparatus showing an embodiment of the present invention.

第1図において、1は冷凍機又はヒートボンプ、2は不
凍液(ブライン)と冷水との熱交換器、7は冷水蓄熱槽
、21はクーラ(蒸発器)22は圧縮機、23は容量制
御機構、24はホットガスバイパス弁、25は凝縮器で
ある。
In FIG. 1, 1 is a refrigerator or a heat pump, 2 is a heat exchanger between antifreeze (brine) and cold water, 7 is a cold water heat storage tank, 21 is a cooler (evaporator), 22 is a compressor, 23 is a capacity control mechanism, 24 is a hot gas bypass valve, and 25 is a condenser.

この装置の運転において、不凍液(ブライン〉はクーラ
21で冷却されて、熱交換器2で冷水との間で熱交換が
行なわれ、ブラインタンク4で貯蔵されて、ブラインボ
ンプ3によりクーラ21へと循環するサイクルをとる。
In the operation of this device, antifreeze (brine) is cooled in a cooler 21, heat exchanged with cold water in a heat exchanger 2, stored in a brine tank 4, and circulated to the cooler 21 by a brine pump 3. Take the cycle of doing.

一方、冷水は、蓄熱槽7の高温側aから冷水1次ポンプ
5により熱交換器2に送られ、ここでブラインにより冷
却されて、冷水蓄熱槽7の低温側bに戻される。そして
、この冷水蓄熱槽7の低温側bの冷水が、冷水2次ポン
プ8、10により空調負荷9、11に送られて、有効に
利用され温度の上昇した冷水が冷水蓄熱槽7の高温側a
に循環される。
On the other hand, the cold water is sent from the high temperature side a of the cold water storage tank 7 to the heat exchanger 2 by the cold water primary pump 5, where it is cooled by brine and returned to the low temperature side b of the cold water storage tank 7. Then, the cold water on the low temperature side b of the cold water heat storage tank 7 is sent to the air conditioning loads 9 and 11 by the cold water secondary pumps 8 and 10, and the cold water whose temperature has increased by being effectively used is transferred to the high temperature side of the cold water heat storage tank 7. a
is circulated.

ところで、このような循環系において、通常の摸作では
、クーラ出口のブライン温度を温度検出器12’により
検出し、この温度を一定に保つようにブライン温度コン
トローラ12から指令して容量制御機構23を可動させ
て、冷凍機1の圧縮機22を容量制御する。
By the way, in a normal simulation in such a circulation system, the brine temperature at the outlet of the cooler is detected by the temperature detector 12', and the brine temperature controller 12 instructs the capacity control mechanism 23 to keep this temperature constant. is operated to control the capacity of the compressor 22 of the refrigerator 1.

そして、このような通常の操作において、熱交換器2の
ブライン入口の温度14′及び熱交換器2の冷水出口の
温度13′を検知しておき、検知したブラインの温度と
冷水出口温度を変換器13、14を通って演算器15に
より修正をして監視する。そして、冷水出口の温度が通
常の操作値よりも異常の場合は、熱交換器内部において
凍結が始まっていることを示しており、以下のような操
作ですみやかに凍結処理を行う。
In such normal operation, the temperature 14' at the brine inlet of the heat exchanger 2 and the temperature 13' at the cold water outlet of the heat exchanger 2 are detected, and the detected brine temperature and chilled water outlet temperature are converted. The signal passes through units 13 and 14 and is corrected and monitored by a computing unit 15. If the temperature at the cold water outlet is abnormal compared to the normal operating value, this indicates that freezing has begun inside the heat exchanger, and the freezing process is promptly performed using the following operations.

まず、凍結のすばやい解凍手段として、ブラインを0℃
以上の温度に保つ、熱交換器のチューブ内側から解凍す
るために、冷凍m1の容量制御機構23を安定運転が続
行できる範囲で強制的に絞って低出力(低冷却能力)と
し、同時に凝縮器25から蒸発器21へのホットガスバ
イパス弁24を開して、低出力を維持するものである。
First, as a quick thawing method, brine is heated to 0°C.
In order to maintain the above temperature and thaw from the inside of the tube of the heat exchanger, the capacity control mechanism 23 of the refrigeration m1 is forcibly throttled to a low output (low cooling capacity) within a range that allows stable operation, and at the same time the condenser The hot gas bypass valve 24 from 25 to the evaporator 21 is opened to maintain low output.

次いで、冷水側からの解凍手役として、可変速制御装置
6を可動させて冷水1次ポンプを最大回転数とし、冷水
流量を一時的に増大させて熱伝達率を向上させて解凍す
る。更に、冷水の入口温度を上昇させて解凍するために
、冷水蓄熱槽7内のより高温部a側の冷水を三方弁等の
混合装置で強制的に混合させる。
Next, in order to thaw from the cold water side, the variable speed control device 6 is operated to set the cold water primary pump to the maximum rotation speed, temporarily increasing the flow rate of cold water to improve the heat transfer coefficient and thawing. Furthermore, in order to raise the inlet temperature of the cold water and thaw it, the cold water in the higher temperature section a in the cold water heat storage tank 7 is forcibly mixed with a mixing device such as a three-way valve.

上記のように、ブライン側の操作のみでなく、冷水側の
摸作をも適宜組合せることにより、熱交換器内が凍結し
ても装置の事故等の生ずる前にすみやかに解凍できるも
のである。
As mentioned above, by appropriately combining not only operations on the brine side but also simulations on the cold water side, even if the inside of the heat exchanger freezes, it can be thawed quickly before equipment accidents occur. .

〔発明の効果〕〔Effect of the invention〕

本発明においては、凍結検出手段を設けたので、凍結状
態が初期段階で検知でき、装置の事故とか故障を起こす
ことなく、0℃近い冷水が製造できる。
In the present invention, since a freeze detection means is provided, a frozen state can be detected at an early stage, and cold water close to 0° C. can be produced without causing an accident or failure of the device.

従来、空調分野においては、5℃の冷水を送り空調機か
ら10℃で戻し、冷凍機で再び5℃迄冷却する冷水循環
系であるか、この場合1〇一5−5℃の温度差を利用し
ていたわけであり、本発明のようにO℃の水が得られれ
ば10−0=10℃の温度差が利用出来る。
Conventionally, in the air conditioning field, a cold water circulation system is used in which cold water at 5°C is sent from an air conditioner, returned at 10°C, and then cooled down to 5°C again by a refrigerator. If water at 0°C can be obtained as in the present invention, a temperature difference of 10-0=10°C can be used.

前記のように、本発明においては、従来のものより2倍
の温度差が利用できるから、次式から、循環水量が半分
で済み、ポンプ動力(搬送動力)、配管径の縮少が可能
となる効果がある。
As mentioned above, in the present invention, twice the temperature difference can be used compared to the conventional one, so from the following equation, the amount of circulating water can be halved, and the pump power (conveying power) and pipe diameter can be reduced. There is a certain effect.

Q=G  x  Δ’I’  x  7  x  h 
  −   (1)一方、蓄熱容量も(L)式のGを蓄
熱槽内保有水量に置き換えることによって、有効利用で
きる温度差ΔTが倍増することによって蓄熱容量も倍増
できる。
Q=G x Δ'I' x 7 x h
- (1) On the other hand, by replacing G in formula (L) with the amount of water held in the heat storage tank, the temperature difference ΔT that can be effectively used is doubled, and the heat storage capacity can also be doubled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す冷水製造装置のフロー
概略図である。
FIG. 1 is a schematic flow diagram of a cold water production apparatus showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、チューブ内を通る被冷却流体である冷水を、チュー
ブ外を流れる0℃以下の不凍液で冷却し、0℃に限りな
く近い冷水を製造する熱交換器を含む低温度冷水製造装
置における凍結を検出する方法において、熱交換器の複
数本の冷水チューブの出口通路における、過冷却状態の
温度と結氷時の水の凝固熱による温度上昇とを検知して
、冷水の凍結状態を検出することを特徴とする低温度冷
水製造装置の凍結検出方法。 2、請求項1記載の凍結検出方法において、熱交換器に
流入する不凍液の温度を検出して、冷水チューブの出口
通路における温度変化を修正して冷水の凍結状態を検出
することを特徴とする低温度冷水製造装置の凍結検出方
法。
[Claims] 1. A low-temperature device that includes a heat exchanger that cools cold water, which is a fluid to be cooled, passing inside the tube with an antifreeze liquid at 0°C or lower flowing outside the tube, and producing cold water as close to 0°C as possible. In a method for detecting freezing in a chilled water production device, freezing of chilled water is detected by detecting the temperature in a supercooled state and the temperature rise due to the heat of solidification of water during freezing in the outlet passages of multiple chilled water tubes of a heat exchanger. A freezing detection method for a low-temperature chilled water production device characterized by detecting a state. 2. The freezing detection method according to claim 1, characterized in that the frozen state of the cold water is detected by detecting the temperature of the antifreeze flowing into the heat exchanger and correcting the temperature change in the outlet passage of the cold water tube. Freeze detection method for low temperature chilled water production equipment.
JP1236908A 1989-09-14 1989-09-14 Freezing detection method for low temperature cold water production equipment Expired - Fee Related JPH0617757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236908A JPH0617757B2 (en) 1989-09-14 1989-09-14 Freezing detection method for low temperature cold water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236908A JPH0617757B2 (en) 1989-09-14 1989-09-14 Freezing detection method for low temperature cold water production equipment

Publications (2)

Publication Number Publication Date
JPH03102130A true JPH03102130A (en) 1991-04-26
JPH0617757B2 JPH0617757B2 (en) 1994-03-09

Family

ID=17007538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236908A Expired - Fee Related JPH0617757B2 (en) 1989-09-14 1989-09-14 Freezing detection method for low temperature cold water production equipment

Country Status (1)

Country Link
JP (1) JPH0617757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618066A (en) * 1992-07-01 1994-01-25 Daikin Ind Ltd Ice making device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063980A (en) 2012-08-30 2014-04-10 Toshiba Corp Semiconductor device
CN107921468B (en) * 2015-09-02 2019-12-27 龙云株式会社 Discharge device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610643A (en) * 1979-07-06 1981-02-03 Mitsubishi Electric Corp Water cooler
JPH01210774A (en) * 1988-02-18 1989-08-24 Takenaka Komuten Co Ltd Operation control device for ice making device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610643A (en) * 1979-07-06 1981-02-03 Mitsubishi Electric Corp Water cooler
JPH01210774A (en) * 1988-02-18 1989-08-24 Takenaka Komuten Co Ltd Operation control device for ice making device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618066A (en) * 1992-07-01 1994-01-25 Daikin Ind Ltd Ice making device

Also Published As

Publication number Publication date
JPH0617757B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
WO2012057263A1 (en) Heat source apparatus
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JP2008215680A (en) Cold medium refrigerating/freezing equipment
JP2010175136A (en) Geothermal heat pump device
JP2012141098A (en) Heat source system and its control method
JP2010007956A (en) Temperature adjustment system
JPH03102130A (en) Frozen state sensing method in low temperature cold water producing device
JPH09287797A (en) Method for controlling device operation in ice heat accumulating system
JPH0477218B2 (en)
KR101766466B1 (en) Non-frost high performance air source heatpump system
CN104279789B (en) A kind of trilogy supply air-conditioning system
KR100911217B1 (en) Air conditioning system for communication equipment and method for preventing frozen
JPH0477216B2 (en)
CN206504493U (en) A kind of environmentally friendly refrigerating plant
JP2531507Y2 (en) Super cooling water production equipment
JPH0478903B2 (en)
KR101403452B1 (en) Chiller System
JP7502674B1 (en) Cooling system
JP2003004330A (en) Exhaust heat recovery air conditioner
JP3080802B2 (en) Subcooled ice thermal storage device
JP2023143354A (en) Cold water heat source system and control method for cold water heat source
JP2004116814A (en) Control method and device for supercooled water manufacturing equipment
JPH0477217B2 (en)
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
KR100384492B1 (en) Pre-cooling device for cooling water of thermal vacuum chamber using Liquid Nitrogen

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees