JP3062565B2 - Cooling water inlet temperature control method for refrigerator in water heat storage system - Google Patents

Cooling water inlet temperature control method for refrigerator in water heat storage system

Info

Publication number
JP3062565B2
JP3062565B2 JP6241840A JP24184094A JP3062565B2 JP 3062565 B2 JP3062565 B2 JP 3062565B2 JP 6241840 A JP6241840 A JP 6241840A JP 24184094 A JP24184094 A JP 24184094A JP 3062565 B2 JP3062565 B2 JP 3062565B2
Authority
JP
Japan
Prior art keywords
refrigerator
water inlet
temperature
cooling water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6241840A
Other languages
Japanese (ja)
Other versions
JPH0875220A (en
Inventor
勇 佐倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6241840A priority Critical patent/JP3062565B2/en
Publication of JPH0875220A publication Critical patent/JPH0875220A/en
Application granted granted Critical
Publication of JP3062565B2 publication Critical patent/JP3062565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建築物や地域冷暖房の
冷熱源システムの一つである水蓄熱システムにおける熱
源機器の効率的な運転技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for efficiently operating heat source equipment in a water heat storage system, which is one of the cooling and heat source systems for buildings and district cooling and heating.

【0002】[0002]

【従来の技術】水蓄熱システムには、蓄熱槽へ冷水を循
環供給する冷凍機が設けられる。この冷凍機は、水冷式
の場合、凝縮器に冷却塔が冷却水配管により接続され
る。即ち、蓄熱槽から吸熱された熱は、冷凍機の凝縮器
を介して、冷却塔から外気に排熱されるようになってい
る(以下、蓄熱槽を経由する吸熱側の水配管を「蓄熱系
統」、冷却塔を経由する排熱側の水配管を「冷却水系
統」という)。
2. Description of the Related Art A water heat storage system is provided with a refrigerator for circulating cold water to a heat storage tank. In this refrigerator, a cooling tower is connected to a condenser by a cooling water pipe in the case of a water cooling type. That is, the heat absorbed from the heat storage tank is discharged to the outside air from the cooling tower via the condenser of the refrigerator (hereinafter, the water pipe on the heat absorption side passing through the heat storage tank is referred to as a heat storage system). , And the water pipe on the exhaust heat side passing through the cooling tower is referred to as "cooling water system").

【0003】また、水蓄熱システムでは、蓄熱系統の冷
水入口が、混合三方弁を介して蓄熱槽の低温水側及び高
温水側とに接続され、この混合三方弁によって低温側、
高温側の混合水量比が適宜に制御されることにより、冷
水入口温度が一定に制御され、冷凍機の安定した高効率
運転が実現されるようになっている。
[0003] In the water heat storage system, the cold water inlet of the heat storage system is connected to the low-temperature water side and the high-temperature water side of the heat storage tank via a mixing three-way valve.
By appropriately controlling the mixed water amount ratio on the high temperature side, the cold water inlet temperature is controlled to be constant, and stable high-efficiency operation of the refrigerator is realized.

【0004】一方、冷凍機の冷却水系統においても、冷
却水入口が混合三方弁を介して冷却塔からの配管及び冷
却塔を経由しない冷却水出口からの直接配管とに接続さ
れ、この混合三方弁によって冷却水出口側、冷却塔経由
側からの混合水量比が適宜に制御され、冷却水入口温度
が冷凍機の制限温度以下(例えば、25°c以下)とな
らないように制御されている。
On the other hand, also in a cooling water system of a refrigerator, a cooling water inlet is connected to a pipe from a cooling tower via a mixing three-way valve and to a direct pipe from a cooling water outlet not passing through the cooling tower. The valve controls the ratio of the amount of mixed water from the cooling water outlet side and the cooling tower passing side appropriately, and controls the cooling water inlet temperature so as not to be lower than the limit temperature of the refrigerator (for example, 25 ° C or lower).

【0005】[0005]

【発明が解決しようとする課題】従来、水蓄熱システム
の冷凍機に関わる蓄熱系統及び冷却水系統の各機器は、
負荷が増大する夏期条件を上限に定格能力が定められて
いる。この定格能力算定の基準となる夏期における温度
条件値は、例えば、冷却水入口温度;32°c、冷水入
口温度;10°c、冷水出口温度;5°cの如きであ
る。ところが、冷凍機の凝縮器を循環する冷却水は、冷
却水出口を出た後、外部に設置される冷却塔によって冷
却され、再び冷却水入口に戻されるため、季節及び湿度
(即ち、外気湿球温度)により冷却塔の冷却能力が増減
し、冷却水入口温度が大きく変動する。従って、中間
期、特に冬期では、冷却水入口温度が定格条件値(上述
の例では、32°c)より著しく低下する。しかしなが
ら、一方で冷水入口温度は、年間を通じて一定に保たれ
ているのが一般的となっている。このため、中間期、冬
期の外気湿球温度低下によって増大する冷却水系統の冷
却能力は、十分に利用されていないのが現状であった。
本発明は上記状況に鑑みてなされたもので、外気湿球温
度低下によって増大する冷却水系統の冷却能力を利用す
ることにより、冷凍機出力を増大させ、この結果、冷凍
機の成績係数の向上とともに、冷凍機及び関連補機類
(例えば、冷却水ポンプ、冷水ポンプ等)の運転時間が
短縮できる水蓄熱システムにおける冷凍機の冷水入口温
度制御方法を提供し、システムの省エネルギー化を図る
ことを目的とする。
Conventionally, each equipment of a heat storage system and a cooling water system related to a refrigerator of a water heat storage system includes:
The rated capacity is determined up to the summer conditions under which the load increases. The temperature condition values in summer, which are the basis for calculating the rated capacity, are, for example, cooling water inlet temperature; 32 ° C., cold water inlet temperature; 10 ° C., cold water outlet temperature; However, the cooling water circulating through the condenser of the refrigerator exits the cooling water outlet, is cooled by a cooling tower installed outside, and is returned to the cooling water inlet again. (Ball temperature), the cooling capacity of the cooling tower increases and decreases, and the cooling water inlet temperature fluctuates greatly. Therefore, in the middle period, particularly in winter, the cooling water inlet temperature is significantly lower than the rated condition value (32 ° C. in the above example). However, on the other hand, the cold water inlet temperature is generally kept constant throughout the year. For this reason, at present, the cooling capacity of the cooling water system, which increases due to a decrease in the outside air wet-bulb temperature in the middle and winter seasons, is not fully utilized.
The present invention has been made in view of the above circumstances, and increases the output of a refrigerator by utilizing the cooling capacity of a cooling water system that increases due to a decrease in the outside air wet bulb temperature, thereby improving the coefficient of performance of the refrigerator. In addition, the present invention provides a method for controlling a chilled water inlet temperature of a chiller in a water heat storage system capable of shortening the operation time of a chiller and related accessories (for example, a chilled water pump, a chilled water pump, etc.), and achieves energy saving of the system. Aim.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る水蓄熱システムにおける冷凍機の冷水入
口温度制御方法は、冷凍機冷水系統の往管が蓄熱槽の低
温側に接続され、蓄熱槽の低温側と高温側とに接続され
た還管が混合三方弁で統合された後、冷凍機冷水系統の
冷水入口に接続される一方、冷凍機冷却水系統の往管が
冷却塔に接続され、この冷却塔が還管によって冷凍機冷
却水系統の冷却水入口に接続される水蓄熱システムにお
ける冷凍機の冷水入口温度制御方法において、前記冷凍
機冷却水系統の冷却水入口温度を検出し、当該冷却水入
口温度の変化に応じて、前記混合三方弁によって制御さ
れる前記冷凍機冷水系統の冷水入口温度の設定値を自動
変更することを特徴としている。
According to the present invention, there is provided a method for controlling a chilled water inlet temperature of a refrigerator in a water heat storage system according to the present invention, wherein an outgoing pipe of the chilled water system is connected to a low temperature side of a heat storage tank. After the return pipes connected to the low temperature side and the high temperature side of the heat storage tank are integrated by a mixing three-way valve, the return pipes are connected to the chilled water inlet of the chiller cooling water system, while the outgoing pipe of the chiller cooling water system is connected to the cooling tower. is connected, at the cold water inlet temperature control method of a refrigerator in water thermal storage system connected to a cooling water inlet of the refrigerator cooling water system by the cooling tower is changed pipes, the refrigeration
The cooling water inlet temperature of the cooling water system of the
Controlled by the mixing three-way valve in response to changes in mouth temperature
Automatic setting of the chilled water inlet temperature of the chiller chilled water system
It is characterized by being changed.

【0007】[0007]

【作用】外気湿球温度の低下に応じて、冷却塔によって
冷却された冷却水の入口温度が低下すると、凝縮温度の
低下により、冷凍機の冷却能力が増大することになる。
また、冷却水入口温度の変化に応じて、混合三方弁によ
って制御される冷水入口温度の設定値が自動変更され
る。このため、冷凍機においては、冷却水入口温度の低
下によって増大した冷却能力によって、冷水が一定出口
温度まで冷却されることになり、冷凍機の成績係数が向
上するとともに単位時間当たりの能力が増大する。した
がって、冷凍機の運転時間が短縮されることになり、同
時に補機類、例えば、冷水一次ポンプ、冷却水ポンプ等
の運転時間も短縮され、これらの分の電力が節約され
る。
When the inlet temperature of the cooling water cooled by the cooling tower decreases in accordance with the decrease in the outside air wet bulb temperature, the cooling capacity of the refrigerator increases due to the decrease in the condensation temperature.
Also, according to the change of the cooling water inlet temperature, the mixing three-way valve
The set value of the chilled water inlet temperature controlled by
You. For this reason, in the refrigerator, the cooling water inlet temperature is low.
Constant cooling water outlet due to increased cooling capacity below
Temperature, and the coefficient of performance of the refrigerator
And the capacity per unit time increases. did
Accordingly, the operation time of the refrigerator is shortened, and at the same time, the operation time of the auxiliary equipment, for example, the chilled water primary pump, the cooling water pump, etc. is also shortened, and the power for these is saved.

【0008】[0008]

【実施例】以下、本発明に係る水蓄熱システムにおける
冷凍機の冷水入口温度制御方法の好適な実施例を図面を
参照して説明する。図1は本発明による冷水入口温度制
御方法を実施するための水蓄熱システムの概略構成図で
ある。蓄熱槽1には低温側1a、高温側1bが形成さ
れ、蓄熱槽内に温度分布を形成して水蓄熱されている。
この蓄熱槽1には例えば二次側の冷房用冷水配管(図示
せず)が接続され、空調機等に冷水を供給することによ
り、冷熱が取り出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for controlling a chilled water inlet temperature of a refrigerator in a water heat storage system according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a water heat storage system for implementing a chilled water inlet temperature control method according to the present invention. A low-temperature side 1a and a high-temperature side 1b are formed in the heat storage tank 1, and water is stored by forming a temperature distribution in the heat storage tank.
For example, a cooling water pipe (not shown) for cooling on the secondary side is connected to the heat storage tank 1, and cold water is taken out by supplying cold water to an air conditioner or the like.

【0009】蓄熱槽1には、冷凍機3の冷水系統5が接
続される。冷水系統5は、冷凍機3の冷却器7に設けら
れた冷水出口7aと蓄熱槽1の低温側1aを接続する
管(冷水往管)9と、低温側1a、高温側1bからの配
管を冷水系統側の混合三方弁11に一旦接続して冷却器
7の冷水入口7bに接続される還管(冷水還管)13と
からなる。還管13には冷水一次ポンプ15が設けら
れ、冷水一次ポンプ15は蓄熱槽1からの水を冷凍機3
の冷却器7に循環させる。
The heat storage tank 1 is connected to a chilled water system 5 of the refrigerator 3. Cold water line 5 connects the cold side 1a of the heat storage tank 1 and coolant outlet 7a provided on the cooler 7 of the refrigerator 3 forward
Tube (cold water往管) 9 and a low temperature side 1a, Kaekan (cold Kaekan connected once to the cold water inlet 7b of the condenser 7 are connected to a mixing three-way valve 11 of the pipe from the hot side 1b cold water mains ) 13. The return pipe 13 is provided with a cold water primary pump 15, and the cold water primary pump 15 transfers water from the heat storage tank 1 to the refrigerator 3.
Circulator 7.

【0010】冷水系統側の混合三方弁11にはコントロ
ーラ17が接続され、コントローラ17は冷水入口7b
近傍に設けられた温度検出器19からの検出温度に基づ
いて、冷水入口温度が設定温度と一致するように混合三
方弁11を制御する。即ち、冷水入口温度が設定値より
低い場合には、高温側1bからの水量を増大させて冷水
入口温度を上昇させ、冷水入口温度が設定値より高い場
合には、低温側1aからの水量を増大させて冷水入口温
度を下降させる制御を行う。
[0010] A controller 17 is connected to the mixing three-way valve 11 on the chilled water system side.
The mixing three-way valve 11 is controlled based on the temperature detected by the temperature detector 19 provided in the vicinity so that the cold water inlet temperature matches the set temperature. That is, when the chilled water inlet temperature is lower than the set value, the amount of water from the high temperature side 1b is increased to increase the chilled water inlet temperature, and when the chilled water inlet temperature is higher than the set value, the amount of water from the low temperature side 1a is reduced. Control is performed to increase the chilled water inlet temperature and decrease it.

【0011】一方、冷凍機3の凝縮器21には冷却水系
統23が接続される。冷却水系統23は、凝縮器21の
冷却水出口21aと冷却塔25とを接続する往管(冷却
水往管)27と、冷却水出口21a、冷却塔25からの
配管を冷却水系統側の混合三方弁29に一旦接続して凝
縮器21の冷却水入口21bに接続される還管(冷却水
還管)31とからなる。往管27には冷却水ポンプ33
が設けられ、冷却水ポンプ33は冷却水を凝縮器21と
冷却塔25との間で循環させる。
On the other hand, a cooling water system 23 is connected to the condenser 21 of the refrigerator 3. The cooling water system 23 is connected to a cooling water outlet 21 a of the condenser 21 and the cooling tower 25 and is connected to an outgoing pipe (a cooling pipe
Water往管) 27, the cooling water outlet 21a, Kaekan connected to the cooling water inlet 21b of the pipe from the cooling tower 25 once connected to the mixing three-way valve 29 of the cooling water system side condenser 21 (cooling water
Return pipe) 31. The outgoing pipe 27 has a cooling water pump 33
The cooling water pump 33 circulates cooling water between the condenser 21 and the cooling tower 25.

【0012】冷却水系統側の混合三方弁29にはコント
ローラ35が接続され、コントローラ35は冷却水入口
21b近傍に設けられた温度検出器37からの検出温度
に基づいて、冷却水入口温度が制限温度以下(例えば2
5℃以下)とならないように制御されている。
A controller 35 is connected to the three-way mixing valve 29 on the cooling water system side, and the controller 35 limits the cooling water inlet temperature based on the temperature detected by a temperature detector 37 provided near the cooling water inlet 21b. Below temperature (eg 2
(5 ° C. or less).

【0013】本実施例では、この冷却水系統側の混合三
方弁29を制御するコントローラ35と、冷水系統側の
混合三方弁11を制御するコントローラ17とが信号配
線39により電気的に接続され、冷却水入口温度制御用
のコントローラ35から冷水入口温度制御用のコントロ
ーラ17へ、温度検出器37で検出された冷却水入口温
度の検出値が送られるようになっている。そして、コン
トローラ17は、冷却水入口温度の検出値に基づき、
水入口温度の設定値の変更制御(例えば、冷水入口温度
10°cを10.5°cに変更する)を行えるようにな
っている。なお、冷却水入口温度の検出値の伝送方法と
しては、本実施例の他に、冷却水入口温度制御用のコン
トローラ35から中央監視装置等を経由して冷水入口温
度制御用のコントローラ17への伝送、冷却水入口温度
検出器37から冷水入口温度制御用のコントローラ17
への伝送等の方法が可能である。
In this embodiment, a controller 35 for controlling the mixing three-way valve 29 on the cooling water system side and a controller 17 for controlling the mixing three-way valve 11 on the cooling water system side are electrically connected by signal wiring 39, The detected value of the cooling water inlet temperature detected by the temperature detector 37 is sent from the cooling water inlet temperature controller 35 to the cold water inlet temperature controller 17. Then, the controller 17 based on the detection value of the cooling water inlet temperature, cold
Change control of the set value of the water inlet temperature (for example, changing the cold water inlet temperature of 10 ° C to 10.5 ° C) can be performed. As a method of transmitting the detected value of the cooling water inlet temperature , in addition to the present embodiment, a controller for controlling the cooling water inlet temperature is used.
Cold water inlet temperature from controller 35 via central monitoring device, etc.
To controller 17 for temperature control, cooling water inlet temperature
From the detector 37 to the controller 17 for controlling the cold water inlet temperature
A method such as transmission to a computer is possible.

【0014】この時の冷水入口温度制御は、冷水出口温
度(上述の例では、5°c)が一定となるように、PI
動作とする。PI動作とすることにより、比例動作のみ
の場合と異なり、P動作(偏差に比例した信号を出す比
例動作)とI動作(残留偏差を除くための信号を出す積
分動作)を同時に行うフィードバック制御が可能とな
り、冷水出口温度を一定に保持させることができる。
At this time, the chilled water inlet temperature control is performed so that the chilled water outlet temperature (5 ° C. in the above example) becomes constant.
Operation. By using the PI operation, unlike the case of only the proportional operation, the feedback control for simultaneously performing the P operation (proportional operation for outputting a signal proportional to the deviation) and the I operation (integrating operation for outputting a signal for removing the residual deviation) is performed. This makes it possible to keep the cold water outlet temperature constant.

【0015】このように構成された水蓄熱システムでの
冷水入口温度制御の動作を説明する。夏期等、外気湿球
温度が高い場合、冷却塔25によって冷却された冷却水
の入口温度は、例えば、定格能力条件値(外気湿球温度
27°c)では32°cとなる。従って、この状態では
冷凍機3の冷却能力は定格値となる。
The operation of controlling the temperature of the chilled water inlet in the water heat storage system thus configured will be described. When the outside-air wet-bulb temperature is high in summer or the like, the inlet temperature of the cooling water cooled by the cooling tower 25 is, for example, 32 ° C at the rated capacity condition value (outside-air wet-bulb temperature 27 ° C). Therefore, in this state, the cooling capacity of the refrigerator 3 becomes the rated value.

【0016】一方、中間期、特に冬期等、外気湿球温度
が低くなるに従い、冷却塔25によって冷却された冷却
水の入口温度は低下する。この状態では、凝縮温度の低
下により、冷凍機3の冷却能力が増大することになる。
そこで、冷却水入口温度制御用のコントローラ35から
冷水入口温度制御用のコントローラ17へ冷却水入口温
度の検出値が送られ、コントローラ17によって冷水入
口温度の設定値が自動設定変更される。冷凍機3の特性
に応じて、冷却水入口温度検出値が低下するに従い、冷
水入口設定温度を上昇させ、また冷却水入口温度検出値
の上昇するに従い冷水入口設定温度を低下させる。
On the other hand, the inlet temperature of the cooling water cooled by the cooling tower 25 decreases as the temperature of the outside air wet bulb decreases during the intermediate period, particularly during winter. In this state, the cooling capacity of the refrigerator 3 increases due to a decrease in the condensation temperature.
Therefore, the detected value of the cooling water inlet temperature is sent from the controller 35 for controlling the cooling water inlet temperature to the controller 17 for controlling the cooling water inlet temperature, and the controller 17 automatically changes the set value of the cooling water inlet temperature. In accordance with the characteristics of the refrigerator 3, as the detected value of the cooling water inlet temperature decreases, the set temperature of the chilled water inlet increases, and as the detected value of the cooling water inlet temperature increases, the set temperature of the chilled water inlet decreases.

【0017】この際、冷凍機3は、冷却水入口温度の低
下により増大した冷却能力によって、冷水を一定出口温
度(上述の例では、5°c)まで冷却するので、単位時
間当たりの能力が増大し、運転時間が短縮されることに
なる。また、この時の冷凍機の成績係数は定格条件時よ
りも向上する。又冷凍機3の運転時間が短縮されること
で、補機類、例えば、冷水一次ポンプ15、冷却水ポン
プ33等の運転時間も短縮され、その分の電力が節約さ
れることになる。
At this time, the refrigerator 3 cools the chilled water to a constant outlet temperature (5 ° C. in the above example) by the increased cooling capacity due to a decrease in the cooling water inlet temperature. The operating time will be reduced. Further, the coefficient of performance of the refrigerator at this time is higher than that under the rated condition. In addition, since the operation time of the refrigerator 3 is shortened, the operation time of the auxiliary equipment, for example, the cold water primary pump 15, the cooling water pump 33, and the like is also shortened, and the power is correspondingly saved.

【0018】このように、上述した水蓄熱システムにお
ける冷凍機の冷却水入口温度制御方法によれば、冷却水
入口温度の検出値に対応させて冷水入口温度の設定値を
自動的に変更することで、冷凍機の余剰能力を十分に引
き出せるようにしたので、これによって冷凍機の成績係
数の向上を図るとともに冷凍機及び補機類の運転時間を
短縮させることができ、その分の電力を削減することが
可能となる。
As described above, according to the cooling water inlet temperature control method for the refrigerator in the water heat storage system described above, the cooling water
Set the chilled water inlet temperature to correspond to the detected inlet temperature.
By automatically changing, the excess capacity of the refrigerator can be sufficiently drawn out, thereby improving the coefficient of performance of the refrigerator and shortening the operation time of the refrigerator and the auxiliary machines, This makes it possible to reduce power consumption.

【0019】なお、上述の実施例では、冷水出口温度を
5°cで一定とする場合を例に説明したが、中間期、冬
期のように冷房負荷の小さい時に冷水出口温度を上昇さ
せる制御と組合せて行うこともできる。このように冷水
出口温度を上昇させることにより、更に冷凍機3の成績
係数が向上し、その結果として一層冷凍機3の運転時間
を短縮させることができ、その分の電力を削減すること
が可能となる。
In the above-described embodiment, the case where the chilled water outlet temperature is kept constant at 5 ° C. has been described as an example. However, the control for increasing the chilled water outlet temperature when the cooling load is small as in the middle and winter seasons is described. It can also be performed in combination. Cold water like this
By increasing the outlet temperature , the coefficient of performance of the refrigerator 3 is further improved, and as a result, the operation time of the refrigerator 3 can be further reduced, and the electric power can be reduced accordingly.

【0020】[0020]

【発明の効果】以上詳細に説明したように、本発明に係
る水蓄熱システムにおける冷凍機の冷水入口温度制御方
法によれば、冷却水入口温度に基づいて冷水入口温度の
設定値を変更する構成を採用したことで、特に冷却水能
力が増大する中間期、冬期に、冷水入口温度を高温に設
定変更し、冷凍機の余剰能力を十分に引き出すことが可
能なる。このため、冷凍機の成績係数の向上を図るとと
もに冷凍機及び補機類の運転時間を短縮することができ
る。この結果、その分の電力を削減することができ、シ
ステムの省エネルギー化を達成することができる。
As described above in detail, according to the method for controlling the chilled water inlet temperature of the refrigerator in the water heat storage system according to the present invention, the chilled water inlet temperature is controlled based on the chilled water inlet temperature.
By adopting a configuration that changes the set value, it is possible to change the setting of the chilled water inlet temperature to a high temperature, especially in the middle and winter seasons when the cooling water capacity increases, and to sufficiently draw out the surplus capacity of the refrigerator.
Works. For this reason, while improving the coefficient of performance of the refrigerator, the operation time of the refrigerator and the auxiliary equipment can be shortened. As a result, the power can be reduced by that amount, and the energy saving of the system can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による冷水入口温度制御方法を実施する
ための水蓄熱システムの構成図である。
FIG. 1 is a configuration diagram of a water heat storage system for implementing a cold water inlet temperature control method according to the present invention.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 1a 低温側 1b 高温側 3 冷凍機 5 冷水系統 7a 冷水出口 7b 冷水入口 9 往管 11 混合三方弁 13 還管 21b 冷却水入口 23 冷却水系統 25 冷却塔 27 往管 31 還管 DESCRIPTION OF SYMBOLS 1 Heat storage tank 1a Low temperature side 1b High temperature side 3 Refrigerator 5 Cold water system 7a Cold water outlet 7b Cold water inlet 9 Outgoing pipe 11 Mixing three-way valve 13 Return pipe 21b Cooling water inlet 23 Cooling water system 25 Cooling tower 27 Outgoing pipe 31 Return pipe

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷凍機冷水系統の往管が蓄熱槽の低温側
に接続され、該蓄熱槽の低温側と高温側とに接続された
還管が混合三方弁で統合された後前記冷凍機冷水系統の
冷水入口に接続される一方、冷凍機冷却水系統の往管が
冷却塔に接続され、該冷却塔が還管によって冷凍機冷却
水系統の冷却水入口に接続される水蓄熱システムにおけ
る冷凍機の冷水入口温度制御方法において、前記冷凍機冷却水系統の冷却水入口温度を検出し、当該
冷却水入口温度の変化に応じて、前記混合三方弁によっ
て制御される前記冷凍機冷水系統の冷水入口温度の設定
値を自動変更すること を特徴とする水蓄熱システムにお
ける冷凍機の冷水入口温度制御方法。
1. The refrigerator according to claim 1, wherein an outgoing pipe of a refrigerator cold water system is connected to a low temperature side of the heat storage tank, and return pipes connected to the low temperature side and the high temperature side of the heat storage tank are integrated by a mixing three-way valve. In the water heat storage system, the outgoing pipe of the refrigerator cooling water system is connected to the cooling tower while the cooling tower is connected to the cooling water inlet of the refrigerator cooling water system by the return pipe. In the method for controlling a chilled water inlet temperature of a refrigerator , a cooling water inlet temperature of the refrigerator cooling water system is detected, and
According to the change of the cooling water inlet temperature, the mixing three-way valve
Of chilled water inlet temperature of the chiller chilled water system controlled by
The water heat storage system is characterized by automatically changing the value .
Control method of chilled water inlet temperature of refrigerator.
【請求項2】 請求項1記載の水蓄熱システムにおける
冷凍機の冷水入口温度制御方法において、 中間期、冬期等の冷房負荷減少時に、前記冷凍機冷水系
統の冷水出口温度をそれまでの設定値よりも高い温度の
設定値に自動変更すること を特徴とする水蓄熱システム
における冷凍機の冷水入口温度制御方法。
2. The water heat storage system according to claim 1,
In the method for controlling the temperature of a chilled water inlet of a refrigerator , the cooling water system of the refrigerator may be used when the cooling load is reduced in an intermediate period or a winter season.
The chilled water outlet temperature is higher than the previous set value.
Water heat storage system characterized by automatically changing to a set value
Method for controlling the temperature of the chilled water inlet of a refrigerator in Japan.
JP6241840A 1994-09-08 1994-09-08 Cooling water inlet temperature control method for refrigerator in water heat storage system Expired - Fee Related JP3062565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6241840A JP3062565B2 (en) 1994-09-08 1994-09-08 Cooling water inlet temperature control method for refrigerator in water heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6241840A JP3062565B2 (en) 1994-09-08 1994-09-08 Cooling water inlet temperature control method for refrigerator in water heat storage system

Publications (2)

Publication Number Publication Date
JPH0875220A JPH0875220A (en) 1996-03-19
JP3062565B2 true JP3062565B2 (en) 2000-07-10

Family

ID=17080288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6241840A Expired - Fee Related JP3062565B2 (en) 1994-09-08 1994-09-08 Cooling water inlet temperature control method for refrigerator in water heat storage system

Country Status (1)

Country Link
JP (1) JP3062565B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271429B2 (en) 2010-04-12 2016-02-23 Fujikura Ltd. Cooling device, cooling system, and auxiliary cooling device for datacenter
JP2011247506A (en) * 2010-05-27 2011-12-08 Fujikura Ltd Cooling system for data center
CN113654134B (en) * 2021-07-30 2023-05-26 青岛海尔空调电子有限公司 Control method of water chilling unit

Also Published As

Publication number Publication date
JPH0875220A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
US5727396A (en) Method and apparatus for cooling a prime mover for a gas-engine driven heat pump
US4368624A (en) Absorption type heat pump having indoor and outdoor radiators connected in series in a water flow circuit during heat mode
US4589262A (en) Absorption type air conditioning system
JP3062565B2 (en) Cooling water inlet temperature control method for refrigerator in water heat storage system
US5669228A (en) System for utilizing exhaust heat of stationary induction apparatus
JP2001241735A (en) Air conditioning system and its controlling method
JPS629137A (en) Air conditioner
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
CN210624718U (en) Air conditioning system
JPH026424B2 (en)
US20090078783A1 (en) Secondary heating and cooling system
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
CN218379615U (en) Heat recovery unit
CN210772610U (en) Circulating energy-saving constant temperature and humidity machine
JP3112596B2 (en) Absorption refrigerator and control method thereof
JPH0355752B2 (en)
JP3173234B2 (en) Cold water supply system using a direct-fired absorption refrigerator
JP3027650B2 (en) Absorption type cold / hot water unit
JPS5937589Y2 (en) Cooling circulating water tank
JPS58160780A (en) Controller for absorption refrigerator
JP2002061895A (en) Radiated heat leveling system for ice thermal storage tank
CN115214734A (en) Thermal management device of battery-powered locomotive and control method thereof
JPH08296874A (en) Heat storage equipment
JP3681785B2 (en) Cogeneration system
JPH0136017Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees