JPH0875220A - Inlet temperature control method of cold water for refrigerator in water heat accumulating system - Google Patents

Inlet temperature control method of cold water for refrigerator in water heat accumulating system

Info

Publication number
JPH0875220A
JPH0875220A JP6241840A JP24184094A JPH0875220A JP H0875220 A JPH0875220 A JP H0875220A JP 6241840 A JP6241840 A JP 6241840A JP 24184094 A JP24184094 A JP 24184094A JP H0875220 A JPH0875220 A JP H0875220A
Authority
JP
Japan
Prior art keywords
water inlet
temperature
cold water
refrigerator
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6241840A
Other languages
Japanese (ja)
Other versions
JP3062565B2 (en
Inventor
Isamu Sakura
勇 佐倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6241840A priority Critical patent/JP3062565B2/en
Publication of JPH0875220A publication Critical patent/JPH0875220A/en
Application granted granted Critical
Publication of JP3062565B2 publication Critical patent/JP3062565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To contrive the energy saving of a system by a method wherein the performance coefficient of a refrigerating machine is improved and the cooling capacity of the same is increased utilizing the cooling capacity of cooling water, which is increased by the reduction of an outside air wet-bulb temperature, while the operation times of related auxiliary machines are shortened in accordance with the operation time of the refrigerating machine, shortened by the increase of the cooling capacity of the same. CONSTITUTION: In a water heat accumulating system, in which the sending pipe 9 of cold water system 5 for a refrigerating machine is connected to the low temperature side 1a of a heat accumulating tank 1 while returning pipes 13, connected to the low temperature side 1a and the high temperature side 1b of the heat accumulating tank 1, are joined in a mixing three-way valve 11 and, thereafter, the joined returning pipe is connected to the cold water inlet port 7b of the cold water system 5 for the refrigerating machine, the set temperature of the mixing three-way valve 11, detecting and controlling the cooling water inlet temperature of a cooling water system 23, is changed automatically to a set value of temperature higher than said set temperature when the detecting value has become lower than the set temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築物や地域冷暖房の
冷熱源システムの一つである水蓄熱システムにおける熱
源機器の効率的な運転技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an efficient operation technique of heat source equipment in a water heat storage system which is one of the heat source systems for buildings and district heating and cooling.

【0002】[0002]

【従来の技術】水蓄熱システムには、蓄熱槽へ冷水を循
環供給する冷凍機が設けられる。この冷凍機は、水冷式
の場合、凝縮器に冷却塔が冷却水配管により接続され
る。即ち、蓄熱槽から吸熱された熱は、冷凍機の凝縮器
を介して、冷却塔から外気に排熱されるようになってい
る(以下、蓄熱槽を経由する吸熱側の水配管を「蓄熱系
統」、冷却塔を経由する排熱側の水配管を「冷却水系
統」という)。
2. Description of the Related Art A water heat storage system is provided with a refrigerator for circulating cold water to a heat storage tank. When the refrigerator is a water-cooled type, a cooling tower is connected to the condenser by a cooling water pipe. That is, the heat absorbed from the heat storage tank is exhausted to the outside air from the cooling tower via the condenser of the refrigerator (hereinafter, the water pipe on the heat absorption side passing through the heat storage tank is referred to as “heat storage system”). "The water pipe on the exhaust heat side that passes through the cooling tower is called the" cooling water system. "

【0003】また、水蓄熱システムでは、蓄熱系統の冷
水入口が、混合三方弁を介して蓄熱槽の低温水側及び高
温水側とに接続され、この混合三方弁によって低温側、
高温側の混合水量比が適宜に制御されることにより、冷
水入口温度が一定に制御され、冷凍機の安定した高効率
運転が実現されるようになっている。
Further, in the water heat storage system, the cold water inlet of the heat storage system is connected to the low temperature water side and the high temperature water side of the heat storage tank via the mixing three-way valve, and the mixing three-way valve allows the low temperature side,
By appropriately controlling the mixed water amount ratio on the high temperature side, the cold water inlet temperature is controlled to be constant, and stable and highly efficient operation of the refrigerator is realized.

【0004】一方、冷凍機の冷却水系統においても、冷
却水入口が混合三方弁を介して冷却塔からの配管及び冷
却塔を経由しない冷却水出口からの直接配管とに接続さ
れ、この混合三方弁によって冷却水出口側、冷却塔経由
側からの混合水量比が適宜に制御され、冷却水入口温度
が冷凍機の制限温度以下(例えば、25°c以下)とな
らないように制御されている。
On the other hand, also in the cooling water system of the refrigerator, the cooling water inlet is connected to the piping from the cooling tower through the mixing three-way valve and the direct piping from the cooling water outlet not passing through the cooling tower, and this mixing three-way system. The valve appropriately controls the mixed water amount ratio from the cooling water outlet side and the cooling tower passing side so that the cooling water inlet temperature does not fall below the limit temperature of the refrigerator (for example, below 25 ° C).

【0005】[0005]

【発明が解決しようとする課題】従来、水蓄熱システム
の冷凍機に関わる蓄熱系統及び冷却水系統の各機器は、
負荷が増大する夏期条件を上限に定格能力が定められて
いる。この定格能力算定の基準となる夏期における温度
条件値は、例えば、冷却水入口温度;32°c、冷水入
口温度;10°c、冷水出口温度;5°cの如きであ
る。ところが、冷凍機の凝縮器を循環する冷却水は、冷
却水出口を出た後、外部に設置される冷却塔によって冷
却され、再び冷却水入口に戻されるため、季節及び湿度
(即ち、外気湿球温度)により冷却塔の冷却能力が増減
し、冷却水入口温度が大きく変動する。従って、中間
期、特に冬期では、冷却水入口温度が定格条件値(上述
の例では、32°c)より著しく低下する。しかしなが
ら、一方で冷水入口温度は、年間を通じて一定に保たれ
ているのが一般的となっている。このため、中間期、冬
期の外気湿球温度低下によって増大する冷却水系統の冷
却能力は、十分に利用されていないのが現状であった。
本発明は上記状況に鑑みてなされたもので、外気湿球温
度低下によって増大する冷却水系統の冷却能力を利用す
ることにより、冷凍機能力を増大させ、この結果、冷凍
機の成績係数の向上とともに、冷凍機及び関連補機類
(例えば、冷却水ポンプ、冷水ポンプ等)の運転時間が
短縮できる水蓄熱システムにおける冷凍機の冷水入口温
度制御方法を提供し、システムの省エネルギー化を図る
ことを目的とする。
Conventionally, each device of the heat storage system and the cooling water system related to the refrigerator of the water heat storage system is
The rated capacity is set up to the upper limit of summer conditions when the load increases. The temperature condition value in summer, which is a standard for calculating the rated capacity, is, for example, cooling water inlet temperature; 32 ° c, cold water inlet temperature; 10 ° c, cold water outlet temperature; 5 ° c. However, the cooling water circulating in the condenser of the refrigerator is cooled by the cooling tower installed outside after exiting the cooling water outlet and returned to the cooling water inlet again, so that the season and humidity (that is, outside air humidity) The cooling capacity of the cooling tower increases or decreases depending on the sphere temperature, and the cooling water inlet temperature fluctuates greatly. Therefore, in the intermediate period, particularly in winter, the cooling water inlet temperature is significantly lower than the rated condition value (32 ° c in the above example). On the other hand, however, the cold water inlet temperature is generally kept constant throughout the year. Therefore, the cooling capacity of the cooling water system, which increases due to the decrease in the outside air wet-bulb temperature in the middle and winter seasons, has not been fully utilized at present.
The present invention has been made in view of the above situation, and by utilizing the cooling capacity of a cooling water system that increases due to a decrease in outside air wet bulb temperature, the refrigerating function is increased, and as a result, the coefficient of performance of the refrigerator is improved. At the same time, by providing a method for controlling the cold water inlet temperature of a refrigerator in a water heat storage system that can reduce the operating time of the refrigerator and related accessories (for example, a cooling water pump, a cold water pump, etc.), it is possible to save energy in the system. To aim.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る水蓄熱システムにおける冷凍機の冷水入
口温度制御方法は、冷凍機冷水系統の往管が蓄熱槽の低
温側に接続され、蓄熱槽の低温側と高温側とに接続され
た還管が混合三方弁で統合された後、冷凍機冷水系統の
冷水入口に接続される一方、冷凍機冷却水系統の往管が
冷却塔に接続され、この冷却塔が還管によって冷凍機冷
却水系統の冷却水入口に接続される水蓄熱システムにお
ける冷凍機の冷水入口温度制御方法において、冷却水系
統の冷却水入口温度を検出し、冷水入口温度を制御する
混合三方弁の設定温度を、この検出値の変化に応じて自
動設定変更することを特徴とするものである。
According to the method for controlling the cold water inlet temperature of a refrigerator in a water heat storage system according to the present invention for achieving the above object, a forward pipe of a refrigerator cold water system is connected to a low temperature side of a heat storage tank. After the return pipes connected to the low temperature side and high temperature side of the heat storage tank are integrated by the mixing three-way valve, they are connected to the cold water inlet of the refrigerator cold water system, while the forward pipe of the refrigerator cooling water system is the cooling tower. In the cooling water inlet temperature control method of the refrigerator in the water heat storage system in which this cooling tower is connected to the cooling water inlet of the refrigerator cooling water system by the return pipe, the cooling water inlet temperature of the cooling water system is detected, The set temperature of the mixing three-way valve for controlling the cold water inlet temperature is automatically changed according to the change of the detected value.

【0007】[0007]

【作用】外気湿球温度の低下に応じて、冷却塔によって
冷却された冷却水の入口温度が低温となり、凝縮温度の
低下により、冷凍機の冷却能力が増大することになる。
この冷却水入口温度の変化に応じて冷水入口温度を制御
する混合三方弁の設定温度が自動設定変更される。この
際、冷凍機は、冷却水入口温度の低下により増大した冷
却能力によって、冷水を一定出口温度まで冷却するの
で、成績係数の向上とともに単位時間当たりの能力が増
大し、運転時間が短縮されることになり、同時に補機
類、例えば、冷水一次ポンプ、冷却水ポンプ等の運転時
間も短縮され、これらの分の電力が節約される。
With the decrease in the outside air wet bulb temperature, the inlet temperature of the cooling water cooled by the cooling tower becomes low, and the decrease in the condensation temperature increases the cooling capacity of the refrigerator.
The set temperature of the mixing three-way valve for controlling the cold water inlet temperature is automatically changed according to the change of the cooling water inlet temperature. At this time, the refrigerator cools the chilled water to a constant outlet temperature by the cooling capacity increased due to the decrease of the cooling water inlet temperature, so that the coefficient of performance is improved and the capacity per unit time is increased, and the operating time is shortened. At the same time, the operating time of auxiliary equipment, such as a chilled water primary pump and a chilled water pump, is shortened at the same time, and the electric power is saved accordingly.

【0008】[0008]

【実施例】以下、本発明に係る水蓄熱システムにおける
冷凍機の冷水入口温度制御方法の好適な実施例を図面を
参照して説明する。図1は本発明による冷水入口温度制
御方法を実施するための水蓄熱システムの概略構成図で
ある。蓄熱槽1には低温側1a、高温側1bが形成さ
れ、蓄熱槽内に温度分布を形成して水蓄熱されている。
この蓄熱槽1には例えば二次側の冷房用冷水配管(図示
せず)が接続され、空調機等に冷水を供給することによ
り、冷熱が取り出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a cold water inlet temperature control method for a refrigerator in a water heat storage system according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a water heat storage system for carrying out the cold water inlet temperature control method according to the present invention. A low temperature side 1a and a high temperature side 1b are formed in the heat storage tank 1, and a temperature distribution is formed in the heat storage tank to store water.
A secondary cooling water pipe (not shown) is connected to the heat storage tank 1, for example, and cold water is taken out by supplying cold water to an air conditioner or the like.

【0009】蓄熱槽1には、冷凍機3の冷水系統5が接
続される。冷水系統5は、冷凍機3の冷却器7に設けら
れた冷水出口7aと蓄熱槽1の低温側1aを接続する冷
水往管9と、低温側1a、高温側1bからの配管を冷水
系統側の混合三方弁11に一旦接続して冷却器7の冷水
入口7bに接続される冷水還管13とからなる。冷水還
管13には冷水一次ポンプ15が設けられ、冷水一次ポ
ンプ15は蓄熱槽1からの水を冷凍機3の冷却器7に循
環させる。
A cold water system 5 of a refrigerator 3 is connected to the heat storage tank 1. The cold water system 5 includes a cold water outflow pipe 9 that connects a cold water outlet 7a provided in the cooler 7 of the refrigerator 3 and the low temperature side 1a of the heat storage tank 1, and pipes from the low temperature side 1a and the high temperature side 1b to the cold water system side. The cold water return pipe 13 which is once connected to the mixing three-way valve 11 and is connected to the cold water inlet 7b of the cooler 7. The cold water return pipe 13 is provided with a cold water primary pump 15, and the cold water primary pump 15 circulates the water from the heat storage tank 1 to the cooler 7 of the refrigerator 3.

【0010】冷水系統側の混合三方弁11にはコントロ
ーラ17が接続され、コントローラ17は冷水入口7b
近傍に設けられた温度検出器19からの検出温度に基づ
いて、冷水入口温度が設定温度と一致するように混合三
方弁11を制御する。即ち、冷水入口温度が設定値より
低い場合には、高温側1bからの水量を増大させて冷水
入口温度を上昇させ、冷水入口温度が設定値より高い場
合には、低温側1aからの水量を増大させて冷水入口温
度を下降させる制御を行う。
A controller 17 is connected to the mixing three-way valve 11 on the cold water system side, and the controller 17 is the cold water inlet 7b.
Based on the temperature detected by the temperature detector 19 provided in the vicinity, the mixing three-way valve 11 is controlled so that the cold water inlet temperature matches the set temperature. That is, when the cold water inlet temperature is lower than the set value, the water amount from the high temperature side 1b is increased to raise the cold water inlet temperature, and when the cold water inlet temperature is higher than the set value, the water amount from the low temperature side 1a is increased. Control is performed to increase the cold water inlet temperature to lower it.

【0011】一方、冷凍機3の凝縮器21には冷却水系
統23が接続される。冷却水系統23は、凝縮器21の
冷却水出口21aと冷却塔25とを接続する冷却水往管
27と、冷却水出口21a、冷却塔25からの配管を冷
却水系統側の混合三方弁29に一旦接続して凝縮器21
の冷却水入口21bに接続される冷却水還管31とから
なる。冷却水往管27には冷却水ポンプ33が設けら
れ、冷却水ポンプ33は冷却水を凝縮器21と冷却塔2
5との間で循環させる。
On the other hand, a cooling water system 23 is connected to the condenser 21 of the refrigerator 3. The cooling water system 23 includes a cooling water outflow pipe 27 that connects the cooling water outlet 21 a of the condenser 21 and the cooling tower 25, and a pipe from the cooling water outlet 21 a and the cooling tower 25 to the mixing three-way valve 29 on the cooling water system side. Once connected to condenser 21
And a cooling water return pipe 31 connected to the cooling water inlet 21b. A cooling water pump 33 is provided in the cooling water outflow pipe 27, and the cooling water pump 33 transfers the cooling water to the condenser 21 and the cooling tower 2.
Circulate between 5 and 5.

【0012】冷却水系統側の混合三方弁29にはコント
ローラ35が接続され、コントローラ35は冷却水入口
21b近傍に設けられた温度検出器37からの検出温度
に基づいて、冷却水入口温度が設定温度と一致するよう
に混合三方弁29を制御する。即ち、冷却水入口温度が
低い場合には、冷却水出口21aからの水量を増大させ
て冷却水入口温度を上昇させる一方、冷却水入口温度が
高い場合には、冷却塔25からの水量を増大させて冷却
水温度を下降させる制御を行う。
A controller 35 is connected to the mixing three-way valve 29 on the cooling water system side, and the controller 35 sets the cooling water inlet temperature based on the temperature detected by a temperature detector 37 provided near the cooling water inlet 21b. The mixing three-way valve 29 is controlled to match the temperature. That is, when the cooling water inlet temperature is low, the amount of water from the cooling water outlet 21a is increased to raise the cooling water inlet temperature, while when the cooling water inlet temperature is high, the amount of water from the cooling tower 25 is increased. Then, control is performed to lower the cooling water temperature.

【0013】本実施例では、この冷却水系統側の混合三
方弁29を制御するコントローラ35と、冷水系統側の
混合三方弁11を制御するコントローラ17とが信号配
線39により電気的に接続され、冷却水入口温度制御用
のコントローラ35から冷水入口温度制御用のコントロ
ーラ17へ冷却水入口温度検出値が送られるようになっ
ている。コントローラ17は、この冷却水入口温度検出
値に基づき、冷水入口温度の設定変更制御(例えば、冷
水入口温度10°cを10.5°cに変更する)を行え
るようになっている。なお、冷却水入口温度検出値の伝
送方法としては、本実施例の他に、冷却水入口温度制御
用のコントローラ35から中央監視装置等を経由して冷
水入口温度制御用のコントローラ17への伝送、冷却水
入口温度検出器37から冷水入口温度制御用のコントロ
ーラ17への伝送、冷却水入口温度制御用のコントロー
ラ35から中央監視装置等を経由して冷水入口温度制御
用のコントローラ17への伝送等の方法が可能である。
In this embodiment, the controller 35 for controlling the mixing three-way valve 29 on the cooling water system side and the controller 17 for controlling the mixing three-way valve 11 on the cooling water system side are electrically connected by the signal wiring 39. The cooling water inlet temperature detected value is sent from the controller 35 for controlling the cooling water inlet temperature to the controller 17 for controlling the cooling water inlet temperature. The controller 17 can perform setting change control of the cold water inlet temperature (for example, changing the cold water inlet temperature 10 ° c to 10.5 ° c) based on the detected cooling water inlet temperature. As a method of transmitting the detected value of the cooling water inlet temperature, in addition to the present embodiment, the controller 35 for controlling the cooling water inlet temperature transmits it to the controller 17 for controlling the cooling water inlet temperature via a central monitoring device or the like. , Transmission from the cooling water inlet temperature detector 37 to the controller 17 for controlling the cooling water inlet temperature, transmission from the controller 35 for controlling the cooling water inlet temperature to the controller 17 for controlling the cooling water inlet temperature via a central monitoring device or the like. Etc. are possible.

【0014】この時の冷水入口温度制御は、冷水出口温
度(上述の例では、5°c)が一定となるように、PI
動作とする。PI動作とすることにより、比例動作のみ
の場合と異なり、P動作(偏差に比例した信号を出す比
例動作)とI動作(残留偏差を除くための信号を出す積
分動作)を同時に行うフィードバック制御が可能とな
り、冷水出口温度を一定に保持させることができる。
At this time, the chilled water inlet temperature is controlled so that the chilled water outlet temperature (5 ° c in the above example) is constant.
It works. By the PI operation, unlike the case of only the proportional operation, the feedback control for simultaneously performing the P operation (the proportional operation that outputs a signal proportional to the deviation) and the I operation (the integral operation that outputs the signal for removing the residual deviation) is performed. This makes it possible to keep the cold water outlet temperature constant.

【0015】このように構成された水蓄熱システムでの
冷水入口温度制御の動作を説明する。夏期等、外気湿球
温度が高い場合、冷却塔25によって冷却された冷却水
の入口温度は、例えば、定格能力条件値(外気湿球温度
27°c)では32°cとなる。従って、この状態では
冷凍機3の冷却能力は定格値となる。
The operation of controlling the cold water inlet temperature in the water heat storage system thus configured will be described. When the outside-air wet-bulb temperature is high, such as in the summer, the inlet temperature of the cooling water cooled by the cooling tower 25 is 32 ° c at the rated capacity condition value (outside-air wet-bulb temperature 27 ° c). Therefore, in this state, the cooling capacity of the refrigerator 3 becomes the rated value.

【0016】一方、中間期、特に冬期等、外気湿球温度
が低くなるに従い、冷却塔25によって冷却された冷却
水の入口温度は低下する。この状態では、凝縮温度の低
下により、冷凍機3の冷却能力が増大することになる。
そこで、冷却水入口温度制御用のコントローラ35から
冷水入口温度制御用のコントローラ17へ冷却水入口温
度検出値が送られ、コントローラ17によって冷水入口
温度の設定値が自動設定変更される。冷凍機3の特性に
応じて、冷却水入口温度検出値が低下するに従い、冷水
入口設定温度を上昇させ、また冷却水入口温度検出値の
上昇するに従い冷水入口設定温度を低下させる。
On the other hand, the inlet temperature of the cooling water cooled by the cooling tower 25 decreases as the outside-air wet-bulb temperature decreases in the middle period, especially in winter. In this state, the cooling capacity of the refrigerator 3 increases due to the decrease in the condensation temperature.
Therefore, the cooling water inlet temperature detected value is sent from the controller 35 for controlling the cooling water inlet temperature to the controller 17 for controlling the cold water inlet temperature, and the controller 17 automatically changes the setting value of the cold water inlet temperature. Depending on the characteristics of the refrigerator 3, the set temperature of the cold water inlet is increased as the detected value of the cooling water inlet is decreased, and the set temperature of the cold water inlet is decreased as the detected value of the cooling water inlet is increased.

【0017】この際、冷凍機3は、冷却水入口温度の低
下により増大した冷却能力によって、冷水を一定出口温
度(上述の例では、5°c)まで冷却するので、単位時
間当たりの能力が増大し、運転時間が短縮されることに
なる。また、この時の冷凍機の成績係数は定格条件時よ
りも向上する。又冷凍機3の運転時間が短縮されること
で、補機類、例えば、冷水一次ポンプ15、冷却水ポン
プ33等の運転時間も短縮され、その分の電力が節約さ
れることになる。
At this time, the refrigerator 3 cools the chilled water to a constant outlet temperature (5 ° C. in the above example) by the cooling capacity increased by the decrease of the cooling water inlet temperature, so that the capacity per unit time is reduced. Will increase and the operating time will be shortened. In addition, the coefficient of performance of the refrigerator at this time is higher than that under the rated conditions. Further, since the operating time of the refrigerator 3 is shortened, the operating time of the auxiliary equipment, for example, the cold water primary pump 15, the cooling water pump 33, etc. is also shortened, and the electric power is saved accordingly.

【0018】このように、上述した水蓄熱システムにお
ける冷凍機の冷却水入口温度制御方法によれば、冷却水
温度を検出することにより、その信号により冷水入口温
度を自動的に設定変更して、冷凍機の余剰能力を十分に
引き出せるようにしたので、これによって冷凍機の成績
係数が向上するとともに冷凍機及び補機類の運転時間を
短縮させることができ、その分の電力を削減することが
可能となる。
As described above, according to the cooling water inlet temperature control method for the refrigerator in the water heat storage system described above, by detecting the cooling water temperature, the cold water inlet temperature is automatically changed and set by the signal, Since the surplus capacity of the refrigerator can be sufficiently drawn out, the coefficient of performance of the refrigerator can be improved and the operating time of the refrigerator and auxiliary equipment can be shortened, and power consumption can be reduced accordingly. It will be possible.

【0019】なお、上述の実施例では、冷水出口温度が
5°cで一定とする場合を例に説明したが、中間期、冬
期のように冷房負荷の小さい時に冷水出口温度を上昇さ
せる制御と組合せて行うこともできる。このように冷水
温度レベルを上昇させることにより、更に冷凍機3の成
績係数が向上し、その結果として一層冷凍機3の運転時
間を短縮させることができ、その分の電力を削減するこ
とが可能となる。
In the above embodiment, the case where the chilled water outlet temperature is kept constant at 5 ° C. has been described as an example. However, the control for raising the chilled water outlet temperature when the cooling load is small, such as in the intermediate period and the winter season, is used. It can also be performed in combination. By thus increasing the chilled water temperature level, the coefficient of performance of the refrigerator 3 is further improved, and as a result, the operating time of the refrigerator 3 can be further shortened and the power consumption can be reduced accordingly. Becomes

【0020】[0020]

【発明の効果】以上詳細に説明したように、本発明に係
る水蓄熱システムにおける冷凍機の冷水入口温度制御方
法によれば、特に冷却水能力が増大する中間期、冬期
に、冷水入口温度を高温に設定変更して、冷凍機の余剰
能力を十分に引き出せるようにしたので、これによって
冷凍機の成績係数を向上するとともに冷凍機及び補機類
の運転時間を短縮することができる。この結果、その分
の電力を削減することができ、システムの省エネルギー
化を達成することができる。
As described in detail above, according to the method for controlling the cold water inlet temperature of the refrigerator in the water heat storage system according to the present invention, the cold water inlet temperature can be controlled especially in the middle period and winter when the cooling water capacity increases. Since the setting is changed to a high temperature so that the surplus capacity of the refrigerator can be sufficiently drawn out, the coefficient of performance of the refrigerator can be improved and the operating time of the refrigerator and auxiliary equipment can be shortened. As a result, it is possible to reduce the amount of electric power by that amount and achieve energy saving of the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による冷水入口温度制御方法を実施する
ための水蓄熱システムの構成図である。
FIG. 1 is a configuration diagram of a water heat storage system for implementing a cold water inlet temperature control method according to the present invention.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 1a 低温側 1b 高温側 3 冷凍機 5 冷水系統 7a 冷水出口 7b 冷水入口 9 往管 11 混合三方弁 13 還管 21b 冷却水入口 23 冷却水系統 25 冷却塔 27 往管 31 還管 1 Heat Storage Tank 1a Low Temperature Side 1b High Temperature Side 3 Refrigerator 5 Cold Water System 7a Cold Water Outlet 7b Cold Water Inlet 9 Outgoing Pipe 11 Mixing Three-way Valve 13 Return Pipe 21b Cooling Water Inlet 23 Cooling Water System 25 Cooling Tower 27 Forwarding Pipe 31 Return Pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷凍機冷水系統の往管が蓄熱槽の低温側
に接続され、該蓄熱槽の低温側と高温側とに接続された
還管が混合三方弁で統合された後前記冷凍機冷水系統の
冷水入口に接続される一方、冷凍機冷却水系統の往管が
冷却塔に接続され、該冷却塔が還管によって冷凍機冷却
水系統の冷却水入口に接続される水蓄熱システムにおけ
る冷凍機の冷水入口温度制御方法において、 前記冷却水系統の冷却水入口温度を検出し、冷水入口温
度を制御する前記混合三方弁の設定温度を、該検出値の
変化に応じて自動設定変更することを特徴とする水蓄熱
システムにおける冷凍機の冷水入口温度制御方法。
1. The refrigerator after the forward pipe of the refrigerator cold water system is connected to the low temperature side of the heat storage tank, and the return pipes connected to the low temperature side and the high temperature side of the heat storage tank are integrated by a mixing three-way valve. In a water heat storage system in which the forward pipe of the refrigerator cooling water system is connected to the cooling tower while being connected to the cold water inlet of the cold water system, and the cooling tower is connected to the cooling water inlet of the refrigerator cooling water system by the return pipe In the cold water inlet temperature control method for a refrigerator, the cooling water inlet temperature of the cooling water system is detected, and the set temperature of the mixing three-way valve that controls the cold water inlet temperature is automatically changed according to the change in the detected value. A cold water inlet temperature control method for a refrigerator in a water heat storage system, comprising:
【請求項2】 中間期、冬期等の冷房負荷減少時に、冷
水出口温度をそれまでの設定値より高い温度の設定値に
自動設定変更すると同時に、冷却水系統の冷却水入口温
度を検出し、冷水入口温度を制御する前記混合三方弁の
設定温度を、該検出値の変化に応じて自動設定変更する
ことを特徴とする水蓄熱システムにおける冷凍機の冷水
入口温度制御方法。
2. The cooling water outlet temperature is automatically changed to a set value higher than the set value at the time of cooling load reduction in the middle season, winter season, etc., and at the same time, the cooling water inlet temperature of the cooling water system is detected, A method for controlling a cold water inlet temperature of a refrigerator in a water heat storage system, wherein a preset temperature of the mixing three-way valve for controlling a cold water inlet temperature is automatically changed according to a change in the detected value.
JP6241840A 1994-09-08 1994-09-08 Cooling water inlet temperature control method for refrigerator in water heat storage system Expired - Fee Related JP3062565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6241840A JP3062565B2 (en) 1994-09-08 1994-09-08 Cooling water inlet temperature control method for refrigerator in water heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6241840A JP3062565B2 (en) 1994-09-08 1994-09-08 Cooling water inlet temperature control method for refrigerator in water heat storage system

Publications (2)

Publication Number Publication Date
JPH0875220A true JPH0875220A (en) 1996-03-19
JP3062565B2 JP3062565B2 (en) 2000-07-10

Family

ID=17080288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6241840A Expired - Fee Related JP3062565B2 (en) 1994-09-08 1994-09-08 Cooling water inlet temperature control method for refrigerator in water heat storage system

Country Status (1)

Country Link
JP (1) JP3062565B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247506A (en) * 2010-05-27 2011-12-08 Fujikura Ltd Cooling system for data center
US9271429B2 (en) 2010-04-12 2016-02-23 Fujikura Ltd. Cooling device, cooling system, and auxiliary cooling device for datacenter
CN113654134A (en) * 2021-07-30 2021-11-16 青岛海尔空调电子有限公司 Control method of water chilling unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271429B2 (en) 2010-04-12 2016-02-23 Fujikura Ltd. Cooling device, cooling system, and auxiliary cooling device for datacenter
JP2011247506A (en) * 2010-05-27 2011-12-08 Fujikura Ltd Cooling system for data center
CN113654134A (en) * 2021-07-30 2021-11-16 青岛海尔空调电子有限公司 Control method of water chilling unit

Also Published As

Publication number Publication date
JP3062565B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US5727396A (en) Method and apparatus for cooling a prime mover for a gas-engine driven heat pump
US7811713B2 (en) Thermal control of cathode inlet air flow for a fuel cell system
JP5906448B2 (en) Cooling system and solvent recovery system using the same
JP4287113B2 (en) Refrigerator control method and refrigeration apparatus
KR102560048B1 (en) High-efficiency integrated absorption cooling system using fuel cell exhaust heat
JPH0875220A (en) Inlet temperature control method of cold water for refrigerator in water heat accumulating system
JP2016114310A (en) Air conditioning system
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
KR101120251B1 (en) A method and system for rejecting heat in an absorption chiller
CN210624718U (en) Air conditioning system
JPH038453B2 (en)
CN210772610U (en) Circulating energy-saving constant temperature and humidity machine
EP1508752A1 (en) Thermohygrostat-type air conditioner with means for controlling evaporation temperature
US20090078783A1 (en) Secondary heating and cooling system
CN111237890B (en) Liquid nitrogen cold quantity cascade utilization system and control method thereof
CN218379615U (en) Heat recovery unit
CN114734782B (en) Control method of thermal management system
JPH11304272A (en) Compression type cooling device
JP2002115930A (en) Air conditioning apparatus
JP3187015B2 (en) Absorption air conditioning system
JP3173234B2 (en) Cold water supply system using a direct-fired absorption refrigerator
JP3681785B2 (en) Cogeneration system
JPH0355752B2 (en)
JP2002061895A (en) Radiated heat leveling system for ice thermal storage tank
JPS6138061Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees