JPH0136017Y2 - - Google Patents

Info

Publication number
JPH0136017Y2
JPH0136017Y2 JP1983197478U JP19747883U JPH0136017Y2 JP H0136017 Y2 JPH0136017 Y2 JP H0136017Y2 JP 1983197478 U JP1983197478 U JP 1983197478U JP 19747883 U JP19747883 U JP 19747883U JP H0136017 Y2 JPH0136017 Y2 JP H0136017Y2
Authority
JP
Japan
Prior art keywords
heat
greenhouse
pump
hot water
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983197478U
Other languages
Japanese (ja)
Other versions
JPS60104619U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983197478U priority Critical patent/JPS60104619U/en
Publication of JPS60104619U publication Critical patent/JPS60104619U/en
Application granted granted Critical
Publication of JPH0136017Y2 publication Critical patent/JPH0136017Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)

Description

【考案の詳細な説明】 本考案は、エンジン排熱利用の熱源装置と温室
内の自然放熱型放熱器とにわたつて温水をポンプ
で強制循環させるように構成した温室暖房装置の
改良に関する。
[Detailed Description of the Invention] The present invention relates to an improvement of a greenhouse heating device configured to forcefully circulate hot water using a pump between a heat source device that utilizes engine exhaust heat and a natural heat radiator in the greenhouse.

従来、上記装置においては、温室内を設定温度
に維持する制御手段として、室温の変動に対する
エンジン排熱利用の熱源装置の発停と、エンジン
の効率良い運転状態(オーバーヒートの防止等)
を得るために熱源装置の出口温水温度を設定値に
保つエンジンの回転数制御を組み合わせることが
考えられていた。しかし、自然対流を利用した放
熱器として放熱管を室内に敷設した温室暖房装置
では、実際には室内熱負荷に対応したエンジン回
転数制御は行われず、室温変動によつて発停を繰
り返すことになり、エンジンスタータの早期損耗
やバツテリーの早期劣化をもたらす欠点があつ
た。
Conventionally, in the above-mentioned devices, the control means for maintaining the temperature inside the greenhouse at a set temperature is to turn on/off a heat source device that uses engine exhaust heat in response to room temperature fluctuations, and to keep the engine in an efficient operating state (prevention of overheating, etc.).
In order to achieve this, it was considered to combine engine speed control to maintain the hot water temperature at the outlet of the heat source device at a set value. However, in greenhouse heating systems that use natural convection and have heat dissipation pipes installed indoors, the engine speed is not controlled in response to the indoor heat load, and the engine speed repeatedly starts and stops due to room temperature fluctuations. This resulted in shortcomings such as premature wear of the engine starter and premature deterioration of the battery.

上記のような作動が行われる理由を第3図に示
す放熱器(放熱管)の放熱特性A、温室の熱損失
特性B、及びエンジンの各回転数における熱源装
置の能力特性Cとの相関において考察する。
The reason why the above operation is performed can be seen in the correlation with the heat radiation characteristics A of the radiator (radiation tube), the heat loss characteristics B of the greenhouse, and the capacity characteristics C of the heat source device at each rotation speed of the engine, as shown in Figure 3. Consider.

いま、室温が一定値にあるとすると、放熱器の
放熱両QRAと、温室の熱損失QRと、熱源装置の加
温能力QHPとが互いに等しい平行状態(QRA=QR
=QHP)となり、エンジン排熱利用の熱源装置の
運転状態は特性AとCとの交点として与えられ
る。また、出口温水温度が設定温度TWで、外気
温Tabのとき、熱源装置はa点で平行運転状態と
なつている。
Now, assuming that the room temperature is a constant value, there is a parallel state in which the heat radiation Q RA of the radiator, the heat loss Q R of the greenhouse, and the heating capacity Q HP of the heat source device are equal to each other (Q RA = Q R
= Q HP ), and the operating state of the heat source device that utilizes engine exhaust heat is given as the intersection of characteristics A and C. Further, when the outlet hot water temperature is the set temperature T W and the outside temperature T ab , the heat source device is in a parallel operation state at point a.

この状態から外気温がTabからTab′に上昇した
とすると、温室の熱損失はQからQ′に減少する
ことにより、熱源装置の運転状態が負荷に追従す
るならばb点に移行しなければならない。しか
し、放熱器の特性から実際にはC点に移つて出口
温水温度がTW′に低下するために、特性Aに沿つ
てa点に戻る。したがつて実際の運転では外気温
上昇によつても運転状態はa点に保たれ、過剰能
力(Q−Q′)に相当するので室温が上昇して設
定範囲の上限に至つたときに熱源装置が停止する
とともに、室温が設定範囲の加減より低下すると
熱源装置が再び起動される。つまり、外気温が変
化してもエンジンはa点で全力運転されて回転数
は変化しないことになる。
If the outside temperature rises from T ab to T ab ' from this state, the heat loss in the greenhouse will decrease from Q to Q', and if the operating state of the heat source device follows the load, it will move to point b. There must be. However, due to the characteristics of the radiator, the outlet hot water temperature actually moves to point C and decreases to T W ', so it returns to point a along characteristic A. Therefore, in actual operation, even if the outside temperature rises, the operating state is maintained at point a, which corresponds to excess capacity (Q-Q'), so when the room temperature rises and reaches the upper limit of the setting range, the heat source When the device is stopped and the room temperature falls below the set range, the heat source device is restarted. In other words, even if the outside temperature changes, the engine is operated at full power at point a, and the rotational speed does not change.

本考案は、上記従来運転における欠点を解消せ
んとするものであり、熱負荷に応じてエンジン回
転数制御によつて連続的で安定した運転をランニ
ングコスト低く行える温室暖房装置の提供を目的
とするものである。
The present invention aims to eliminate the above-mentioned drawbacks of conventional operation, and aims to provide a greenhouse heating system that can perform continuous and stable operation at low running costs by controlling the engine speed according to the heat load. It is something.

上記の目的達成のために、本考案は、前記エン
ジン排熱利用の熱源装置の出口温水温度を設定値
に維持するようにエンジン回転数を増減制御する
手段と、温室の外気温度をセンサで検出して、外
気温度の上昇につれて前記ポンプによる循環量を
可逆的に減少する循環量制御手段とを装備したも
のである。
In order to achieve the above object, the present invention includes means for controlling the engine speed to increase or decrease so as to maintain the outlet hot water temperature of the heat source device using engine exhaust heat at a set value, and a sensor for detecting the outside air temperature of the greenhouse. The apparatus is equipped with circulation amount control means for reversibly reducing the circulation amount by the pump as the outside air temperature rises.

したがつて、本考案によれば次の作用効果を奏
する。本考案の温室暖房装置は、ある平行運転状
態から外気温度が上昇(又は低下)すると出口温
水温度の設定値が自動的に減少(又は増大)され
るこになる。その結果、出口温水温度の設定変更
に伴つてエンジン回転数が減少(又は増大)制御
され、低負荷での負荷変動に対してもエンジン排
熱利用の熱源装置を頻繁に発停するようなことが
なく、負荷に応じた連続的な運転を安定して行う
ことが可能になつた。特に本考案では、負荷に応
じたエンジンの回転数制御を可能とするために、
ポンプによる温水循環量を増減するように構成し
たので、例えばポンプで一定量の温水を圧送する
とともにバイパス流量制御によつて温室への供給
量を調節する方式に比べてポンプの運転動力が節
約でき、温室暖房装置のランニングコストの低下
を図れる利点がある。
Therefore, the present invention provides the following effects. In the greenhouse heating device of the present invention, when the outside air temperature increases (or decreases) from a certain parallel operation state, the set value of the outlet hot water temperature is automatically decreased (or increased). As a result, the engine speed is controlled to decrease (or increase) as the outlet hot water temperature setting is changed, and the heat source device that uses engine exhaust heat is frequently started and stopped even in response to load fluctuations at low loads. This makes it possible to perform continuous and stable operation according to the load. In particular, in this invention, in order to enable engine speed control according to the load,
Since the system is configured to increase or decrease the amount of hot water circulated by the pump, the operating power of the pump can be saved compared to, for example, a system in which the pump pumps a fixed amount of hot water and adjusts the amount supplied to the greenhouse using bypass flow control. This has the advantage of reducing the running cost of the greenhouse heating system.

以下、本考案の実施例を図面に基づいて説明す
る。
Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は温室暖房装置の全体を示す概略構成を
示し、図中の符号1は温室、2は作物栽培畝間に
敷設した自然放熱器としての放熱管、3はエンジ
ン排熱利用のヒートポンプ、4は温水強制循環用
のポンプである。
Figure 1 shows a schematic configuration of the entire greenhouse heating system, in which reference numeral 1 is the greenhouse, 2 is a heat radiation pipe as a natural radiator laid between crop cultivation furrows, 3 is a heat pump that uses engine exhaust heat, and 4 is a heat pump that uses engine exhaust heat. is a pump for forced circulation of hot water.

前記ヒートポンプ3は、エンジン5で駆動され
る冷媒圧縮器6と凝縮器7、膨張弁8、ポンプ9
で供給される井水10を熱源水とする蒸発器1
1、エンジン冷却によつて加熱された温水を熱源
とする第1熱交換器12、及びエンジン排ガスを
熱源とする第2熱交換器13とから構成されてい
る。前記ポンプ4によつて導入した水を凝縮器
7、第1熱交換器12、及び第2熱交換器13の
順に流動させて加熱した後、前記放熱器2に供給
循環するようになつている。
The heat pump 3 includes a refrigerant compressor 6 and a condenser 7 driven by an engine 5, an expansion valve 8, and a pump 9.
An evaporator 1 whose heat source water is well water 10 supplied by
1. It is composed of a first heat exchanger 12 whose heat source is hot water heated by engine cooling, and a second heat exchanger 13 whose heat source is engine exhaust gas. The water introduced by the pump 4 is heated by flowing through the condenser 7, the first heat exchanger 12, and the second heat exchanger 13 in this order, and then is supplied and circulated to the radiator 2. .

前記ヒートポンプ3の温水出口近傍に温度セン
サS1を設け、出口温水温度を一定値に維持するよ
うにエンジン5の調速機構14を制御回路15で
制御している。
A temperature sensor S1 is provided near the hot water outlet of the heat pump 3, and the speed regulating mechanism 14 of the engine 5 is controlled by a control circuit 15 so as to maintain the outlet hot water temperature at a constant value.

前記ポンプ4は駆動モータの回転数を制御して
圧送量を変更できるポンプを使用し、このポンプ
4を温室1の近傍に設けた外気温度センサS2の検
出結果に基づいて回転数制御する前記制御回路1
5に接続している。この構成により、外気温度の
上昇(又は低下)につれてポンプ回転数を予め設
定した特性で減少(又は増大)して一定温度の温
水循環量を減少(又は増加)するようになる。
The pump 4 uses a pump that can change the pumping amount by controlling the rotation speed of a drive motor, and the rotation speed of the pump 4 is controlled based on the detection result of an outside air temperature sensor S2 installed near the greenhouse 1. Control circuit 1
Connected to 5. With this configuration, as the outside air temperature increases (or decreases), the pump rotational speed decreases (or increases) according to a preset characteristic, thereby decreasing (or increasing) the circulating amount of hot water at a constant temperature.

したがつて、外気温度が上昇(又は低下)する
と、ポンプ回転数が減少(又は増加)されて放熱
器2での放熱量が減少(又は増加)するのであ
る。その結果、ヒートポンプ3への戻り温水温度
が上昇(又は低下)して出口温水温度も上昇(又
は低下)する。出口温水温度を設定値TWに維持
するためにエンジンの回転数は減少(又は増加)
制御される。例えば第3図において外気温度が
TabからTab′に上昇変化すると、ポンプ4の回転
数の減少によつて放熱器での放熱量の特性が実線
で示したAから破線で示したA′に移行し、出口
温水温度を設定値TWに維持するためにエンジン
回転数はnからn′に低下してb点で平行運転状態
となる。
Therefore, when the outside air temperature rises (or falls), the pump rotation speed is reduced (or increased) and the amount of heat radiated by the radiator 2 is reduced (or increased). As a result, the return hot water temperature to the heat pump 3 increases (or decreases), and the outlet hot water temperature also increases (or decreases). The engine speed decreases (or increases) to maintain the outlet hot water temperature at the set value T W
controlled. For example, in Figure 3, the outside temperature is
When there is an upward change from T ab to T ab ′, the characteristic of the amount of heat released by the radiator changes from A shown by the solid line to A′ shown by the broken line due to the decrease in the rotation speed of the pump 4, and the outlet hot water temperature changes. In order to maintain the set value T W , the engine speed decreases from n to n' and enters a parallel operation state at point b.

第2図は別実施例を示したものであり、外気温
度変化に応じてポンプによる温水循環量を増減す
る手段として、並列配置した複数台のポンプ4…
…の運転台数を増減制御するように構成したもの
である。
FIG. 2 shows another embodiment, in which a plurality of pumps 4 arranged in parallel are used as a means to increase or decrease the amount of hot water circulated by the pumps according to changes in outside air temperature.
The system is configured to increase or decrease the number of operating vehicles.

尚、実用新案登録請求の範囲の項に図面との対
照を便利にする為に符号を記すが、該記入により
本考案は添付図面の構造に限定されるものではな
い。
Note that although reference numerals are written in the claims section of the utility model registration for convenience of comparison with the drawings, the present invention is not limited to the structure of the attached drawings by such entry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は温室暖房設備の全体を示す概略構成
図、第2図は別実施例の全体概略構成図、第3図
は放熱器の放熱特性と温室の熱損失特性とヒート
ポンプの加熱能力特性を示す線図である。 1……温室、2……放熱器、3……エンジン排
熱利用の熱源装置、4……温水循環用ポンプ、S2
……外気温度検出センサ。
Figure 1 is a schematic configuration diagram showing the entire greenhouse heating equipment, Figure 2 is an overall schematic configuration diagram of another example, and Figure 3 shows the heat radiation characteristics of the radiator, the heat loss characteristics of the greenhouse, and the heating capacity characteristics of the heat pump. FIG. 1... Greenhouse, 2... Heat radiator, 3... Heat source device using engine exhaust heat, 4... Hot water circulation pump, S 2
...Outside temperature detection sensor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] エンジン排熱を利用した熱源装置3と温室1内
の自然放熱型放熱器2とにわたつて温水をポンプ
4で強制循環させる温室暖房装置において、前記
エンジン排熱利用の熱源装置3の出口温水温度を
設定値に維持するようにエンジン回転数を増減制
御する手段と、温室1の外気温度をセンサS2で検
出して、外気温度の上昇につれて前記ポンプ4に
よる循環量を可逆的に減少する循環量制御手段と
を装備した事を特徴とする温室暖房装置。
In a greenhouse heating system in which hot water is forcedly circulated by a pump 4 between a heat source device 3 that uses engine exhaust heat and a natural heat radiator 2 in a greenhouse 1, the outlet hot water temperature of the heat source device 3 that uses engine exhaust heat is means for controlling the engine speed to increase or decrease so as to maintain it at a set value, and a circulation system that detects the outside air temperature of the greenhouse 1 with a sensor S 2 and reversibly reduces the circulation amount by the pump 4 as the outside air temperature rises. A greenhouse heating device characterized by being equipped with a quantity control means.
JP1983197478U 1983-12-22 1983-12-22 greenhouse heating equipment Granted JPS60104619U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983197478U JPS60104619U (en) 1983-12-22 1983-12-22 greenhouse heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983197478U JPS60104619U (en) 1983-12-22 1983-12-22 greenhouse heating equipment

Publications (2)

Publication Number Publication Date
JPS60104619U JPS60104619U (en) 1985-07-17
JPH0136017Y2 true JPH0136017Y2 (en) 1989-11-02

Family

ID=30755799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983197478U Granted JPS60104619U (en) 1983-12-22 1983-12-22 greenhouse heating equipment

Country Status (1)

Country Link
JP (1) JPS60104619U (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129919U (en) * 1975-04-10 1976-10-20
JPS56130614U (en) * 1980-03-05 1981-10-03

Also Published As

Publication number Publication date
JPS60104619U (en) 1985-07-17

Similar Documents

Publication Publication Date Title
US5099651A (en) Gas engine driven heat pump method
US5052186A (en) Control of outdoor air source water heating using variable-speed heat pump
US5003788A (en) Gas engine driven heat pump system
US5822997A (en) Thermostat setback recovery method and apparatus
US5249742A (en) Coolant circulation system for engine heat pump
JPH0136017Y2 (en)
JPH0136018Y2 (en)
JPS59107130A (en) Device for operating freezer
JPH026490B2 (en)
US5363673A (en) Simplified engine coolant system for gas engine heat pump
JP3227531B2 (en) Cooling operation method of absorption refrigerator
JPS629734B2 (en)
JP3243729B2 (en) Central heat source type air conditioner
JP4056286B2 (en) Control device for engine drive device
CN118423166B (en) Thermal management method for hybrid engineering machinery and hybrid engineering machinery
JPH0243110B2 (en)
JPS5935760A (en) Air-conditioning hot-water supply device
JP3112596B2 (en) Absorption refrigerator and control method thereof
JPS601020A (en) Bus heater
JPH024174A (en) Heat pump
JP2635975B2 (en) Stirling heat engine driven heat pump
JP2877494B2 (en) Control device for air conditioner
JPH0214623B2 (en)
JP2000111197A (en) Engine driven chiller
CN117287880A (en) Control method of air conditioner refrigerating system, controller and air conditioner