JPH0214623B2 - - Google Patents

Info

Publication number
JPH0214623B2
JPH0214623B2 JP59087037A JP8703784A JPH0214623B2 JP H0214623 B2 JPH0214623 B2 JP H0214623B2 JP 59087037 A JP59087037 A JP 59087037A JP 8703784 A JP8703784 A JP 8703784A JP H0214623 B2 JPH0214623 B2 JP H0214623B2
Authority
JP
Japan
Prior art keywords
engine
heat pump
capacity
source device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59087037A
Other languages
Japanese (ja)
Other versions
JPS60232464A (en
Inventor
Yosuke Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP59087037A priority Critical patent/JPS60232464A/en
Publication of JPS60232464A publication Critical patent/JPS60232464A/en
Publication of JPH0214623B2 publication Critical patent/JPH0214623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として一般空調用、温室の空調
用、給湯用等に利用するエンジンヒートポンプシ
ステムの運転制御方法に関し、詳しくは、熱媒流
体の循環流路中にエンジンヒートポンプと燃焼型
の補助熱源装置とを直列に配設し、低負荷領域で
はエンジンヒートポンプのみを運転するとともに
要求負荷の増減に対応したエンジン回転数制御に
よつてエンジンヒートポンプの能力を増減し、エ
ンジンヒートポンプ能力をこえる高負荷領域では
エンジンヒートポンプと補助熱源装置を並行運転
するとともに要求負荷に応じて補助熱源装置を能
力制御するエンジンヒートポンプシステムの運転
制御方法に改良を加えたものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for controlling the operation of an engine heat pump system mainly used for general air conditioning, greenhouse air conditioning, hot water supply, etc. An engine heat pump and a combustion-type auxiliary heat source device are arranged in series in the circulation flow path, and in low load areas only the engine heat pump is operated, and the engine speed is controlled in response to increases and decreases in the required load. This is an improved engine heat pump system operation control method that increases or decreases the capacity, operates the engine heat pump and auxiliary heat source device in parallel in high load areas that exceed the engine heat pump capacity, and controls the capacity of the auxiliary heat source device according to the required load. It is.

〔従来技術〕[Prior art]

一般に、ガス直焚型の吸収式冷温水ユニツト、
ガスバーナー、オイルバーナーなどの燃焼型の補
助熱源装置は、着火起動した時点の最小能力が比
較的大きく(例えば、直焚型吸収式冷温水ユニツ
トでは最小能力が最大能力の30%近くもある)、
従つて、第5図に示すように、エンジンヒートポ
ンプのみの運転による通常の低負荷領域(図中で
は容量制御領域と回転制御領域)と、エンジンヒ
ートポンプと補助熱源装置の併行運転を行う高負
荷領域(図中では負荷制御領域)との間に能力の
段差があつた。
Generally, a gas direct-fired absorption chilled/hot water unit,
Combustion-type auxiliary heat source devices such as gas burners and oil burners have a relatively large minimum capacity when ignited (for example, in a direct-fired absorption type cold/hot water unit, the minimum capacity is nearly 30% of the maximum capacity). ,
Therefore, as shown in Fig. 5, there is a normal low load area where only the engine heat pump is operated (capacity control area and rotation control area in the figure), and a high load area where the engine heat pump and auxiliary heat source device are operated in parallel. (Load control area in the diagram) There was a difference in capacity between the two.

〔発明が解決しようとする問題点〕 このため、低高負荷領域の境界付近で要求負荷
が変動すると、補助熱源装置の発停が頻繁に繰返
されやすいものとなり、補助熱源装置の燃料供給
系の各種機器や着火、消火機構の早期損耗を招い
ていた。又、吸収式の冷温水ユニツトのような補
助熱源装置はスタンバイ時間を要するので発停の
繰返しに伴う燃料ロスが多大となるものであつ
た。
[Problem to be solved by the invention] For this reason, when the required load fluctuates near the boundary between the low and high load regions, the auxiliary heat source device tends to start and stop frequently, and the fuel supply system of the auxiliary heat source device This resulted in early wear and tear of various equipment and ignition and extinguishing mechanisms. In addition, auxiliary heat source devices such as absorption-type cold/hot water units require standby time, resulting in a large amount of fuel loss due to repeated starting and stopping.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、かゝる従来運転制御において見られ
た不具合を解消することを目的としたものであつ
て、その特徴とするところは、冒記運転制御方法
を基本にし、かつ、負荷側に供給する熱媒流体の
温度を設定値に維持するよう温度センサーの検出
結果に基づいてエンジンの回転数制御を行い、補
助熱源装置の起動に伴う段階的な能力増大に対し
てエンジン回転数を減少制御する点にある。
The present invention is aimed at solving the problems found in conventional operation control, and is characterized by being based on the above-mentioned operation control method, and by controlling the supply to the load side. The engine speed is controlled based on the detection results of the temperature sensor to maintain the temperature of the heat transfer fluid at the set value, and the engine speed is controlled to decrease as the capacity increases gradually as the auxiliary heat source device starts up. It is in the point of doing.

〔作用〕[Effect]

上記運転制御方法によると、第4図に示すよう
に、システム全体の能力特性は線型になるととも
に、エンジンヒートポンプのみの運転状態と、エ
ンジンヒートポンプと補助熱源装置の併行運転状
態との切換わり作動にヒステリシスが与えられ、
低負荷領域と高負荷領域との境界近くでの運転に
際しての補助熱源装置の発停頻度が低下する。
According to the above operation control method, as shown in Fig. 4, the capacity characteristics of the entire system become linear, and the switching operation is performed between the operation state of only the engine heat pump and the parallel operation state of the engine heat pump and the auxiliary heat source device. hysteresis is given,
The frequency of starting and stopping of the auxiliary heat source device during operation near the boundary between the low load area and the high load area is reduced.

〔発明の効果〕〔Effect of the invention〕

従つて、補助熱源装置の燃料供給系の各種機器
や着火・消火機構の早期損耗が抑制され、長期間
良好な運転をメインテナンス少く行えるようにな
つた。又、補助熱源装置の頻繁な発停に伴う燃料
ロスが少くなり、要求負荷に良好に対応した円滑
かつ安定した運転を経済的に行えるようになつ
た。
Therefore, early wear and tear of various devices in the fuel supply system of the auxiliary heat source device and the ignition/extinguishing mechanism is suppressed, and it has become possible to perform good operation for a long period of time with less maintenance. In addition, fuel loss due to frequent starting and stopping of the auxiliary heat source device is reduced, and smooth and stable operation that satisfies the required load can now be performed economically.

〔実施例〕〔Example〕

第1図は空調用の冷暖房設備として利用したシ
ステム全体の概略構成を示し、基本的には、エン
ジンヒートポンプ1、燃焼型の補助熱源装置2、
室内熱交換器3、熱媒流体としての温水もしくは
冷水の強制循環用ポンプ4からなる。
Figure 1 shows a schematic configuration of the entire system used as air conditioning equipment, which basically consists of an engine heat pump 1, a combustion type auxiliary heat source device 2,
It consists of an indoor heat exchanger 3 and a pump 4 for forced circulation of hot water or cold water as a heat transfer fluid.

前記エンジンヒートポンプ1〔以下ヒートポン
プと略称する〕は、都市ガスを燃料とする水冷式
のガスエンジン5、これによつて駆動される容量
可変型の冷媒用コンプレツサ6、冷媒サイクル中
の膨張器7、室外の空気熱交換器8、主熱交換器
9、補助熱交換器10及び排気ガス利用の熱交換
器11を備え、エンジン調速機構12による回転
数制御及びコンプレツサ6の容量制御(気筒数調
節)によつてヒートポンプ1としての冷暖房能力
が調節できるようになつている。
The engine heat pump 1 (hereinafter referred to as heat pump) includes a water-cooled gas engine 5 that uses city gas as fuel, a variable capacity refrigerant compressor 6 driven by the water-cooled gas engine 5, an expander 7 in the refrigerant cycle, Equipped with an outdoor air heat exchanger 8, a main heat exchanger 9, an auxiliary heat exchanger 10, and a heat exchanger 11 using exhaust gas, the engine speed control mechanism 12 controls the rotation speed and the capacity of the compressor 6 (adjusts the number of cylinders). ) allows the heating and cooling capacity of the heat pump 1 to be adjusted.

又、前記補助熱源装置2としては都市ガスを燃
料とするガス直焚型の吸収式冷温水ユニツトが利
用され、かつ、これには水冷用の熱交換器13と
冷却搭14が付属している。
Furthermore, as the auxiliary heat source device 2, a gas direct-fired absorption cold/hot water unit using city gas as fuel is used, and this is equipped with a water cooling heat exchanger 13 and a cooling tower 14. .

次に上記システムによる冷暖房運転モードにつ
いて説明する。尚、モード切換えは流路中に設け
た開閉弁群の切換えによる。
Next, the heating and cooling operation mode of the above system will be explained. Note that mode switching is performed by switching a group of on-off valves provided in the flow path.

() 冷房運転モード(第2図参照) 冷房用の熱媒流体としての水は図中の太実線
流路Aで示すように、冷温水ユニツト2の吸熱
用熱交換部2a、ヒートポンプ1の主熱交換器
9、室内熱交換器3の順にポンプ4で強制循環
され、熱交換部2a及び主熱交換器9で所定温
度まで冷却された冷水によつて室内冷房が行わ
れる。
() Cooling operation mode (see Figure 2) Water as a heat medium fluid for cooling is transmitted through the heat-absorbing heat exchange part 2a of the cold/hot water unit 2 and the main body of the heat pump 1, as shown by the thick solid line flow path A in the figure. The room is cooled by cold water that is forcedly circulated by the pump 4 in the order of the heat exchanger 9 and the indoor heat exchanger 3, and cooled to a predetermined temperature in the heat exchange section 2a and the main heat exchanger 9.

又、ヒートポンプ1の冷媒は、図中の太実線
流路Bで示すように、コンプレツサ6、凝縮器
としての空気熱交換器8、膨張器7、蒸発器と
しての主熱交換器9の順に循環され、空気熱交
換器8での外気への放熱、主熱交換器9での冷
房用循環水からの吸熱が行われる。
The refrigerant of the heat pump 1 is circulated in the order of the compressor 6, the air heat exchanger 8 as a condenser, the expander 7, and the main heat exchanger 9 as an evaporator, as shown by the thick solid line flow path B in the figure. The air heat exchanger 8 radiates heat to the outside air, and the main heat exchanger 9 absorbs heat from the cooling circulating water.

尚、圧縮冷媒を、図中太破線流路B′で示す
ように、凝縮器としての補助熱交換器10に分
流することによつて、補助ポンプ15で圧送さ
れる水を加温して流路Cから温水を取出して各
種用途に供すことができる。
In addition, by dividing the compressed refrigerant into the auxiliary heat exchanger 10 as a condenser, as shown by the thick broken line flow path B' in the figure, the water pumped by the auxiliary pump 15 is heated and flows. Hot water can be taken out from path C and used for various purposes.

又、エンジン5の冷却水は、図中の太実線流
路Dで示すように、排気ガス熱交換器11、冷
温水ユニツト2の吸熱用熱交換部2b、冷却系
の熱交換器13の順にポンプ16で強制循環さ
れ、エンジン熱を吸収したのち排ガス熱交換器
11で更に吸熱した高温水を用いて冷温水ユニ
ツト2を補助的に加熱するとともに、熱交換器
13において放熱したのちの低温水が戻されて
エンジン冷却に用いられる。
Also, as shown by the thick solid line flow path D in the figure, the cooling water for the engine 5 is passed through the exhaust gas heat exchanger 11, the endothermic heat exchange section 2b of the cold/hot water unit 2, and the heat exchanger 13 of the cooling system in that order. The hot and cold water unit 2 is heated auxiliary using the high temperature water which is forcedly circulated by the pump 16 and absorbs the engine heat and then further absorbs heat by the exhaust gas heat exchanger 11. is returned and used for engine cooling.

又、冷温水ユニツト2の冷却水は、図中の太
実線流路Eで示すように、ユニツト2の放熱用
熱交換部2c、前記熱交換器13及び冷却搭1
4の順にポンプ17で強制循環され、ユニツト
2での吸熱及び熱交換器13での吸熱によつて
昇温した冷却水を冷却搭14で放熱冷却するこ
とになつている。
In addition, the cooling water of the cold/hot water unit 2 flows through the heat exchange section 2c for heat radiation of the unit 2, the heat exchanger 13, and the cooling tower 1, as shown by the thick solid line flow path E in the figure.
The cooling water is forcibly circulated by a pump 17 in the order of 4 and heated by heat absorption in the unit 2 and heat absorption in the heat exchanger 13, and is cooled by heat radiation in the cooling tower 14.

尚、図中の白抜き矢印の方向が各熱交換部位
での熱の移動方向を示している。
Note that the direction of the white arrow in the figure indicates the direction of heat movement at each heat exchange site.

() 暖房運転モード(第3図参照) 暖房用の熱媒流体としての水は図中太実線流
路Fで示すように、ヒートポンプ1の主熱交換
器9、冷温水ユニツト2の放熱用熱交換部2
c、熱交換器13、室内熱交換器3の順にポン
プ4で強制循環され、主熱交換器9、熱交換部
2c及び熱交換器13で所定温度まで加熱され
た温水によつて室内暖房が行われる。
() Heating operation mode (see Figure 3) Water as a heat medium fluid for heating is used to dissipate heat from the main heat exchanger 9 of the heat pump 1 and the cold/hot water unit 2, as shown by the thick solid line flow path F in the figure. Exchange part 2
c, the heat exchanger 13 and the indoor heat exchanger 3 are forcibly circulated in this order by the pump 4, and heated to a predetermined temperature by the main heat exchanger 9, the heat exchange section 2c, and the heat exchanger 13, and the room is heated by the hot water. It will be done.

又、ヒートポンプ1の冷媒は、図中の太実線
流路Gで示すように、凝縮器としての主熱交換
器9、膨張器7、蒸発器としての空気熱交換器
8の順に循環され、主熱交換器9での暖房用循
環水への放熱、空気熱交換器8での外気からの
吸熱が行われる。
The refrigerant of the heat pump 1 is circulated in the order of the main heat exchanger 9 as a condenser, the expander 7, and the air heat exchanger 8 as an evaporator, as shown by the thick solid line flow path G in the figure. The heat exchanger 9 radiates heat to the heating circulating water, and the air heat exchanger 8 absorbs heat from the outside air.

尚、主熱交換器9を出た冷媒を、図中太実線
流路G′で示すように、蒸発器としての補助熱
交換器10に分流することによつて、補助ポン
プ15で送られる水から吸熱して、流路Cから
冷水を取出すことができる。
Note that by diverting the refrigerant that has exited the main heat exchanger 9 to the auxiliary heat exchanger 10 serving as an evaporator, as shown by the thick solid line flow path G' in the figure, the water sent by the auxiliary pump 15 can be reduced. Cold water can be extracted from the flow path C by absorbing heat from the flow path C.

又、エンジン5の冷却水は、冷房運転モード
と同様の流路Dで循環され、エンジン5及び排
気ガス熱交換器11で吸収した熱を冷温水ユニ
ツト2の吸熱用熱交換部2bと熱交換部13で
放出する。この場合、冷却水循環用ポンプ17
は停止する。
In addition, the cooling water of the engine 5 is circulated in the same flow path D as in the cooling operation mode, and the heat absorbed by the engine 5 and the exhaust gas heat exchanger 11 is exchanged with the endothermic heat exchange section 2b of the cold/hot water unit 2. It is released in section 13. In this case, the cooling water circulation pump 17
stops.

以上が冷房運転モード、及び暖房運転モードで
の各熱媒流体の流れであり、次に室内熱交換器3
での要求負荷に対するシステムの自動運転制御に
ついて説明する。この場合、エンジン5の調速機
構12は、室内熱交換器3への供給流体の温度を
検出する温度センサーS1の検出結果に基づいて制
御回路18から発せられる制御信号に基づいて、
自動制御されるとともに、コンプレツサ6の容量
制御は主熱交換器9の入口温度を検出する温度セ
ンサーS2の検出結果に基づいて行われ、更に、冷
温水ユニツト2のオン・オフ及び出力制御は、こ
れから取出しされる冷水の温度〔前記温度センサ
ーS2で検出される〕、もしくは温水の温度〔前記
温度センサーS1で検出される〕の検出に基づいて
行われる。
The above is the flow of each heat medium fluid in the cooling operation mode and the heating operation mode.
The system's automatic operation control for the required load will be explained below. In this case, the speed regulating mechanism 12 of the engine 5 operates based on a control signal issued from the control circuit 18 based on the detection result of the temperature sensor S 1 that detects the temperature of the fluid supplied to the indoor heat exchanger 3.
In addition to being automatically controlled, the capacity of the compressor 6 is controlled based on the detection result of a temperature sensor S2 that detects the inlet temperature of the main heat exchanger 9, and furthermore, the on/off and output control of the chilled/hot water unit 2 is controlled. , based on the detection of the temperature of the cold water taken out from it [detected by the temperature sensor S2 ] or the temperature of hot water [detected by the temperature sensor S1 ].

尚、第4図に本システム運転制御における能力
特性が示される。
Incidentally, FIG. 4 shows the performance characteristics in the operation control of this system.

空調運転が開始されると、まずヒートポンプ1
が起動されてエンジン5がまず所定低回転数(例
えば750rpm)で運転される。空調側の負荷が高
くなつて温度センサーS2の検出温度が変化(冷房
時は温度上昇、暖房時は温度低下)すると、第4
図中の容量制御域として示されるように、コンプ
レツサー6が2気筒運転から、4気筒運転、6気
筒運転、8気筒運転に順次、容量増大制御され
る。更に要求負荷が増大して温度センサーS1の検
出温度が設定値から外れると、第4図中の回転制
御域として示されるように、調速機構12の作動
でエンジン回転数が所定高回転数(例えば
1500rpm)まで増大制御される。このようにコン
プレツサー容量制御及びエンジン回転数制御によ
つて室内熱交換器3への供給水の温度が設定値
(例えば冷房時7℃、暖房時45℃)に維持される。
When air conditioning operation starts, first heat pump 1
is started and the engine 5 is first operated at a predetermined low rotation speed (for example, 750 rpm). When the load on the air conditioning side increases and the temperature detected by temperature sensor S 2 changes (temperature increases during cooling, temperature decreases during heating), the fourth
As shown as a capacity control region in the figure, the compressor 6 is controlled to increase its capacity from 2-cylinder operation to 4-cylinder operation, 6-cylinder operation, and 8-cylinder operation in sequence. When the required load further increases and the temperature detected by the temperature sensor S1 deviates from the set value, the speed regulating mechanism 12 operates to increase the engine speed to a predetermined high speed, as shown in the rotation control range in FIG. (for example
1500rpm). In this way, the temperature of the water supplied to the indoor heat exchanger 3 is maintained at a set value (for example, 7° C. during cooling and 45° C. during heating) by compressor capacity control and engine speed control.

エンジン回転数が所定高回転数(1500rpm)に
至るとヒートポンプ1の能力は上限となり、更に
要求負荷が増大すると、これが温度センサーS2
検出され、制御回路18から冷温水ユニツト2に
起動指令が出されて着火起動される。
When the engine speed reaches a predetermined high speed (1500 rpm), the capacity of the heat pump 1 reaches its upper limit, and when the required load increases further, this is detected by the temperature sensor S2 , and the control circuit 18 issues a start command to the chilled/hot water unit 2. It is brought out and ignited.

この場合、ユニツト2は吸熱用熱交換部2bか
ら予めエンジン排熱を受けているのでスタンバイ
時間は短いものとなつている。そして、冷温水ユ
ニツト2の最小能力は最大能力の約30%もあるた
めに、室内熱交換器3への循環水の温度が設定値
から外れる(冷房時には7℃以下に、暖房時には
45℃以上に変化)。これが温度センサーS1で感知
されてエンジン回転数減少制御が行われ、要求負
荷とシステム全体の能力とがバランスしたところ
で安定する。
In this case, the standby time is short because the unit 2 receives engine exhaust heat in advance from the endothermic heat exchange section 2b. Since the minimum capacity of the cold/hot water unit 2 is approximately 30% of the maximum capacity, the temperature of the circulating water to the indoor heat exchanger 3 deviates from the set value (below 7°C during cooling, and below 7°C during heating).
(changes to 45℃ or higher). This is detected by temperature sensor S1 , and the engine speed is controlled to reduce, and the system stabilizes when the required load and overall system capacity are balanced.

そして、更に要求負荷が高まると、温度センサ
ーS1で検出温度が変化(冷房時は上昇、暖房時は
低下)、エンジン回転数は所定高回転数
(1500rpm)に上昇して負荷に対応する。更に要
求負荷が増大すると、冷温水ユニツト2の出口側
温度が変化し、冷房時は温度センサーS2が温度上
昇を、又暖房時は温度センサーS1が温度低下を感
知し、第4図中の負荷制御域として示されるよう
に温度変化に応じた冷温水ユニツト2の能力増大
制御が行われる。
When the required load further increases, the temperature detected by the temperature sensor S1 changes (increases during cooling, decreases during heating), and the engine speed rises to a predetermined high speed (1500 rpm) to correspond to the load. When the required load further increases, the temperature on the outlet side of the cold/hot water unit 2 changes, and the temperature sensor S 2 detects a temperature rise during cooling, and the temperature sensor S 1 detects a temperature drop during heating. The capacity increase control of the cold/hot water unit 2 is performed according to the temperature change as shown in the load control range of .

又、要求負荷が下がつてくると、これに応じて
冷温水ユニツト2の能力が減少制御されて最小能
力にまで下げられる。更に要求負荷が低下する
と、温度センサーS1が設定温度から外れたこと
(冷房時7℃以下に低下、暖房時45℃以上に上昇)
を感知し、エンジン回転数が高回転数
(1500rpm)から減少制御され、ヒートポンプ1
の能力が負荷とバランスするまで低下する。更に
負荷が下がると、冷房時は温度センサーS1がユニ
ツト出口温度低下を、暖房時は温度センサーS1
ユニツチ出口温度上昇を夫々感知し、冷温水ユニ
ツト2の運転停止指令が出る。
Further, when the required load decreases, the capacity of the chilled/hot water unit 2 is controlled to decrease accordingly, and is lowered to the minimum capacity. When the required load further decreased, the temperature sensor S 1 deviated from the set temperature (dropped below 7℃ during cooling and rose above 45℃ during heating).
is detected, the engine speed is controlled to decrease from high speed (1500rpm), and heat pump 1
capacity decreases until it balances with the load. When the load further decreases, the temperature sensor S 1 detects a decrease in unit outlet temperature during cooling, and the temperature sensor S 1 detects an increase in unit outlet temperature during heating, and a command to stop operation of the cold/hot water unit 2 is issued.

冷温水ユニツト2が停止すると温度センサーS1
が、冷房時には温度上昇、暖房時には温度低下を
感知し、これに基づいてエンジン回転数が高回転
数(1500rpm)まで上昇されてヒートポンプ1の
能力が100%にまで上げられ、冷温水ユニツト2
の停止に伴う30%能力低下を補う。そして、これ
により要求負荷が下がると温度センサーS1の検出
結果に応じてエンジン回転数が制御範囲(1500〜
750rpm)の間で減少制御されて負荷の低減に対
応する。低回転数(750rpm)に至つたのち更に
負荷が下がると主熱交換器9の入口温度が変化
し、(冷房時は低下、暖房時は上昇)、これが温度
センサーS2で感知されコンプレツサー6の減筒制
御が行われ、温度センサーS1が設定温度(例えば
5℃)以下を感知すると、エンジン5の停止指令
が出てヒートポンプ1が停止する。
When cold/hot water unit 2 stops, temperature sensor S 1
However, it senses a temperature rise during cooling and a temperature drop during heating, and based on this, the engine speed is increased to a high speed (1500 rpm), the capacity of heat pump 1 is increased to 100%, and chilled/hot water unit 2 is
This will compensate for the 30% reduction in capacity due to the suspension of operations. As a result, when the required load decreases, the engine speed changes within the control range (1500~
750rpm) is controlled to reduce the load. When the load decreases further after reaching a low rotational speed (750 rpm), the inlet temperature of the main heat exchanger 9 changes (decreases during cooling, increases during heating), and this is detected by temperature sensor S 2 and the compressor 6 is activated. When the cylinder reduction control is performed and the temperature sensor S 1 detects a temperature below a set temperature (for example, 5° C.), a command to stop the engine 5 is issued and the heat pump 1 is stopped.

〔別実施例〕[Another example]

上記実施例は空調システムの場合を示したが、
給湯システム、又は給湯暖房システムに適用する
ことができる。又、この給湯システムや給湯暖房
システムの場合には、燃焼型補助熱源装置2とし
てガスバーナーやオイルバーナーが利用できる。
The above example shows the case of an air conditioning system, but
It can be applied to a hot water supply system or a hot water supply and heating system. Further, in the case of this hot water supply system or hot water supply/heating system, a gas burner or an oil burner can be used as the combustion type auxiliary heat source device 2.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係るエンジンヒートポンプシス
テムの運転制御方法の実施例を示し、第1図はシ
ステム全体の構成図、第2図は冷房運転モードの
フロー線図、第3図は暖房運転モードのフロー線
図、第4図は能力特性線図、第5図は従来運転制
御方法での能力特性線図である。 1……エンジンヒートポンプ、2……燃焼型補
助熱源装置、5……エンジン、S1……温度センサ
ー。
The drawings show an embodiment of the method for controlling the operation of an engine heat pump system according to the present invention, in which Fig. 1 is a block diagram of the entire system, Fig. 2 is a flow diagram of the cooling operation mode, and Fig. 3 is a flow diagram of the heating operation mode. FIG. 4 is a performance characteristic diagram, and FIG. 5 is a performance characteristic diagram in the conventional operation control method. 1...Engine heat pump, 2...Combustion type auxiliary heat source device, 5...Engine, S1 ...Temperature sensor.

Claims (1)

【特許請求の範囲】 1 熱媒流体の循環流路中にエンジンヒートポン
プ1と燃焼型の補助熱源装置2とを直列に配設
し、低負荷領域ではエンジンヒートポンプ1のみ
を運転するとともに要求負荷の増減に対応したエ
ンジン回転数制御によつてエンジンヒートポンプ
1の能力を増減し、エンジンヒートポンプ能力を
こえる高負荷領域ではエンジンヒートポンプ1と
補助熱源装置2を並行運転するとともに要求負荷
に応じて補助熱源装置2を能力制御するエンジン
ヒートポンプシステムの運転制御方法であつて、
負荷側に供給する熱媒流体の温度を設定値に維持
するよう温度センサーS1の検出結果に基づいてエ
ンジン5の回転数制御を行い、補助熱源装置2の
起動に伴う段階的な能力増大に対してエンジン回
転数を減少制御するエンジンヒートポンプシステ
ムの運転制御方法。 2 前記エンジンヒートポンプ1がガスエンジン
5によつて駆動されるものであり、前記燃焼型補
助熱源装置2はガス直焚型の吸収式冷温水ユニツ
トである特許請求の範囲第1項に記載の運転制御
方法。
[Claims] 1. An engine heat pump 1 and a combustion type auxiliary heat source device 2 are arranged in series in a heat transfer fluid circulation path, and only the engine heat pump 1 is operated in a low load region, and at the same time when the required load is The capacity of the engine heat pump 1 is increased or decreased by controlling the engine speed corresponding to the increase or decrease, and in high load areas exceeding the engine heat pump capacity, the engine heat pump 1 and the auxiliary heat source device 2 are operated in parallel, and the auxiliary heat source device is activated according to the required load. 2. A method for controlling the operation of an engine heat pump system that controls the capacity of
The rotation speed of the engine 5 is controlled based on the detection result of the temperature sensor S 1 to maintain the temperature of the heat medium fluid supplied to the load side at the set value, and the capacity is gradually increased as the auxiliary heat source device 2 is started. An operation control method for an engine heat pump system that controls the engine speed to decrease. 2. The operation according to claim 1, wherein the engine heat pump 1 is driven by a gas engine 5, and the combustion type auxiliary heat source device 2 is a gas direct-fired absorption type cold/hot water unit. Control method.
JP59087037A 1984-04-28 1984-04-28 Method of controlling operation of engine heat pump system Granted JPS60232464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59087037A JPS60232464A (en) 1984-04-28 1984-04-28 Method of controlling operation of engine heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087037A JPS60232464A (en) 1984-04-28 1984-04-28 Method of controlling operation of engine heat pump system

Publications (2)

Publication Number Publication Date
JPS60232464A JPS60232464A (en) 1985-11-19
JPH0214623B2 true JPH0214623B2 (en) 1990-04-09

Family

ID=13903747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087037A Granted JPS60232464A (en) 1984-04-28 1984-04-28 Method of controlling operation of engine heat pump system

Country Status (1)

Country Link
JP (1) JPS60232464A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758517B2 (en) * 1991-07-11 1998-05-28 株式会社日立製作所 Heat source unit

Also Published As

Publication number Publication date
JPS60232464A (en) 1985-11-19

Similar Documents

Publication Publication Date Title
JP2001091087A (en) Method for controlling refrigerator of absorption heater chiller
JP2899247B2 (en) Gas turbine inlet heating and cooling system
JPH0721362B2 (en) Waste heat recovery power generator
JPH0214623B2 (en)
JPH0552441A (en) Method and device for controlling absorption type heater cooler
JP3583792B2 (en) Hot water supply / air conditioning system
JP2806491B2 (en) Absorption refrigerator and its operation control method
JPH026424B2 (en)
JPH0243110B2 (en)
KR840001696A (en) Air conditioner
JP2002309986A (en) Engine control device and engine-driven heat pump device using the same
JPH0136018Y2 (en)
JP4194286B2 (en) Air conditioner
JPH0893553A (en) Control method and device for heat supply using cogeneration system
JPH0136017Y2 (en)
JP2635975B2 (en) Stirling heat engine driven heat pump
JP2850453B2 (en) Operation control device of air conditioner equipped with refrigerant heater
JPS629734B2 (en)
JP3874262B2 (en) Refrigeration system combining absorption and compression
JPS5837456A (en) Heating apparatus
JPH024174A (en) Heat pump
JPH0117008Y2 (en)
JP4183380B2 (en) Multi-type engine driven refrigeration system
JPH02183774A (en) Air conditioner
JP2977999B2 (en) Absorption refrigerator