JPH0817481A - Thermoelectric transducing device - Google Patents

Thermoelectric transducing device

Info

Publication number
JPH0817481A
JPH0817481A JP14769794A JP14769794A JPH0817481A JP H0817481 A JPH0817481 A JP H0817481A JP 14769794 A JP14769794 A JP 14769794A JP 14769794 A JP14769794 A JP 14769794A JP H0817481 A JPH0817481 A JP H0817481A
Authority
JP
Japan
Prior art keywords
temperature heat
heat medium
heat transfer
liquid
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14769794A
Other languages
Japanese (ja)
Inventor
Yosuke Nozaki
洋介 野崎
Maki Ishizawa
真樹 石沢
Shigemi Iida
茂実 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14769794A priority Critical patent/JPH0817481A/en
Publication of JPH0817481A publication Critical patent/JPH0817481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress temp. fall of a high temp. thermal medium in a heating part and also temp. rise of a low temp. thermal medium and to reduce the power required to transport the media by incorporating a boiling type heat supply device and condensation type heat radiation device. CONSTITUTION:Heat condition in a high temp. conduction part 501 takes place as a heat conduction of condensation of a high temp. thermal medium of saturated steam generated by a boiling type heat emission and supply device 100, and various parts of the conduction part 501 including the inlet and outlet to/from the power generation part and their surroundings can be given a constant temp. equal to that of the saturated steam. The liquid level in the supply device 100 is made identical to that in the conduction part 501 owing to the action of the graviation, and when the liquid in the device 100 evaporates and boils, the liquid in the conduction part 501 is transported effortlessly. A low temp. heat conduction part 502 in connection with a condensation type heat radiation device 600 works alike, and a power generation part 500 having a thermo-electric transducing element 530 performs a power generation with good efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電変換素子に熱媒体
によって温度差を与えることにより発電を行う熱電変換
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion device for generating power by giving a temperature difference to a thermoelectric conversion element by a heat medium.

【0002】[0002]

【従来の技術】近年、熱機関や燃料電池、電子機器等の
排熱を有効に利用するため、熱を電気に直接変換する熱
電変換装置の研究開発がさかんに行われている。従来の
熱電変換装置の構成例を図4に示す。本装置は熱供給装
置10、高温熱媒体循環管路20、高温熱媒体30、高
温熱媒体循環ポンプ40、発電部50、放熱装置60、
低温熱媒体循環管路70、低温熱媒体80、低温熱媒体
循環ポンプ90から構成され、発電部50は高温熱伝達
部51、低温熱伝達部52、熱電変換素子53からな
る。
2. Description of the Related Art In recent years, in order to effectively use the exhaust heat of a heat engine, a fuel cell, an electronic device, etc., research and development of a thermoelectric conversion device for directly converting heat into electricity have been actively conducted. FIG. 4 shows a configuration example of a conventional thermoelectric conversion device. This apparatus includes a heat supply device 10, a high temperature heat medium circulation pipe 20, a high temperature heat medium 30, a high temperature heat medium circulation pump 40, a power generation unit 50, a heat dissipation device 60,
The low-temperature heat medium circulation pipe line 70, the low-temperature heat medium 80, and the low-temperature heat medium circulation pump 90 are included, and the power generation unit 50 includes a high-temperature heat transfer unit 51, a low-temperature heat transfer unit 52, and a thermoelectric conversion element 53.

【0003】本装置の動作を以下に示す。熱供給装置1
0は、高温熱媒体30を加熱昇温する。加熱昇温された
高温熱媒体30は、高温熱媒体循環ポンプ40により高
温熱媒体循環管路20を通して搬送され、発電部50内
の高温熱伝達部51に供給される。一方、放熱装置60
は、低温熱媒体80を冷却降温する。冷却降温された低
温熱媒体80は、低温熱媒体循環ポンプ90により低温
熱媒体循環管路70を通して搬送され、発電部50内の
低温熱伝達部52に供給される。発電部50内の熱電変
換素子53は、高温熱伝達部51と低温熱伝達部52の
両者の間にそれぞれ接触して設置されているため、高温
熱伝達部51において高温熱媒体30の強制対流により
伝達された熱が熱電変換素子53を貫流し、低温熱伝達
部52において低温熱媒体80に伝達される。このとき
熱電変換素子53には熱抵抗が存在するため両端に温度
差が発生し、これにより電力が生じる。
The operation of this device is shown below. Heat supply device 1
0 heats and raises the temperature of the high temperature heat medium 30. The high-temperature heat medium circulation pump 40 conveys the high-temperature heat-medium 30 which has been heated and raised in temperature through the high-temperature heat-medium circulation pipe 20 and is supplied to the high-temperature heat transfer unit 51 in the power generation unit 50. On the other hand, the heat dissipation device 60
Cools and cools the low-temperature heat medium 80. The low temperature heat medium 80 that has been cooled and cooled is conveyed by the low temperature heat medium circulation pump 90 through the low temperature heat medium circulation pipe line 70, and is supplied to the low temperature heat transfer unit 52 in the power generation unit 50. Since the thermoelectric conversion element 53 in the power generation unit 50 is installed in contact with both the high temperature heat transfer unit 51 and the low temperature heat transfer unit 52, forced convection of the high temperature heat transfer medium 30 in the high temperature heat transfer unit 51. The heat transferred by means of flows through the thermoelectric conversion element 53 and is transferred to the low temperature heat transfer medium 80 in the low temperature heat transfer portion 52. At this time, since the thermoelectric conversion element 53 has a thermal resistance, a temperature difference is generated at both ends, thereby generating electric power.

【0004】[0004]

【発明が解決しようとする課題】しかし本装置では、高
温熱媒体30および低温熱媒体80の顕熱により熱伝達
を行う方式であるため、高温熱伝達部51および低温熱
伝達部52内部の温度は場所により一定ではなく、図5
に示すように、高温熱媒体30の温度は発電部50の入
口付近では熱供給装置10の出口温度とほぼ等しいため
高く、発電部50の出口に近づくにつれて熱量を奪われ
て低くなる。逆に、低温熱媒体80の温度は発電部50
の入り口付近では放熱装置60の出口温度とほぼ等しい
ため低いが、発電部50の出口に近づくにつれて熱量を
与えられて高くなる。この結果、発電部50における、
高温熱媒体30と低温熱媒体80の平均温度差は、熱供
給装置10の出口と放熱装置60の出口の温度差に比べ
必ず小さくなるため、装置の変換効率低下につながると
いう問題がある。
However, in this apparatus, since the heat is transferred by the sensible heat of the high temperature heat medium 30 and the low temperature heat medium 80, the temperature inside the high temperature heat transfer part 51 and the low temperature heat transfer part 52 is reduced. Is not constant depending on the location,
As shown in, the temperature of the high temperature heat medium 30 is high near the inlet of the power generation unit 50 because it is almost equal to the outlet temperature of the heat supply device 10, and the amount of heat is taken away and becomes lower as the temperature approaches the outlet of the power generation unit 50. On the contrary, the temperature of the low-temperature heat medium 80 depends on the power generation unit 50.
In the vicinity of the inlet, the temperature is almost the same as the outlet temperature of the heat dissipation device 60, but the temperature is low, but as the temperature approaches the outlet of the power generation unit 50, the amount of heat is given and increases. As a result, in the power generation unit 50,
Since the average temperature difference between the high temperature heat medium 30 and the low temperature heat medium 80 is always smaller than the temperature difference between the outlet of the heat supply device 10 and the outlet of the heat dissipation device 60, there is a problem that the conversion efficiency of the device is reduced.

【0005】この問題を解決する手段として、高温熱媒
体30および低温熱媒体80の循環速度を上げることに
より、発電部50における高温熱媒体30の温度低下お
よび低温熱媒体80の温度上昇を抑える方法が考えられ
るが、この場合、高温熱媒体循環ポンプ40および低温
熱媒体循環ポンプ90の消費電力が増大し、装置の変換
効率が低下することが問題となる。
As a means for solving this problem, a method of suppressing the temperature decrease of the high temperature heat medium 30 and the temperature increase of the low temperature heat medium 80 in the power generation section 50 by increasing the circulation speed of the high temperature heat medium 30 and the low temperature heat medium 80. However, in this case, the power consumption of the high temperature heat medium circulation pump 40 and the low temperature heat medium circulation pump 90 increases, and the conversion efficiency of the device decreases.

【0006】本発明は上記の事情に鑑みてなされたもの
で、発電部における高温熱媒体の温度低下および低温熱
媒体の温度上昇を抑制でき、かつ各熱媒体の搬送に必要
な動力の削減が可能な熱電変換装置を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and it is possible to suppress the temperature decrease of the high temperature heat medium and the temperature increase of the low temperature heat medium in the power generation section, and to reduce the power required to convey each heat medium. An object is to provide a possible thermoelectric conversion device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明では高温熱媒体および低温熱媒体として気液二
相変態が可能な流体を使用し、熱供給装置は液体の高温
熱媒体を加熱し、飽和蒸気とすることにより熱を与え
る。飽和蒸気の高温熱媒体は高温熱媒体循環管路を通し
て発電部内の高温熱伝達部へ搬送され、高温熱伝達部で
凝縮させることにより凝縮潜熱を熱電変換素子を介して
低温熱伝達部に伝達させる。凝縮により発生する液体の
高温熱媒体は熱供給装置に環流される。低温熱伝達部に
は液体の低温熱媒体が充填され、高温熱伝達部から与え
られる熱により、液体の低温熱媒体を飽和沸騰をさせる
ことにより熱を伝達させる。低温熱伝達部で発生した飽
和蒸気の低温熱媒体は低温熱媒体循環管路を通して放熱
部に搬送されて冷却されることにより凝縮し、再び液体
の低温熱媒体となり、低温熱伝達部に環流される。
In order to achieve the above object, in the present invention, a fluid capable of gas-liquid two-phase transformation is used as a high temperature heat medium and a low temperature heat medium, and the heat supply device uses a liquid high temperature heat medium. Heat is applied by heating to saturated steam. The high-temperature heat transfer medium of saturated steam is transferred to the high-temperature heat transfer section in the power generation section through the high-temperature heat transfer medium circulation line, and condensed latent heat is transferred to the low-temperature heat transfer section via the thermoelectric conversion element by condensing in the high-temperature heat transfer section. . The liquid high-temperature heat medium generated by the condensation is circulated to the heat supply device. The low temperature heat transfer portion is filled with a liquid low temperature heat medium, and the heat given from the high temperature heat transfer portion causes the liquid low temperature heat medium to undergo saturated boiling to transfer the heat. The low-temperature heat transfer medium of saturated steam generated in the low-temperature heat transfer part is conveyed to the heat-dissipating part through the low-temperature heat transfer medium circulation line and condensed by being cooled, and becomes the liquid low-temperature heat transfer medium again and is circulated to the low-temperature heat transfer part. It

【0008】また、高温熱伝達部での飽和蒸気の高温熱
媒体の凝縮により生じる液体の高温熱媒体の液位と、熱
供給装置内の液体の高温熱媒体の液位が等しくなる高さ
に熱供給装置を設置する。さらに、低温熱伝達部に充填
された液体の低温熱媒体の液位と、放熱装置内の液体の
低温熱媒体の液位が等しくなる高さに、放熱装置を設置
する。
Further, the liquid level of the high temperature heat medium of the liquid generated by the condensation of the high temperature heat medium of the saturated vapor in the high temperature heat transfer section is equal to the liquid level of the high temperature heat medium of the liquid in the heat supply device. Install a heat supply device. Further, the heat dissipation device is installed at a height at which the liquid level of the liquid low temperature heat medium filled in the low temperature heat transfer portion and the liquid level of the liquid low temperature heat medium in the heat dissipation device are equal.

【0009】[0009]

【作用】上記手段により、高温熱伝達部における熱伝達
は、飽和蒸気の高温熱媒体の凝縮熱伝達で行われるた
め、高温熱伝達部の温度を発電部入口付近、出口付近を
問わず熱供給装置出口の飽和蒸気と等しい温度で一定と
することができる。また、低温熱伝達部における熱伝達
は、液体の低温熱媒体の飽和沸騰熱伝達で行われるた
め、低温熱伝達部の温度を発電部の入口付近、出口付近
を問わず放熱装置出口の飽和液体と等しい温度で一定と
することができる。従って、発電部における、高温熱媒
体と低温熱媒体の平均温度差を、熱供給装置の出口と放
熱装置の出口の温度差と等しくすることができ、発電部
における高温熱媒体の温度低下および低温熱媒体の温度
上昇による装置の効率低下を抑制できる。
By the above means, the heat transfer in the high temperature heat transfer part is performed by the condensation heat transfer of the high temperature heat medium of saturated steam, so that the temperature of the high temperature heat transfer part is supplied to the heat generation part regardless of the inlet and outlet. It can be kept constant at the same temperature as the saturated steam at the outlet of the device. Further, since heat transfer in the low temperature heat transfer section is performed by saturated boiling heat transfer of the low temperature heat medium of the liquid, the temperature of the low temperature heat transfer section is saturated liquid at the outlet of the radiator regardless of the vicinity of the inlet and the outlet of the power generation section. Can be constant at a temperature equal to Therefore, the average temperature difference between the high-temperature heat medium and the low-temperature heat medium in the power generation unit can be made equal to the temperature difference between the outlet of the heat supply device and the outlet of the heat dissipation device. It is possible to suppress a decrease in the efficiency of the device due to the temperature rise of the heat medium.

【0010】また、熱供給装置内の液体の高温熱媒体の
液位と高温熱伝達部の液体の高温熱媒体の液位を等しく
しようとする作用が重力により常に働くため、熱供給装
置において液体の高温熱媒体が沸騰により蒸発して液位
が低下した場合、高温熱伝達部内の液体の高温熱媒体が
無動力で熱供給装置に環流される。
Further, since the action of making the liquid level of the high temperature heat medium of the liquid in the heat supply device equal to the liquid level of the high temperature heat medium of the liquid in the high temperature heat transfer portion always works by gravity, the liquid in the heat supply device is When the high-temperature heat medium of (1) is evaporated by boiling and the liquid level is lowered, the high-temperature heat medium of the liquid in the high-temperature heat transfer section is circulated to the heat supply device without power.

【0011】同様に、低温熱伝達部の液体の低温熱媒体
の液位と放熱装置内の液体の低温熱媒体の液位を等しく
しようとする作用が重力により常に働くため、低温熱伝
達部において液体の低温熱媒体が沸騰熱伝達により蒸発
して液位が低下した場合、放熱装置内の液体の低温熱媒
体が無動力で低温熱伝達部に供給される。
Similarly, since the action of equalizing the liquid level of the low temperature heat medium of the liquid in the low temperature heat transfer part and the liquid level of the low temperature heat medium of the liquid in the heat dissipation device always works by gravity, the low temperature heat transfer part When the liquid low-temperature heat medium is evaporated by boiling heat transfer and the liquid level is lowered, the liquid low-temperature heat medium in the heat dissipation device is supplied to the low-temperature heat transfer part without power.

【0012】さらに、高温熱伝達部の飽和蒸気の高温熱
媒体の圧力と熱供給装置内の飽和蒸気の高温熱媒体の圧
力を等しくしようとする作用が常に働くため、高温熱伝
達部において飽和蒸気の高温熱媒体が凝縮して圧力が低
下した場合、熱供給装置内の飽和蒸気の高温熱媒体が無
動力で高温熱伝達部に供給される。
Further, since the action of making the pressure of the saturated steam in the high temperature heat transfer section of the high temperature heat medium equal to the pressure of the saturated steam in the heat supply device always works, the saturated steam in the high temperature heat transfer section is always operated. When the high-temperature heat medium of 1 is condensed and the pressure is reduced, the high-temperature heat medium of saturated steam in the heat supply device is supplied to the high-temperature heat transfer part without power.

【0013】同様に、放熱装置内の飽和蒸気の低温熱媒
体の圧力と低温熱伝達部の飽和蒸気の低温熱媒体の圧力
を等しくしようとする作用が常に働くため、放熱装置に
おいて飽和蒸気の低温熱媒体が凝縮して圧力が低下した
場合、低温熱伝達部の飽和蒸気の低温熱媒体が無動力で
放熱装置に環流される。
Similarly, since the pressure of the low-temperature heat medium of the saturated steam in the heat dissipation device and the pressure of the low-temperature heat medium of the saturated steam in the low-temperature heat transfer section are always equalized, the low temperature of the saturated steam is low in the heat dissipation device. When the heat medium condenses and the pressure drops, the low-temperature heat medium of saturated steam in the low-temperature heat transfer section is circulated to the heat dissipation device without power.

【0014】[0014]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。 (実施例1)本発明の第1の実施例を図1に示す。
Embodiments of the present invention will now be described in detail with reference to the drawings. (Embodiment 1) A first embodiment of the present invention is shown in FIG.

【0015】本実施例は、沸騰形熱供給装置100、高
温熱媒体循環管路200、高温熱媒体300、発電部5
00、凝縮形放熱装置600、低温熱媒体循環管路70
0、低温熱媒体800から構成され、高温熱媒体300
は、高温飽和蒸気302および高温液体301で、低温
熱媒体800は低温飽和蒸気802および低温液体80
1からなる。また、発電部500は高温熱伝達部50
1、低温熱伝達部502、熱電変換素子530からなり
熱電変換素子530は、高温熱伝達部501と低温熱伝
達部502の両者の間で、高温熱伝達部501内の高温
液体301の液位より高く、低温熱伝達部502内の低
温液体801の液位より低い位置に接触して設置する。
沸騰形熱供給装置100は、沸騰形熱供給装置100内
の高温液体301の液位が高温熱伝達部501内の高温
液体301の液位と等しくできる高さに設置する。同様
に、凝縮形放熱装置600は、凝縮形放熱装置600内
の低温液体801の液位が低温熱伝達部502内の低温
液体801の液位が等しくできる高さに設置する。
In this embodiment, the boiling heat supply device 100, the high temperature heat medium circulating pipe 200, the high temperature heat medium 300, and the power generation section 5 are used.
00, condensation type heat dissipation device 600, low temperature heat medium circulation conduit 70
0, a low-temperature heat medium 800, and a high-temperature heat medium 300
Is the high temperature saturated vapor 302 and the high temperature liquid 301, and the low temperature heat medium 800 is the low temperature saturated vapor 802 and the low temperature liquid 80.
Consists of one. In addition, the power generation unit 500 includes the high temperature heat transfer unit 50.
The thermoelectric conversion element 530 is composed of the low temperature heat transfer section 502 and the low temperature heat transfer section 502, and the liquid level of the high temperature liquid 301 in the high temperature heat transfer section 501 between the high temperature heat transfer section 501 and the low temperature heat transfer section 502. It is installed in contact with a position higher than the liquid level of the low temperature liquid 801 in the low temperature heat transfer unit 502.
The boiling heat supply apparatus 100 is installed at a height such that the liquid level of the high temperature liquid 301 in the boiling heat supply apparatus 100 can be made equal to the liquid level of the high temperature liquid 301 in the high temperature heat transfer section 501. Similarly, the condensation type heat dissipation device 600 is installed at a height such that the liquid level of the low temperature liquid 801 in the condensation type heat dissipation device 600 is equal to the liquid level of the low temperature liquid 801 in the low temperature heat transfer portion 502.

【0016】本実施例の動作は以下のとおりである。沸
騰形熱供給装置100は、高温液体301を加熱するこ
とにより沸騰させ、高温飽和蒸気302とする。高温飽
和蒸気302は高温熱媒体循環管路200を通して高温
熱伝達部501に搬送される。高温熱伝達部501で
は、高温飽和蒸気302の凝縮による潜熱を熱電変換素
子530を介して低温熱伝達部502に貫流させる。凝
縮によって生じる高温液体301は、高温熱媒体循環管
路200を通して沸騰形熱供給装置100に環流され
る。低温熱伝達部502では貫流された熱により低温液
体801を加熱して飽和沸騰させて低温飽和蒸気802
とすることにより飽和沸騰熱伝達を行う。低温熱伝達部
502で発生した低温飽和蒸気802は低温熱媒体循環
管路700をとおして凝縮形放熱装置600に環流され
る。凝縮形放熱装置600では、低温飽和蒸気802を
冷却して凝縮させ、低温液体801とする。凝縮により
生じた低温液体801は低温熱媒体循環管路700を通
して低温熱伝達部502に搬送される。発電部500で
は、熱電変換素子530を介して高温熱伝達部501か
ら低温熱伝達部502へ熱が環流するため、熱電変換素
子530の熱抵抗により、両端に温度差が生じ、電力が
発生する。また、沸騰形熱供給装置100内の高温液体
301の液位と高温熱伝達部501の高温液体301の
液位を等しくしようとする作用が重力により常に働くた
め、沸騰形熱供給装置100において高温液体301が
沸騰により蒸発して液位が低下した場合、高温熱伝達部
501内の高温液体301が無動力で沸騰形熱供給装置
100に環流される。同様に、低温熱伝達部502の低
温液体801の液位と凝縮形放熱装置600内の低温液
体801の液位を等しくしようとする作用が重力により
常に働くため、低温熱伝達部502において低温液体8
01が沸騰熱伝達により蒸発して液位が低下した場合、
凝縮形放熱装置600内の低温液体801が無動力で低
温熱伝達部502に供給される。
The operation of this embodiment is as follows. The boiling heat supply device 100 heats the high-temperature liquid 301 to bring it to a boil to form high-temperature saturated steam 302. The high temperature saturated steam 302 is conveyed to the high temperature heat transfer unit 501 through the high temperature heat medium circulation pipe line 200. In the high temperature heat transfer section 501, latent heat due to the condensation of the high temperature saturated steam 302 is caused to flow through the low temperature heat transfer section 502 via the thermoelectric conversion element 530. The high temperature liquid 301 generated by the condensation is recirculated to the boiling heat supply device 100 through the high temperature heat medium circulation pipe line 200. In the low temperature heat transfer unit 502, the low temperature liquid 801 is heated to saturated boiling by the heat that has flowed through, and the low temperature saturated steam 802
The saturated boiling heat transfer is performed by The low temperature saturated steam 802 generated in the low temperature heat transfer section 502 is recirculated to the condensing type heat dissipation device 600 through the low temperature heat medium circulation pipe line 700. In the condensation type heat dissipation device 600, the low temperature saturated vapor 802 is cooled and condensed to form a low temperature liquid 801. The low temperature liquid 801 generated by the condensation is conveyed to the low temperature heat transfer unit 502 through the low temperature heat medium circulation pipe line 700. In the power generation section 500, heat circulates from the high-temperature heat transfer section 501 to the low-temperature heat transfer section 502 via the thermoelectric conversion element 530, so that the thermal resistance of the thermoelectric conversion element 530 causes a temperature difference at both ends to generate electric power. . Further, since the action of making the liquid level of the high temperature liquid 301 in the boiling heat supply device 100 equal to the liquid level of the high temperature liquid 301 in the high temperature heat transfer part 501 always works by gravity, the high temperature in the boiling heat supply device 100 is high. When the liquid 301 evaporates due to boiling and the liquid level is lowered, the high-temperature liquid 301 in the high-temperature heat transfer section 501 is circulated to the boiling heat supply device 100 without power. Similarly, since the action of equalizing the liquid level of the low temperature liquid 801 in the low temperature heat transfer unit 502 and the liquid level of the low temperature liquid 801 in the condensation type heat dissipation device 600 always works due to gravity, the low temperature liquid in the low temperature heat transfer unit 502 is kept constant. 8
When 01 is evaporated by boiling heat transfer and the liquid level is lowered,
The low temperature liquid 801 in the condensing type heat dissipation device 600 is supplied to the low temperature heat transfer part 502 without power.

【0017】さらに、高温熱伝達部501の高温飽和蒸
気302の圧力と沸騰形熱供給装置100内の高温飽和
蒸気302の圧力を等しくしようとする作用が常に働く
ため、高温熱伝達部501において高温飽和蒸気302
が凝縮して圧力が低下した場合、沸騰形熱供給装置10
0内の高温飽和蒸気302が無動力で高温熱伝達部50
1に供給される。同様に、凝縮形放熱装置600内の低
温飽和蒸気802の圧力と低温熱伝達部502の低温飽
和蒸気802の圧力を等しくしようとする作用が常に働
くため、凝縮形放熱装置600において低温飽和蒸気8
02が凝縮して圧力が低下した場合、低温熱伝達部50
2の低温飽和蒸気802が無動力で凝縮形放熱装置60
0に環流される。
Further, since the action of making the pressure of the high temperature saturated steam 302 of the high temperature heat transfer section 501 equal to the pressure of the high temperature saturated steam 302 in the boiling heat supply apparatus 100 always works, the high temperature heat transfer section 501 has a high temperature. Saturated steam 302
Is condensed and the pressure is reduced, the boiling heat supply device 10
The high temperature saturated steam 302 in 0 is non-powered and the high temperature heat transfer unit 50
1 is supplied. Similarly, since the action of making the pressure of the low temperature saturated steam 802 in the condensing type heat dissipation device 600 equal to the pressure of the low temperature saturated steam 802 of the low temperature heat transfer part 502 always works, the low temperature saturated steam 8
When 02 is condensed and the pressure is reduced, the low temperature heat transfer unit 50
The low temperature saturated steam 802 of 2 is non-powered and the condensation type heat dissipation device 60
It is returned to 0.

【0018】本実施例において、沸騰形熱供給装置10
0としては鋳鉄ボイラ、立て型ボイラ、炉筒煙管ボイ
ラ、水筒ボイラ、小形貫流ボイラ等のボイラ、満液式シ
ェルアンドチューブ型蒸発器等の液冷却型蒸発器、クロ
スフィン式フィンアンドチューブ型蒸発器等の気体冷却
型蒸発器等各種蒸発器、およびリン酸型燃料電池等の発
熱装置内の気液分離器等、熱媒体が飽和蒸気相と飽和液
相が同時に封入された圧力装置であれば適用できる。
In this embodiment, the boiling heat supply device 10 is used.
0 is a cast iron boiler, a vertical boiler, a furnace tube smoke tube boiler, a water tube boiler, a small once-through boiler, a liquid cooling type evaporator such as a liquid-filled shell-and-tube type evaporator, and a cross fin type fin-and-tube type evaporator. Various vaporizers such as gas-cooled evaporators such as reactors, and gas-liquid separators inside heat-generating devices such as phosphoric acid fuel cells that are pressure devices in which a saturated vapor phase and a saturated liquid phase are enclosed at the same time as the heat medium. Can be applied.

【0019】凝縮形放熱装置600としては立て型凝縮
器、横型凝縮器、二重管凝縮器、大気式ブリーダ型凝縮
器、蒸発式凝縮器、空気式凝縮器等各種凝縮器が適用で
きる。
As the condensing radiator 600, various condensers such as a vertical condenser, a horizontal condenser, a double tube condenser, an atmospheric bleeder condenser, an evaporative condenser and an air condenser can be applied.

【0020】高温熱媒体300および低温熱媒体800
としては、トリクロロフルオロメタン、ジクロロフルオ
ロメタン、四フッ化炭素、クロロジフロロメタン等の各
種含ハロゲン化合物、水等気液変態が可能な流体が適用
できる。
High temperature heat medium 300 and low temperature heat medium 800
As such, various halogen-containing compounds such as trichlorofluoromethane, dichlorofluoromethane, carbon tetrafluoride and chlorodifluoromethane, and fluids capable of gas-liquid transformation such as water can be applied.

【0021】熱電変換素子530としては素子両端に温
度差を与えることにより発電が可能な熱電半導体を用い
た物理電池、あるいは電気化学的温度差電池を使用する
ことができる。
As the thermoelectric conversion element 530, a physical battery using a thermoelectric semiconductor capable of generating power by applying a temperature difference across the element or an electrochemical temperature difference battery can be used.

【0022】このような物理電池として、ビスマス−テ
ルル系、鉛−テルル系、鉄−シリコン系、シリコン−ゲ
ルマニウム系、ビスマス−アンチモン系、ガリウム−リ
ン系のn型−p型熱電半導体を電気的に直列接続してユ
ニット化したサーモモジュールが使用可能である。
As such a physical battery, an n-type p-type thermoelectric semiconductor of bismuth-tellurium type, lead-tellurium type, iron-silicon type, silicon-germanium type, bismuth-antimony type, gallium-phosphorus type is electrically used. It is possible to use a thermo module that is unitized by connecting in series with.

【0023】一方、電気化学的温度差電池は、高低温電
極間に酸化還元電位が温度により変化することに起因す
る熱起電力を発現する化学種を配置し、温度差間で発電
する機能を有する熱電変換器であり、フェロシアン/フ
ェリシアンレドックス対、鉄イオンレドックス対、臭素
等の化学種を用いたレドックス電池等および温度差によ
り発電可能なあらゆる発電手段を用いることができる。 (実施例2)本発明の第2の実施例を図2に示す。
On the other hand, the electrochemical temperature difference battery has a function of arranging a chemical species that develops a thermoelectromotive force due to a change in redox potential depending on temperature between high and low temperature electrodes to generate electricity between temperature differences. It is a thermoelectric converter having, and it is possible to use a ferrocyan / ferrician redox pair, an iron ion redox pair, a redox battery using a chemical species such as bromine, and any power generation means capable of generating power by a temperature difference. (Embodiment 2) A second embodiment of the present invention is shown in FIG.

【0024】本実施例では、沸騰形熱供給装置100が
リン酸形燃料電池101、燃料電池冷却水循環管路10
2、気水分離器103で構成される。本実施例では、高
温熱伝達部501内で凝縮した高温液体301は高温熱
媒体循環管路200を通して気水分離器103に環流さ
れる。気水分離器103内の高温液体301は燃料電池
冷却水循環管路102を通して燃料電池101に供給さ
れ、燃料電池101の発熱により沸騰させることにより
高温飽和蒸気302となり、燃料電池冷却水循環管路1
02を通して気水分離器103に環流される。気水分離
器103内の高温飽和蒸気302は高温熱媒体循環管路
200を通して高温熱伝達部501に供給される。
In the present embodiment, the boiling heat supply device 100 includes a phosphoric acid fuel cell 101 and a fuel cell cooling water circulation conduit 10.
2. It is composed of a steam separator 103. In this embodiment, the high temperature liquid 301 condensed in the high temperature heat transfer section 501 is recirculated to the steam separator 103 through the high temperature heat medium circulation pipe line 200. The high-temperature liquid 301 in the steam separator 103 is supplied to the fuel cell 101 through the fuel cell cooling water circulation line 102, and is boiled by the heat generation of the fuel cell 101 to become the high temperature saturated vapor 302, and the fuel cell cooling water circulation line 1
It is recirculated to the steam separator 103 through 02. The high temperature saturated steam 302 in the steam separator 103 is supplied to the high temperature heat transfer section 501 through the high temperature heat medium circulation pipe line 200.

【0025】熱電変換素子530としてビスマス−テル
ル系の物理電池を用い、高温熱媒体300として水を使
用し、燃料電池101により160℃の飽和水蒸気を発
生させて高温飽和蒸気302とした場合の高温熱伝達部
501内の隔壁温度と飽和水蒸気入口からの距離の関係
を図3に示す。図3において横軸は隔壁温度、縦軸は高
温熱伝達部501の飽和蒸気入口から下方への距離を示
す。図3より、入口からの距離が大きくなるに従って、
隔壁に付着する凝縮水層の厚みが増すために熱伝達率が
低下し、隔壁温度が低下したがその割合は小さく、入口
から2mの位置においても温度低下を3℃以下に抑えら
れた。従って、本実施例により、熱媒体の搬送に必要な
動力を用いることなく、高温熱媒体の温度低下が抑制で
きることが確認できた。なお、低温熱媒体としてトリク
ロロフルオロメタンを用いたが、低温熱伝達部502内
の状態がプール沸騰であったため、低温熱伝達部502
の隔壁の温度は発電部500の入口からの温度によらず
一定であった。このことからも本実施例の効果が確認で
きた。
A bismuth-tellurium-based physical battery is used as the thermoelectric conversion element 530, water is used as the high-temperature heat medium 300, and saturated high-temperature steam 302 is generated by the fuel cell 101 generating saturated steam at 160 ° C. FIG. 3 shows the relationship between the partition wall temperature in the heat transfer section 501 and the distance from the saturated steam inlet. In FIG. 3, the horizontal axis represents the partition wall temperature, and the vertical axis represents the distance from the saturated steam inlet of the high temperature heat transfer section 501 downward. From Fig. 3, as the distance from the entrance increases,
The heat transfer coefficient decreased due to the increased thickness of the condensed water layer adhering to the partition walls, and the partition wall temperature decreased, but the rate was small, and the temperature decrease was suppressed to 3 ° C. or less even at the position 2 m from the inlet. Therefore, according to this example, it was confirmed that the temperature decrease of the high temperature heat medium can be suppressed without using the power required for transporting the heat medium. Although trichlorofluoromethane was used as the low temperature heat transfer medium, the low temperature heat transfer part 502 was in the state of pool boiling because the low temperature heat transfer part 502 was in the state of pool boiling.
The temperature of the partition wall was constant regardless of the temperature from the inlet of the power generation section 500. From this, the effect of this example was confirmed.

【0026】[0026]

【発明の効果】以上述べたように本発明によれば、発電
部における高温熱媒体の温度低下および低温熱媒体の温
度上昇を抑制でき、かつ各熱媒体の搬送に必要な動力の
削減が可能であるため、変換効率の高い熱電変換装置を
提供できる。
As described above, according to the present invention, it is possible to suppress the temperature drop of the high temperature heat medium and the temperature rise of the low temperature heat medium in the power generation section, and it is possible to reduce the power required to convey each heat medium. Therefore, a thermoelectric conversion device with high conversion efficiency can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成説明図であ
る。
FIG. 1 is a configuration explanatory view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す構成説明図であ
る。
FIG. 2 is a structural explanatory view showing a second embodiment of the present invention.

【図3】本発明の第2の実施例の効果を説明する特性図
である。
FIG. 3 is a characteristic diagram illustrating effects of the second embodiment of the present invention.

【図4】従来の熱電変換装置を示す構成説明図である。FIG. 4 is a structural explanatory view showing a conventional thermoelectric conversion device.

【図5】従来の熱電変換装置に係る高温熱媒体及び低温
熱媒体の温度分布を示す特性図である。
FIG. 5 is a characteristic diagram showing temperature distributions of a high temperature heat medium and a low temperature heat medium according to a conventional thermoelectric conversion device.

【符号の説明】[Explanation of symbols]

10…熱供給装置、20…高温熱媒体循環管路、30…
高温熱媒体、40…高温熱媒体循環ポンプ、50…発電
部、51…高温熱伝達部、52…低温熱伝達部、53…
熱電変換素子、60…放熱装置、70…低温熱媒体循環
管路、80…低温熱媒体、90…低温熱媒体循環ポン
プ、100…沸騰形熱供給装置、200…高温熱媒体循
環管路、300…高温熱媒体、301…高温飽和蒸気、
302…高温液体、500…発電部、501…高温熱伝
達部、502…低温熱伝達部、530…熱電変換素子、
600…凝縮形放熱装置、700…低温熱媒体循環管
路、800…低温熱媒体、801…低温液体、802…
低温飽和蒸気。
10 ... Heat supply device, 20 ... High temperature heat medium circulation pipe line, 30 ...
High temperature heat medium, 40 ... High temperature heat medium circulation pump, 50 ... Power generation section, 51 ... High temperature heat transfer section, 52 ... Low temperature heat transfer section, 53 ...
Thermoelectric conversion element, 60 ... Radiating device, 70 ... Low temperature heat medium circulation line, 80 ... Low temperature heat medium, 90 ... Low temperature heat medium circulation pump, 100 ... Boiling type heat supply device, 200 ... High temperature heat medium circulation line, 300 … High temperature heat medium, 301… High temperature saturated steam,
302 ... High temperature liquid, 500 ... Power generation part, 501 ... High temperature heat transfer part, 502 ... Low temperature heat transfer part, 530 ... Thermoelectric conversion element,
600 ... Condensing type heat dissipation device, 700 ... Low temperature heat medium circulation pipe, 800 ... Low temperature heat medium, 801, ... Low temperature liquid, 802 ...
Low temperature saturated steam.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱供給装置と、該熱供給装置により加熱
された高温熱媒体を循環させる高温熱媒体循環管路と、 放熱装置と、該放熱装置により冷却された低温熱媒体を
循環させる低温熱媒体循環管路と、 高温熱伝達部と、低温熱伝達部と、該高温熱伝達部と該
低温熱伝達部の間に接触して設置した熱電変換素子から
なる発電部で構成される熱電変換装置において、 前記熱供給装置として沸騰形熱供給装置を用いることを
特徴とする熱電変換装置。
1. A heat supply device, a high-temperature heat medium circulation pipe for circulating a high-temperature heat medium heated by the heat supply device, a heat dissipation device, and a low temperature for circulating a low-temperature heat medium cooled by the heat dissipation device. A thermoelectric generator including a heat medium circulation pipe, a high temperature heat transfer part, a low temperature heat transfer part, and a power generation part including a thermoelectric conversion element installed in contact between the high temperature heat transfer part and the low temperature heat transfer part. In the conversion device, a boiling type heat supply device is used as the heat supply device.
【請求項2】 請求項1記載の熱電変換装置において、
前記高温熱伝達部での飽和蒸気の高温熱媒体の凝縮によ
り生じる液体の高温熱媒体の液位と、前記沸騰形熱供給
装置内の液体の高温熱媒体の液位が等しくなる高さに前
記沸騰形熱供給装置を設置することを特徴とする熱電変
換装置。
2. The thermoelectric conversion device according to claim 1,
The liquid level of the high temperature heat medium of the liquid generated by the condensation of the high temperature heat medium of the saturated vapor in the high temperature heat transfer unit and the liquid level of the high temperature heat medium of the liquid in the boiling heat supply device are equal to each other. A thermoelectric conversion device, characterized in that a boiling heat supply device is installed.
【請求項3】 請求項1記載の熱電変換装置において、
前記沸騰形熱供給装置として、燃料電池と、該燃料電池
で発生した熱を前記液体の高温熱媒体に伝達させる熱交
換装置を用いることを特徴とする熱電変換装置。
3. The thermoelectric conversion device according to claim 1, wherein
A thermoelectric conversion device, wherein a fuel cell and a heat exchange device for transferring heat generated in the fuel cell to the high-temperature heat medium of the liquid are used as the boiling heat supply device.
【請求項4】 熱供給装置と、該熱供給装置により加熱
された高温熱媒体を循環させる高温熱媒体循環管路と、 放熱装置と、該放熱装置により冷却された低温熱媒体を
循環させる低温熱媒体循環管路と、 高温熱伝達部と、低温熱伝達部と、該高温熱伝達部と該
低温熱伝達部の間に接触して設置した熱電変換素子から
なる発電部で構成される熱電変換装置において、 前記放熱装置として凝縮形放熱装置を用いることを特徴
とする熱電変換装置。
4. A heat supply device, a high-temperature heat medium circulation conduit for circulating a high-temperature heat medium heated by the heat supply device, a heat dissipation device, and a low temperature for circulating a low-temperature heat medium cooled by the heat dissipation device. A thermoelectric generator including a heat medium circulation pipe, a high temperature heat transfer part, a low temperature heat transfer part, and a power generation part including a thermoelectric conversion element installed in contact between the high temperature heat transfer part and the low temperature heat transfer part. A thermoelectric conversion device, wherein a condensing type heat dissipation device is used as the heat dissipation device.
【請求項5】 請求項4記載の熱電変換装置において、
前記低温熱伝達部に充填された液体の低温熱媒体の液位
と、前記凝縮形放熱装置内の液体の低温熱媒体の液位が
等しくなる高さに、前記凝縮形放熱装置を設置すること
を特徴とする熱電変換装置。
5. The thermoelectric conversion device according to claim 4,
The condensing type heat dissipation device is installed at a height at which the liquid level of the liquid low temperature heat medium filled in the low temperature heat transfer part and the liquid level of the liquid low temperature heat medium in the condensing type heat dissipation device are equal. A thermoelectric conversion device.
JP14769794A 1994-06-29 1994-06-29 Thermoelectric transducing device Pending JPH0817481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14769794A JPH0817481A (en) 1994-06-29 1994-06-29 Thermoelectric transducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14769794A JPH0817481A (en) 1994-06-29 1994-06-29 Thermoelectric transducing device

Publications (1)

Publication Number Publication Date
JPH0817481A true JPH0817481A (en) 1996-01-19

Family

ID=15436222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14769794A Pending JPH0817481A (en) 1994-06-29 1994-06-29 Thermoelectric transducing device

Country Status (1)

Country Link
JP (1) JPH0817481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115292A (en) * 2011-11-30 2013-06-10 Tadashi Miyamoto Heat energy conduction device, and power generation system and exhaust gas cooling system using the heat energy conduction device
JP2014505453A (en) * 2010-11-16 2014-02-27 エレクトロン ホールディング,エルエルシー System, method and / or apparatus for generating electrical energy from heat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505453A (en) * 2010-11-16 2014-02-27 エレクトロン ホールディング,エルエルシー System, method and / or apparatus for generating electrical energy from heat
KR20140040071A (en) * 2010-11-16 2014-04-02 일렉트론 홀딩, 엘엘씨 Systems, methods and/or apparatus for thermoeletric energy generation
JP2013115292A (en) * 2011-11-30 2013-06-10 Tadashi Miyamoto Heat energy conduction device, and power generation system and exhaust gas cooling system using the heat energy conduction device

Similar Documents

Publication Publication Date Title
JP3950302B2 (en) Pumping liquid cooler using phase change coolant
JPH03181302A (en) Distilling apparatus
US20110048502A1 (en) Systems and Methods of Photovoltaic Cogeneration
US20080128012A1 (en) Ground source energy generator
CN103424018A (en) Liquid phase-change heat transfer type pumping cooling system with booster pump
JP4345205B2 (en) Cooling of fuel cell considering insulation
CN107462094B (en) Phase transformation heat collector cavity heat pipe heat
Wang et al. Experimental study on cooling performance of solar cells with atmospheric plate thermosyphon
TWI651875B (en) Thermal power module for waste heat recovery
RU2650439C1 (en) Universal thermal power generator, options
JP2006202798A (en) Heat sink
JPH0817481A (en) Thermoelectric transducing device
RU186073U1 (en) THERMOELECTRIC GENERATOR MODULE
CN111219908A (en) Semiconductor wafer based plug-in heat transfer device and apparatus employing the same
KR200242427Y1 (en) A triple-pipe type heat exchanger adopting high efficiency heat-medium radiator and a boiler adopting the same
CN109840002B (en) Pump-free water-cooling mute case heat dissipation control method
JP3689761B2 (en) Cooling system
CN112968009A (en) Heat pipe-semiconductor refrigeration combined electronic chip heat dissipation device and control loop thereof
JPH05343751A (en) Thermoelectric generator
WO2019126995A1 (en) Efficient phase-change condenser for supercomputer
JP2548380B2 (en) Heat exchanger
CN214477404U (en) Heat pipe-semiconductor refrigeration combined electronic chip heat dissipation device and control loop thereof
RU2290584C2 (en) Multipurpose cooling device for sets of high thermal power
TWM559549U (en) Thermoelectric module of recycling waste heat for power generation
US11598550B2 (en) Heat pipe thermal transfer loop with pumped return conduit