JPS6196341A - Transporting method of air conditioning heat energy - Google Patents

Transporting method of air conditioning heat energy

Info

Publication number
JPS6196341A
JPS6196341A JP59219182A JP21918284A JPS6196341A JP S6196341 A JPS6196341 A JP S6196341A JP 59219182 A JP59219182 A JP 59219182A JP 21918284 A JP21918284 A JP 21918284A JP S6196341 A JPS6196341 A JP S6196341A
Authority
JP
Japan
Prior art keywords
heat
liquid
pump
heat pump
thermosyphon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59219182A
Other languages
Japanese (ja)
Other versions
JPH035497B2 (en
Inventor
Yoshihisa Fujii
義久 藤井
Katsuya Oota
太田 勝矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP59219182A priority Critical patent/JPS6196341A/en
Publication of JPS6196341A publication Critical patent/JPS6196341A/en
Publication of JPH035497B2 publication Critical patent/JPH035497B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To enhance the energy-saving effect by a method wherein the latent heat of condensation, which is obtained at the vapor-liquid separating drum acting on thermosyphon, is used as the auxiliary heat source of a heat pump so as to transport the hot heat and the cold heat, both of which are obtained by the heat pump, to the heat load side by utilizing thermosyphon. CONSTITUTION:High temperature heat (y) and low temperature exhaust heat (z) are obtained by putting a heat pump B into actuation by inputting both the outside air heat introduced through a valve 8 and the heat from a heat exchanger 7 as the heat source (x). In this case, the heat from the heat exchanger 7 is the latent heat of condensation developed in a vapor-liquid separating drum 2. On the other hand, liquid flon is heated through a heat exchanger 6, resulting in generating boiling bubbles in a riser 1, when the temperature of the liquid flow reaches its boiling point. By utilizing the lowering of the density in the riser 1 due to the boiling bubbles as the driving force of the flon liquid, the heated flon liquid passes through a transporting pipe 4 to a heat required part so as to be used through a fan coil unit 5 in order to heat a room.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一般のオフィスビルや住宅用及びグリーンハ
ウスの冷暖房また道路の融雪などに必要な熱エネルギー
を効率的に輸送する方法に関するもので、通常利用の他
に地域毎の集中管理方式や工場等の廃熱や温泉熱等コス
トのかからない熱源の有効利用にも役立つものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for efficiently transporting thermal energy necessary for heating and cooling general office buildings, residential buildings, and greenhouses, and for melting snow on roads. In addition to normal use, it is also useful for centralized management in each region and for the effective use of inexpensive heat sources such as waste heat from factories and heat from hot springs.

〔従来技術とその問題点〕[Prior art and its problems]

冷暖房を行なう分野で、熱エネルギーの輸送方法として
はヒートポンプが広く普及している。しかし、かかるヒ
ートポンプを用いる輸送方式では熱需要部が離れて存在
する場合は輸送のためのポンプ動力が必要となり、ラン
ニングコストがかかり、省エネルギー効果も低減してし
まう。
In the field of heating and cooling, heat pumps are widely used as a method of transporting thermal energy. However, in such a transportation method using a heat pump, if the heat demand section is located far away, pump power is required for transportation, which increases running costs and reduces the energy saving effect.

一方、ポンプ等の動力を用いない無動力の熱エネルギー
の輸送法として熱サイフオンがあるが、該熱サイフオン
は上端に設置される気液分離ドラムを冷却しフロン蒸気
を凝縮させる必要があり、その熱損失が問題である。
On the other hand, the thermosiphon is a non-powered method of transporting thermal energy that does not require the use of power such as a pump. Heat loss is a problem.

C問題点を解決するための手段〕 本発明の目的は前記従来例の不都合を解消することにあ
り、そのために本発明は熱サイフオンの気液分離ドラム
内に配設される冷却用熱交換器を熱入力源としてヒート
ポンプに接続し、該ヒートポンプの熱出力を行なう熱交
換器を熱サイフオンの本体に設け、ヒートポンプの補助
熱源として熱サイフオンの気液分離ドラム内で得られる
凝縮潜熱を用いながら、ヒートポンプで得られた温熱、
冷熱を熱サイフオンを利用して熱負荷側に輸送すること
を要旨とする。
Means for Solving Problem C] An object of the present invention is to eliminate the disadvantages of the conventional example, and for this purpose, the present invention provides a cooling heat exchanger disposed in a gas-liquid separation drum of a thermosiphon. is connected to the heat pump as a heat input source, a heat exchanger for producing heat output from the heat pump is provided in the main body of the thermosiphon, and the latent heat of condensation obtained within the gas-liquid separation drum of the thermosiphon is used as an auxiliary heat source for the heat pump. The heat obtained from a heat pump,
The main idea is to transport cold energy to the heat load side using a thermosiphon.

〔作用〕[Effect]

本発明によれば、今まで無駄に捨てられていた熱サイフ
オンの気液分離ドラム内の凝縮潜熱をヒートポンプの補
助熱源として利用でき、その結果、ヒートポンプと熱サ
イフオンを組合せて両者の欠点を補うことになる。
According to the present invention, the latent heat of condensation in the gas-liquid separation drum of the thermosiphon, which has been wasted until now, can be used as an auxiliary heat source for the heat pump, and as a result, the heat pump and the thermosiphon can be combined to compensate for the drawbacks of both. become.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の輸送方法の実施例を示す概念図で、図
中Aは熱サイフオン、Bはヒートポンプを示す。
FIG. 1 is a conceptual diagram showing an embodiment of the transportation method of the present invention, in which A indicates a thermosiphon and B indicates a heat pump.

熱サイフオンAは周知なごとく上昇管1、気液分離ドラ
ム2、下降管3及び輸送管4からなる密閉構造であり、
これらの内部は熱媒体としての液体フロン113  (
Ccl 2 F −CCF 2 )で満されている。液
体フロンとフロン蒸気が平衡状態となっている気液分離
ドラム2は最上端に置かれ、上昇管1及び下降管3は約
5〜Lowはど上がる。また、輸送管4は水平方向に約
100〜300 mはど伸び、その端は放熱コイルに形
成されてファンコイルユニット5の一部を構成し、ここ
から熱需要部に温熱若しくは冷熱を供給できるようにし
ている。
As is well known, the thermosiphon A has a sealed structure consisting of an ascending pipe 1, a gas-liquid separation drum 2, a descending pipe 3, and a transport pipe 4.
Inside these, liquid Freon 113 (
Ccl2F-CCF2). The gas-liquid separation drum 2, in which liquid fluorocarbon and fluorocarbon vapor are in equilibrium, is placed at the top, and the rising pipe 1 and the descending pipe 3 rise about 5 to 10 times low. Further, the transport pipe 4 extends horizontally for approximately 100 to 300 m, and its end is formed into a heat radiation coil to constitute a part of the fan coil unit 5, from which hot or cold heat can be supplied to the heat demand section. That's what I do.

図中7は気液分離ドラム2内に配設され、フロン113
の蒸気を凝縮させてドラム2内の圧力を一定に保持する
ための冷却用の熱交換器で、該熱交換器7の他端を熱入
力用としてヒートポンプBに接続する。また、ヒートポ
ンプBOy熱出力(暖房運転では温熱、冷房運転では冷
熱)をフロンに伝熱するための熱交換器6を、熱サイフ
オンAの本体中、上昇管1の下端部に設置する。
In the figure, 7 is disposed inside the gas-liquid separation drum 2, and the fluorocarbon 113
The other end of the heat exchanger 7 is connected to the heat pump B for heat input. Further, a heat exchanger 6 for transferring heat pump BOy thermal output (hot heat in heating operation, cold heat in cooling operation) to the fluorocarbon is installed in the main body of thermosiphon A at the lower end of riser pipe 1.

図中、9は真空/加圧ポンプで、気液分離ドラム2に接
続され、暖房・冷房運転の切換え時に気液分離ドラム2
の圧力設定を行うもの、図中8は外気を導入し、ヒート
ポンプBの吸熱源を調整するバルブを示す。
In the figure, 9 is a vacuum/pressure pump, which is connected to the gas-liquid separation drum 2, and is connected to the gas-liquid separation drum 2 when switching between heating and cooling operation.
8 in the figure indicates a valve that introduces outside air and adjusts the heat absorption source of heat pump B.

次に前記のごとき装置を用いての動作について説明する
Next, the operation using the above-mentioned apparatus will be explained.

まず、暖房運転の場合について説明すると、バルブ8を
介して導入される外気空気及び熱交換器7からの入力を
熱源XとしてヒートポンプBを作動させ高温yと低温排
気2を得る。この場合、前記のごとく熱交換器7からの
熱は気液分離ドラム2内に発生する凝縮潜熱である。
First, the case of heating operation will be described. The heat pump B is operated using the outside air introduced through the valve 8 and the input from the heat exchanger 7 as the heat source X to obtain a high temperature y and a low temperature exhaust gas 2. In this case, as described above, the heat from the heat exchanger 7 is the latent heat of condensation generated within the gas-liquid separation drum 2.

一方、熱交換器6を介してフロン液は加熱され、沸点に
達すると上昇管1内で沸騰気泡が発生する。
On the other hand, the fluorocarbon liquid is heated through the heat exchanger 6, and when it reaches its boiling point, boiling bubbles are generated in the riser pipe 1.

この沸騰気泡による上昇管1内の密度低下を駆動力とし
て加熱フロン液は輸送管4を通り熱需要部に送られファ
ンコイルユニット5を介して室内の暖房に使われる。そ
の流れと温度レベルを第2図に示し、また第1図中の実
線矢印で示した。
Using the density reduction in the riser pipe 1 due to the boiling bubbles as a driving force, the heated Freon liquid is sent through the transport pipe 4 to the heat demand section and is used for indoor heating via the fan coil unit 5. The flow and temperature level are shown in FIG. 2 and indicated by solid arrows in FIG.

そして、フロン113の飽和圧力と飽和温度の曲線は第
4図に示すように、飽和温度の上昇と共に飽和圧力も上
昇する。加熱されたフロン液の温度はほぼ飽和温度に等
しくなるため、輸送温度の調整は気液分離ドラム2の圧
力で行うことができるが、調整範囲は最大2 kg/a
m2G (飽和温度70゜C以下)であるため熱サイフ
オンAの圧力は比較的低圧に保持され、安全である。
As shown in FIG. 4, the saturation pressure and saturation temperature curve of the Freon 113 increases as the saturation temperature increases. Since the temperature of the heated Freon liquid is almost equal to the saturation temperature, the transportation temperature can be adjusted by the pressure of the gas-liquid separation drum 2, but the adjustment range is up to 2 kg/a
m2G (saturation temperature 70°C or less), the pressure of thermosiphon A is maintained at a relatively low pressure and is safe.

次に冷房運転時の場合について説明すると、外気空気及
び熱交換器7からの入力を熱源又としてヒートポンプを
作動させ低温yと高温排気2を得る。そして熱交換器6
を介してフロン液は冷却される。
Next, to explain the case during cooling operation, the heat pump is operated using outside air and input from the heat exchanger 7 as a heat source to obtain low temperature y and high temperature exhaust gas 2. and heat exchanger 6
The fluorocarbon liquid is cooled through the .

気液分離ドラム2の圧力を真空ポンプ9を用いて大気圧
以下に設定しておけば、ファンコイルユニット5で加熱
されたフロン液は20°C程度でも沸とうし、輸送管4
や下降管3を通して気泡は上昇し、フロン液は暖房時と
逆向きに(第1図点線矢印参照)流れ、冷却されたフロ
ン液はファンコイルユニット5に流入する。また、気液
分離ドラム2では熱交換器7によってフロン蒸気は凝縮
し、ドラム内圧力は低圧のまま保持される。この流れと
温度レベルを第3図に示す。
If the pressure of the gas-liquid separation drum 2 is set to below atmospheric pressure using the vacuum pump 9, the fluorocarbon liquid heated by the fan coil unit 5 will boil even at about 20°C, and the transport pipe 4
Bubbles rise through the downcomer pipe 3, the fluorocarbon liquid flows in the opposite direction to that during heating (see the dotted line arrow in Figure 1), and the cooled fluorocarbon liquid flows into the fan coil unit 5. Further, in the gas-liquid separation drum 2, the freon vapor is condensed by the heat exchanger 7, and the internal pressure of the drum is maintained at a low pressure. This flow and temperature levels are shown in Figure 3.

〔効果〕〔effect〕

以上述べたように本発明の冷暖房用熱エネルギ−の輸送
方法は、ヒートポンプと熱サイフオンを組合わせ、ヒー
トポンプの補助熱源として熱サイフオン上端の気液分離
ドラム内の発熱としての凝縮潜熱を利用するようにした
ので、省エネルギー効果が高く下記の効果を発揮できる
ものである。
As described above, the method of transporting thermal energy for air conditioning and heating of the present invention combines a heat pump and a thermosiphon, and utilizes the latent heat of condensation as heat generated in the gas-liquid separation drum at the upper end of the thermosiphon as an auxiliary heat source for the heat pump. As a result, it has a high energy saving effect and can exhibit the following effects.

イ)熱輸送動力費が不用であるため、ランニングコスト
が安く遠方への熱輸送が可能である。
b) Heat transport Since power costs are not required, running costs are low and heat can be transported to long distances.

口〉熱サイフオンはクローズドシステムで、かつ構造が
簡単であるためメンテナンスが容易である。
The thermosiphon is a closed system and has a simple structure, making maintenance easy.

ハ)熱サイフオン内の圧力は10kg/am2G以下の
低圧であり、安全性が高い。
c) The pressure inside the thermosiphon is low, less than 10 kg/am2G, and is highly safe.

二)ヒートポンプは市販製品が利用でき、簡単に組立て
られる。
2) Heat pumps are commercially available products and can be easily assembled.

ホ)同じ配管で冷暖房が共用できるため配管コストが安
い。
e) Piping costs are low because heating and cooling can be shared using the same piping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷暖房用熱エネルギーの輸送方法の実
施例を示す概念図、第2図は暖房運転時の動作説明図、
第3図は冷房運転時の・動作説明図、第4図は熱媒体の
飽和圧力曲線を示すグラフである。 A・・・熱サイフオン   B・・・ヒートポンブト・
・上昇管      2・・・気液分離ドラム3・・・
下降管      4・・・輸送管5・・・ファンコイ
ルユニット
FIG. 1 is a conceptual diagram showing an embodiment of the method of transporting thermal energy for heating and cooling according to the present invention, and FIG. 2 is an explanatory diagram of the operation during heating operation.
FIG. 3 is an explanatory diagram of the operation during cooling operation, and FIG. 4 is a graph showing the saturation pressure curve of the heat medium. A...Thermosiphon B...Heat pump
・Rising pipe 2... Gas-liquid separation drum 3...
Descending pipe 4... Transport pipe 5... Fan coil unit

Claims (1)

【特許請求の範囲】[Claims] 熱サイフォンの気液分離ドラム内に配設される冷却用熱
交換器を熱入力源としてヒートポンプに接続し、該ヒー
トポンプの熱出力を行なう熱交換器を熱サイフォンの本
体に設け、ヒートポンプの補助熱源として熱サイフォン
の気液分離ドラム内で得られる凝縮潜熱を用いながら、
ヒートポンプで得られた温熱、冷熱を熱サイフォンを利
用して熱負荷側に輸送することを特徴とした冷暖房用熱
エネルギーの輸送方法。
A cooling heat exchanger disposed in the gas-liquid separation drum of the thermosyphon is connected to the heat pump as a heat input source, and a heat exchanger for producing heat output from the heat pump is provided in the main body of the thermosyphon, and serves as an auxiliary heat source for the heat pump. While using the latent heat of condensation obtained in the gas-liquid separation drum of the thermosiphon,
A method of transporting thermal energy for air conditioning and heating, characterized by transporting hot and cold heat obtained by a heat pump to a heat load side using a thermosyphon.
JP59219182A 1984-10-17 1984-10-17 Transporting method of air conditioning heat energy Granted JPS6196341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219182A JPS6196341A (en) 1984-10-17 1984-10-17 Transporting method of air conditioning heat energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219182A JPS6196341A (en) 1984-10-17 1984-10-17 Transporting method of air conditioning heat energy

Publications (2)

Publication Number Publication Date
JPS6196341A true JPS6196341A (en) 1986-05-15
JPH035497B2 JPH035497B2 (en) 1991-01-25

Family

ID=16731481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219182A Granted JPS6196341A (en) 1984-10-17 1984-10-17 Transporting method of air conditioning heat energy

Country Status (1)

Country Link
JP (1) JPS6196341A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272042A (en) * 1986-05-20 1987-11-26 Nippon P-Mc Kk Heat pump type air conditioning equipments
CN101813403A (en) * 2010-04-21 2010-08-25 冯益安 Low-pressure extraction-type air conditioner or heat pump water heater
CN102720553A (en) * 2012-04-27 2012-10-10 王法文 Method and device for generating kinetic energy and refrigerating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060302A1 (en) * 2013-10-24 2015-04-30 日本曹達株式会社 Polyol composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272042A (en) * 1986-05-20 1987-11-26 Nippon P-Mc Kk Heat pump type air conditioning equipments
CN101813403A (en) * 2010-04-21 2010-08-25 冯益安 Low-pressure extraction-type air conditioner or heat pump water heater
CN102720553A (en) * 2012-04-27 2012-10-10 王法文 Method and device for generating kinetic energy and refrigerating
CN102720553B (en) * 2012-04-27 2016-12-14 王法文 A kind of method and apparatus producing kinetic energy and refrigeration

Also Published As

Publication number Publication date
JPH035497B2 (en) 1991-01-25

Similar Documents

Publication Publication Date Title
EP0127939A3 (en) High efficiency boiler
WO2013181891A1 (en) Method and apparatus for increasing latent heat utilization efficiency during seawater desalination
JPS6196341A (en) Transporting method of air conditioning heat energy
NO774152L (en) FACILITIES FOR TRANSFER OF HEAT.
JPH0352627A (en) Membrane distillation apparatus
JPH0688893A (en) System of removing decay heat of reactor
CN112569619A (en) Low-temperature vacuum evaporator used at low ambient temperature
JPS6045328B2 (en) heating device
JPS60164178A (en) Solar heat collecting device
CN214319148U (en) Low-temperature vacuum evaporator used at low ambient temperature
JPS5937589Y2 (en) Cooling circulating water tank
JPS56105225A (en) Room heating device
JPS5835337A (en) Floor heating device
JP2530221B2 (en) Waste heat recovery type heat storage cooling system
CN212362181U (en) Fermentation heat recovery heating system
WO2003078904A1 (en) Heat exchange structure body for atmospheric pressure steam and heat exchange method
JPS5941400B2 (en) Anhydrous ethanol manufacturing method and device
JPS6242296Y2 (en)
JPS6196395A (en) Heat transfer device
JPS62288493A (en) Heat transfer system
CA1170522A (en) Heat transfer apparatus and method
JPS6321081B2 (en)
JP3244357B2 (en) Double effect absorption refrigerator
JPS6115427Y2 (en)
JPS6018768Y2 (en) Heat pump room air conditioner with outdoor heater