JPS5941400B2 - Anhydrous ethanol manufacturing method and device - Google Patents

Anhydrous ethanol manufacturing method and device

Info

Publication number
JPS5941400B2
JPS5941400B2 JP57138244A JP13824482A JPS5941400B2 JP S5941400 B2 JPS5941400 B2 JP S5941400B2 JP 57138244 A JP57138244 A JP 57138244A JP 13824482 A JP13824482 A JP 13824482A JP S5941400 B2 JPS5941400 B2 JP S5941400B2
Authority
JP
Japan
Prior art keywords
column
pipe
concentrating
ethanol
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57138244A
Other languages
Japanese (ja)
Other versions
JPS5927841A (en
Inventor
利昭 赤羽
有正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Original Assignee
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI filed Critical SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority to JP57138244A priority Critical patent/JPS5941400B2/en
Publication of JPS5927841A publication Critical patent/JPS5927841A/en
Publication of JPS5941400B2 publication Critical patent/JPS5941400B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、無水エタノールの製造方法および装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing absolute ethanol.

更に詳しくは、本発明は、稀薄かつ泥状のエタノール原
料から、直接かつ、省エネルギー的に無水エタノールを
取得することのできる該製造方法}よび装置に関する。
公知の稀薄原料からの無水アルコール製造方法および装
置は、直列に接続された濃縮塔、共沸蒸留塔}よび溶剤
回収塔の濃縮塔に稀薄原料を供給し、各塔は夫々独立の
熱源で加熱され、塔頂塔気は夫々独立の冷却源で冷却さ
れている。
More specifically, the present invention relates to a production method and apparatus that can directly and energy-savingly obtain anhydrous ethanol from a dilute and muddy ethanol raw material.
In the known method and apparatus for producing absolute alcohol from dilute raw materials, dilute raw materials are supplied to the concentrating columns of a concentrating column, an azeotropic distillation column, and a solvent recovery column that are connected in series, and each column is heated by an independent heat source. The air at the top of each tower is cooled by an independent cooling source.

このため特に濃縮塔で消費する熱量は、たとえば該公知
方法で取得される無水アルコールの熱量とほY等量にも
達し、そのコストは今日の省エネルギー時代においては
無視しえない程度のものである。特開昭56−1137
17号は、この問題に関し、濃縮塔を第1塔(粗濃縮塔
)と第2塔(濃縮塔)に分け、該第2塔の塔頂蒸気を圧
縮昇温させこの蒸気で第1塔の加熱に必要な水蒸気を発
生させ、該加熱後の凝縮液(94〜95%アルコール)
の一部を取得し(製品)、一部を該第2塔の還流液とす
る如く構成している。これによ只第1、2塔の所要加熱
量は、上記圧縮に必要な電力をスチーム換算してもな卦
公知の2塔式濃縮装置に軟べて約占量の熱量ですむこと
となつている。しかし、1該方法で得られる製品は94
〜95%アルコールであシ、共沸塔以下の熱源の合理化
は達成されていない。
For this reason, the amount of heat consumed especially in the concentrating column reaches almost Y equivalent to the amount of heat of anhydrous alcohol obtained by the known method, and its cost cannot be ignored in today's energy-saving era. . Japanese Patent Publication No. 56-1137
Regarding this problem, No. 17 divides the concentration column into a first column (crude concentration column) and a second column (concentration column), compresses and heats the top vapor of the second column, and uses this vapor to feed the first column. Generate the steam necessary for heating, and condensate after heating (94-95% alcohol)
A part of the product is obtained (product), and a part is used as the reflux liquid of the second column. As a result, the amount of heat required for the first and second towers is approximately the same as that of the conventional two-column concentrator, even if the electricity required for the compression is converted into steam. ing. However, the product obtained by this method is 94
With ~95% alcohol, rationalization of the heat source below the azeotropic column has not been achieved.

また、2第2濃縮塔の塔頂圧縮蒸気(118℃)で、水
を加熱して蒸気を発生させることについては、エントロ
ピー的にみてなお合理化の余地がある。本発明者等は、
特開56−113717号に}いて残された上記二つの
課題を同時に解決すべく鋭意研究した。
Furthermore, there is still room for rationalization in terms of entropy in heating water to generate steam using the top-compressed steam (118° C.) of the second concentrating column. The inventors,
In order to simultaneously solve the above two problems left behind in JP-A No. 56-113717, we conducted intensive research.

その結果、第1濃縮塔を加圧式としその塔頂蒸気(たと
えば115℃)で常圧塔である共沸蒸留塔卦よび溶剤回
収塔の缶を加熱し、加熱後の凝縮液を第2濃縮塔に供給
することによつて前記4の問題を解決し、第2濃縮塔の
塔頂蒸気を圧縮した被圧縮ガスでは、該塔の缶液(83
゜0を加熱することによつて前記2の問題を解決した。
以上のように、本発明は省エネルギー的無水アルコール
の製造法と装置の提供を目的とする。以下本発明の構成
及び効果を図に基づいて詳細に説明する。図に}いて、
例えば醗酵法によつて製造された醪のようなエタノール
原料(エタノール濃度1〜6m01%)は、粗濃縮塔A
/)中段へポンプP−1および配管1を通じて供給され
る。
As a result, the first concentrating column is pressurized, and its top vapor (for example, 115°C) is used to heat the cans of the azeotropic distillation column and the solvent recovery column, which are atmospheric pressure columns, and the heated condensate is transferred to the second concentrating column. By supplying the gas to the column to solve the problem 4 above and compressing the top vapor of the second concentrating column, the bottom liquid (83
Problem 2 above was solved by heating the temperature.
As described above, the present invention aims to provide an energy-saving method and apparatus for producing absolute alcohol. The configuration and effects of the present invention will be explained in detail below based on the drawings. Look at the diagram,
For example, ethanol raw material such as moromi produced by fermentation method (ethanol concentration 1 to 6 m01%) is stored in crude concentration column A.
/) Supplied to the middle stage through pump P-1 and piping 1.

その間該原料は熱交換器E−1(予熱器)を通じて予熱
される。塔A内圧は2〜6kg/DG例えば2.4k9
/〜Gで運転される。加熱は塔底に取付けられた熱交換
器E−2(加熱缶)を通じスチームを用いて行う。今、
塔頂蒸気の留出工タノール濃度を53.7m01%とす
ると、その留出濃度は、2.4kg/CILGにおける
エタノール・水の平衡関係から115℃となる。この塔
頂蒸気は、配管2,4、共沸蒸留塔の熱交換器(加熱缶
)E−4および溶剤回収塔Dの熱交換器(加熱缶)E−
6を経由して凝縮され、凝縮液タンク、ポンプP−3お
よび配管5を経由℃て一部は、第2濃縮塔Bの中段に供
給▲れ残部は還流としてA塔に戻V.B塔の塔底液は配
管6およびポンプP−2を経て塔々頂へ戻される。B塔
内は常圧で運転される。エタノール濃度53.7m01
%のA塔からの凝縮液はB塔内で濃縮され、塔頂蒸気の
エタノール濃度を74.7m01(f)とする。この蒸
気は、配管7、圧縮機G於よび熱交換器E−3通じて凝
縮され、ポンプP−4および配管8を経て一部は共沸蒸
留塔Cへ供給され、残部は塔Bへ還流として戻される。
塔Bの塔底液濃度は、エタノール21m0101)であ
り、その沸点は、常圧で83゜C1他方、前記圧縮器G
で圧縮前の塔頂温度は留出濃度を74.7m010I)
とすれば78゜Cであり、塔底温度は塔底のエタノール
濃度を21m01%とすると83℃でこれに塔内圧損失
による温度上昇}よび熱伝導に必要な温度差を15゜C
とすると圧縮後の蒸気の凝縮温度は98゜Cとなわ、そ
の成績係数η=18.6となる。この成績係数を圧縮比
であられすと1.6となるが、常圧1塔式の場合に塔底
液を同じように圧縮蒸気で加熱しようとすると塔底温度
100℃に必要な15℃を加えた115℃が蒸気の圧縮
後の凝縮温度となジ、これに対応する成績係数は10.
5、換算した圧縮比は2.8となる。したがつて2塔式
の方が圧縮比が小さくて所要動力も少くてすむ。他方、
1塔式と2塔式の還流比について考察すると、原料中エ
タノール濃度2.43m01(L(平衡蒸気濃度21.
7m010/))、留出濃度を74.7m01とすると
1塔式では最小還流比γmは2.75となる。他方、2
塔式では、B塔の原料濃度(53.7m01%)(平衡
蒸気濃度66,9m01%)留出濃度は74.7m01
(Ff)であり、γmは0.591となる。以上のよう
に1塔式と2塔式では還流量は同じ留出量に対して前者
は後者の4.6倍の還流量が必要となシ、従つて蒸気圧
縮機Gが処理する蒸気量も4.5倍となる。B塔の塔底
液は、前述のように配管6、ポンプP−2を経てA塔の
塔頂へ還流液として供給される。共沸蒸留塔Cは常圧で
運転される。該塔の缶(熱交換器E−4)は、前述のよ
うにA塔の蒸気で加熱され、塔頂近くには、前述のB塔
蒸気の凝縮液が配管8から、共沸溶剤が配管10から、
卦よびデカンタ一Fからの共沸溶剤−エタノールが配管
12から供給され、塔底の配管11から無水エタノール
が抜き出される。塔底液の温度は79℃(註、エタノー
ルの沸点)、熱交換器E一4に供給されるA塔々頂蒸気
の温度は前述のように115℃であるから、伝熱に必要
な温度差は、充分である。C塔の塔頂からは、三成分共
沸蒸気が配管9を経て熱交換器E−5(凝縮器)に導か
れ、冷却水で冷却され生じた凝縮液は、デカンタ一Fに
導かれる。該凝縮液は、デカンタ一で共沸溶剤に富む層
と水分に富む層に分けられ、前者は前述のように塔Cに
戻され、後者は、配管13を経て溶剤回収塔へ供給され
る。溶剤回収塔Dは常圧で運転される。該塔の缶(熱交
換器E−6)は、前述のようにA塔の蒸気で加熱され、
塔頂近くには、前述のC塔デカンタ一の水に富む層液が
配管13から、塔頂蒸気の凝縮液(溶剤)が配管16か
ら供給され、塔底の配管15から水が抜き出される。塔
底液の温度は1000C(註水の沸点)、熱交換器E−
6に供給されるA塔々頂蒸気の温度は、前述のように1
15゜Cであるから、伝熱に必要な温度差は充分である
。配管24からの凝縮液の一部はデカンタ一Fに戻され
る。以上のように共沸蒸留塔C卦よび溶剤回収塔Dの缶
の熱源はA塔々頂蒸気であるから、公知方法のように独
立の加熱源を全く必要としない。また、本発明は、濃縮
塔を2塔式とした前述の特開昭56−113717号と
比較しても、4A塔の塔頂蒸気の潜熱が高度に利用され
ている点および、◎B塔々頂蒸気の圧縮ガスは、全量B
塔の缶(熱交換器E−3)の加熱に利用され、水から蒸
気を発生するのには利用されない点で4場合と同様に熱
利用が高度であわ、およびO独立の加熱源は、A塔の缶
(熱交換器E−2)対するもののみでよいから熱管理が
容易である。
Meanwhile, the raw material is preheated through heat exchanger E-1 (preheater). The internal pressure of tower A is 2 to 6 kg/DG, for example 2.4k9
It is driven at /~G. Heating is performed using steam through a heat exchanger E-2 (heating can) attached to the bottom of the column. now,
Assuming that the distillate ethanol concentration in the tower top vapor is 53.7 m01%, the distillate concentration will be 115° C. based on the equilibrium relationship between ethanol and water at 2.4 kg/CILG. This tower top vapor is transferred to the pipes 2 and 4, the heat exchanger (heating can) E-4 of the azeotropic distillation column, and the heat exchanger (heating can) E-4 of the solvent recovery column D.
6, a part of it is supplied to the middle stage of the second concentrating column B via the condensate tank, pump P-3 and pipe 5, and the rest is returned to column A as reflux. The bottom liquid of tower B is returned to the top of the towers via pipe 6 and pump P-2. The inside of the B column is operated at normal pressure. Ethanol concentration 53.7m01
% of the condensate from column A is concentrated in column B, resulting in an ethanol concentration of 74.7 m01(f) in the overhead vapor. This vapor is condensed through pipe 7, compressor G and heat exchanger E-3, and a portion is supplied to azeotropic distillation column C via pump P-4 and pipe 8, and the remainder is refluxed to column B. returned as .
The concentration of the bottom liquid in column B is ethanol 21m0101), and its boiling point is 83°C1 at normal pressure.
The tower top temperature before compression is 74.7m010I)
If the ethanol concentration at the bottom of the column is 21m01%, then the temperature at the bottom of the tower is 83°C, plus the temperature rise due to the pressure loss inside the tower, and the temperature difference required for heat conduction is 15°C.
Then, the condensation temperature of the vapor after compression is 98°C, and its coefficient of performance η=18.6. When this coefficient of performance is expressed as a compression ratio, it becomes 1.6, but if you try to heat the bottom liquid with compressed steam in the same way in the case of a normal-pressure one-column type, the 15°C required for a tower bottom temperature of 100°C will be 1.6. The added 115°C is the condensation temperature after compression of the vapor, and the corresponding coefficient of performance is 10.
5. The converted compression ratio is 2.8. Therefore, the two-column type has a smaller compression ratio and requires less power. On the other hand,
Considering the reflux ratio of the one-column type and the two-column type, the ethanol concentration in the raw material is 2.43 m01 (L (equilibrium vapor concentration 21.0 m).
7m010/)) and the distillate concentration is 74.7m01, the minimum reflux ratio γm is 2.75 in a one-column system. On the other hand, 2
In the column type, the raw material concentration in the B column (53.7 m01%) (equilibrium vapor concentration 66.9 m01%) and the distillate concentration is 74.7 m01
(Ff), and γm is 0.591. As mentioned above, the reflux amount for the one-column type and the two-column type is the same, but the former requires 4.6 times the reflux amount of the latter. Therefore, the amount of vapor processed by vapor compressor G is It also becomes 4.5 times. The bottom liquid of the B column is supplied as a reflux liquid to the top of the A column via the pipe 6 and the pump P-2, as described above. Azeotropic distillation column C is operated at normal pressure. The can of the column (heat exchanger E-4) is heated by the steam from column A as described above, and near the top of the column, the condensate of the vapor from column B is supplied from pipe 8, and the azeotropic solvent is supplied from pipe 8. From 10,
The azeotropic solvent-ethanol from the column and decanter 1F is supplied through a pipe 12, and anhydrous ethanol is extracted from a pipe 11 at the bottom of the tower. The temperature of the bottom liquid is 79°C (note: the boiling point of ethanol), and the temperature of the vapor at the top of the A column supplied to heat exchanger E-4 is 115°C as mentioned above, so the temperature required for heat transfer is The difference is sufficient. From the top of the C tower, the three-component azeotropic vapor is led to a heat exchanger E-5 (condenser) via a pipe 9, and the condensate produced by cooling with cooling water is led to a decanter 1F. The condensate is separated into an azeotropic solvent-rich layer and a water-rich layer in a decanter, the former being returned to column C as described above, and the latter being fed via pipe 13 to the solvent recovery column. Solvent recovery column D is operated at normal pressure. The can of the column (heat exchanger E-6) is heated by the steam of the A column as described above,
Near the top of the tower, the water-rich layer liquid from the C tower decanter is supplied from pipe 13, the condensate (solvent) of the tower vapor is supplied from pipe 16, and water is extracted from pipe 15 at the bottom of the tower. . The temperature of the bottom liquid is 1000C (the boiling point of water), and the heat exchanger E-
As mentioned above, the temperature of the A tower top steam supplied to 6 is 1.
Since the temperature is 15°C, the temperature difference necessary for heat transfer is sufficient. A portion of the condensate from the pipe 24 is returned to the decanter 1F. As mentioned above, since the heat source for the cans of the azeotropic distillation column C and the solvent recovery column D is the overhead steam of the A column, there is no need for any independent heating source unlike the known method. In addition, the present invention has the advantage that the latent heat of the top steam of the 4A column is utilized to a high degree, even compared to the above-mentioned Japanese Patent Application Laid-open No. 56-113717, which uses a two-column type concentrating column. The total amount of compressed gas of top steam is B
Similar to case 4, the heat utilization is high in that it is used to heat the column can (heat exchanger E-3) and not used to generate steam from water, and the O independent heating source is Heat management is easy because only the one for the can of tower A (heat exchanger E-2) is needed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の無水エタノール製造装置のフローシートを
示す。
The figure shows a flow sheet of the anhydrous ethanol production apparatus of the present invention.

Claims (1)

【特許請求の範囲】 1 濃縮塔、共沸蒸留塔および溶剤回収塔からなる蒸留
装置を用いてエタノール原料から無水エタノールを製造
する方法において、濃縮塔を直列に2塔とし、第1濃縮
塔を加圧蒸留塔としてその塔頂蒸気を共に常圧で操作す
る共沸蒸留塔と溶剤回収塔の缶の加熱に使用できる如く
し、該使用後の凝縮液は、常圧で操作する第2濃縮塔の
中段へ供給し、該塔の塔頂蒸気は、該塔に付設した圧縮
機で圧縮して被圧縮ガスが該塔の缶の加熱に使用できる
如くし、該加熱後の凝縮液の一部を共沸蒸留塔へ他の一
部を第2濃縮塔々頂への環流液とし、第2濃縮塔の塔底
液を前記第1濃縮塔への環流液とすることを特徴とする
無水エタノールの製造方法。 2 特許請求の範囲第1項において、第1濃縮塔の塔内
圧力を2〜6kg/cm^2Gとする方法。 3 特許請求の範囲第1項において、第2濃縮塔の塔頂
蒸気を2〜4kg/cm^2Gまで圧縮する方法。 4 濃縮塔、共沸蒸留塔および溶剤回収塔からなる蒸留
装置であつてエタノール原料から無水エタノールを製造
するものにおいて、濃縮塔を加圧式粗濃縮塔Aと該塔で
発生させたエタノールを濃縮する濃縮塔Bとし、該塔で
発生させたエタノール蒸気を圧縮する圧縮機G、共沸蒸
留塔Cおよび洗剤回収塔Dからなり、加圧式粗濃縮塔A
には、原料供給管1、熱交換器E−2および缶液抜出管
3を有し、該塔と濃縮塔B間には、エタノール蒸気配管
2および4、熱交換器E−4およびE−6、凝縮液タン
クV、凝縮液配管5、凝縮液ポンプP−3、抜出液配管
6および還流液ポンプP−2を有し、濃縮塔Bと圧縮機
G間にはエタノール蒸気配管7を圧縮機Gと共沸蒸留塔
C間には圧縮ガス配管7′、熱交換器E−3、濃縮液配
管8、凝縮液ポンプP−4を濃縮塔Bと凝縮液ポンプP
−4間には濃縮液配管8を有し、共沸蒸留塔Cには熱交
換器E−4および無水エタノール抜出管11を塔底部に
有し、該塔Cと溶剤回収塔D間には共沸蒸気配管9、熱
交換器E−5、デカンターF、デカンター抜出液配管1
2および13を有し、溶剤回収塔Dには、熱交換器E−
6および水抜出管15を塔底部に有し、該塔々頂とデカ
ンターF間には、溶剤蒸気配管14、熱交換器E−7お
よび溶剤配管16を熱交換器E−7と溶剤回収塔D間に
も溶剤配管16を、それぞれ結合若しくは設置したこと
を特徴とする無水エタノールの製造装置。 5 原料供給管1と水抜出管17を交差させた位置に熱
交換器E−1を有する特許請求の範囲第4項の装置。 6 加圧式粗濃縮塔A、濃縮塔B、共沸蒸留塔Cおよび
溶剤回収塔Dにそれぞれ加熱缶としての熱交換器E−2
、E−3、E−4およびE−6を設置してなる特許請求
の範囲第4項の装置。
[Claims] 1. A method for producing anhydrous ethanol from an ethanol raw material using a distillation apparatus consisting of a concentrating column, an azeotropic distillation column, and a solvent recovery column, in which two concentrating columns are connected in series, and the first concentrating column is As a pressurized distillation column, the top vapor can be used to heat the cans of the azeotropic distillation column and the solvent recovery column, both of which are operated at normal pressure, and the condensate after the use is transferred to the second condensation column, which is operated at normal pressure. The top vapor of the column is compressed by a compressor attached to the column so that the compressed gas can be used to heat the can of the column, and part of the condensate after heating is An anhydrous product characterized in that one part is sent to the azeotropic distillation column and the other part is used as the reflux liquid to the top of the second concentration column, and the bottom liquid of the second concentration column is used as the reflux liquid to the first concentration column. Method for producing ethanol. 2. The method according to claim 1, wherein the internal pressure of the first concentrating column is 2 to 6 kg/cm^2G. 3. A method according to claim 1, in which the top vapor of the second concentrating column is compressed to 2 to 4 kg/cm^2G. 4. In a distillation apparatus consisting of a concentrating column, an azeotropic distillation column, and a solvent recovery column that produces anhydrous ethanol from an ethanol raw material, the concentrating column is a pressurized crude concentrating column A and the ethanol generated in the column is concentrated. The concentrating column B consists of a compressor G that compresses the ethanol vapor generated in the column, an azeotropic distillation column C, and a detergent recovery column D, and a pressurized crude concentrating column A.
has a raw material supply pipe 1, a heat exchanger E-2, and a bottom liquid withdrawal pipe 3, and between the column and the concentration column B, there are ethanol vapor pipes 2 and 4, heat exchangers E-4 and E -6, has a condensate tank V, a condensate pipe 5, a condensate pump P-3, an extracted liquid pipe 6 and a reflux pump P-2, and an ethanol vapor pipe 7 between the concentrating column B and the compressor G. Between the compressor G and the azeotropic distillation column C, there is a compressed gas pipe 7', a heat exchanger E-3, a concentrate pipe 8, a condensate pump P-4, and a condensate pump P between the concentrator B and the condensate pump P.
The azeotropic distillation column C has a heat exchanger E-4 and an anhydrous ethanol extraction pipe 11 at the bottom of the column. are azeotropic steam piping 9, heat exchanger E-5, decanter F, decanter extraction liquid piping 1
2 and 13, and the solvent recovery column D has a heat exchanger E-
A solvent vapor pipe 14, a heat exchanger E-7 and a solvent pipe 16 are connected between the heat exchanger E-7 and the solvent recovery tower between the top of the tower and the decanter F. An apparatus for producing anhydrous ethanol, characterized in that solvent piping 16 is also connected or installed between D and D. 5. The apparatus according to claim 4, which has a heat exchanger E-1 at a position where the raw material supply pipe 1 and the water withdrawal pipe 17 intersect. 6 A heat exchanger E-2 as a heating can is installed in each of the pressurized crude concentration column A, concentration column B, azeotropic distillation column C, and solvent recovery column D.
, E-3, E-4 and E-6.
JP57138244A 1982-08-09 1982-08-09 Anhydrous ethanol manufacturing method and device Expired JPS5941400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57138244A JPS5941400B2 (en) 1982-08-09 1982-08-09 Anhydrous ethanol manufacturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138244A JPS5941400B2 (en) 1982-08-09 1982-08-09 Anhydrous ethanol manufacturing method and device

Publications (2)

Publication Number Publication Date
JPS5927841A JPS5927841A (en) 1984-02-14
JPS5941400B2 true JPS5941400B2 (en) 1984-10-06

Family

ID=15217436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138244A Expired JPS5941400B2 (en) 1982-08-09 1982-08-09 Anhydrous ethanol manufacturing method and device

Country Status (1)

Country Link
JP (1) JPS5941400B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226837A (en) * 1983-12-01 1985-11-12 Res Assoc Petroleum Alternat Dev<Rapad> Apparatus for producing absolute ethanol and production of absolute ethanol
KR100348781B1 (en) * 2000-08-17 2002-08-14 에스케이건설 주식회사 Process controller for reducing energy in potable ethanol distillation
JP5313482B2 (en) * 2007-10-31 2013-10-09 株式会社日本触媒 Process for producing fatty acid alkyl ester and / or glycerin
US8350109B2 (en) * 2010-12-13 2013-01-08 Lummus Technology Inc. Production of styrene from ethylbenzene using azeotropic vaporization and low overall water to ethylbenzene ratios

Also Published As

Publication number Publication date
JPS5927841A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
US9205381B2 (en) Method for dewatering water-containing organic substance
CN100551895C (en) A kind of method that from contain acetic acid containing waste water, reclaims acetic acid
CN206881182U (en) The device of energy-efficient concentrate
CN110404285A (en) Four column distillations and UF membrane integrated system and its method for distilling ethyl alcohol
US4645569A (en) Process for producing anhydrous ethanol
JP2004033844A (en) Internal heat exchange type distillation column
CN107158734A (en) The device and its energy-efficient concentrating method of N ethyl piperazidines of energy-efficient concentrate
JPS6055117B2 (en) Anhydrous ethanol manufacturing method and device
AU2020104292A4 (en) A new type of internally heat integrated distillation column system device and its use method
JPS5941400B2 (en) Anhydrous ethanol manufacturing method and device
JPS6253702A (en) Distillation accompanied by energy recovery by re-compression of steam used in ejector
CN211612282U (en) Triple-effect membrane separation dehydration energy-saving device for preparing anhydrous alcohol
JPS597313B2 (en) Alcohol distillation equipment
CN204767516U (en) Rectification forced circulation heating device
CN106631697A (en) Separation method for normal propyl alcohol and isopropyl alcohol
CN110483249A (en) A kind of six tower quadruple effect rectificating method of single column steam drive type methanol of not by-product fusel oil
CN210495282U (en) Four-tower distillation and membrane separation integrated system
CN205323257U (en) Ethanol differential pressure distillation plant with flash distillation
CN102583395A (en) Heat pump rectification method for refining trichlorosilane
CN113440882A (en) Device and method applied to styrene separation system
JP3184501B2 (en) Internal heat exchange distillation column
JPS60226837A (en) Apparatus for producing absolute ethanol and production of absolute ethanol
CN219579901U (en) Alcohol rectification and heat energy recycling device
JP2903096B2 (en) Method and apparatus for separating azeotropic mixed solution
CN115430166B (en) Process system and method for steam driven heat pump auxiliary bulkhead tower