JPS60226837A - Apparatus for producing absolute ethanol and production of absolute ethanol - Google Patents

Apparatus for producing absolute ethanol and production of absolute ethanol

Info

Publication number
JPS60226837A
JPS60226837A JP58227561A JP22756183A JPS60226837A JP S60226837 A JPS60226837 A JP S60226837A JP 58227561 A JP58227561 A JP 58227561A JP 22756183 A JP22756183 A JP 22756183A JP S60226837 A JPS60226837 A JP S60226837A
Authority
JP
Japan
Prior art keywords
column
piping
liquid
ethanol
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58227561A
Other languages
Japanese (ja)
Other versions
JPH0254811B2 (en
Inventor
Toshiaki Akaha
赤羽 利昭
Arimasa Sato
佐藤 有正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP58227561A priority Critical patent/JPS60226837A/en
Publication of JPS60226837A publication Critical patent/JPS60226837A/en
Publication of JPH0254811B2 publication Critical patent/JPH0254811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Abstract

PURPOSE:To obtain absolute ethanol from an ethanol raw material with saved energy, by using combination of a distillation apparatus consisting of a concentration column, azeotropic distillation column and solvent recovery column with a decarbonation apparatus to remove previously gaseous carbon dioxide in the raw material. CONSTITUTION:An ethanol raw material 1 containing CO2 is fed to a deaeration column (A) decompressed by a vacuum generating device (H), decardonated and fed to a concentration column (B) to prevent trouble due to accumulation of CO2. The concentration column (B) and an azeotropic distillation column (C) are used as pressurized distillation columns, and overhead vapors 4 and 8 of both columns (B) and (C) are compressed by compressors (G1) and (G2) to heat bottoms 6 are 11 of the respective columns (B) and (C) with the compressed gases 4' and 8'. One condensed liquid 4' is partially fed to the column (C), and the other is returned to the column (B). The other condensed liquid 9 is separated into two layers in a decanter (F), and the upper layer is returned to the column (C). The lower layer is fed to a solvent recovery column (D). The overhead vapor 14 of the column (D) is cooled, condensed, and partially reluxed to the top of the column (D). The other is returned to the decanter (F) respectively, and water is taken out of the bottom 17 of the column (D) to give the aimed absolute ethanol advantageously from the bottom 7 of the column (B).

Description

【発明の詳細な説明】 本発明は、無水エタノールの製造方法および装置に関す
る。更に詳しくは、本発明は、稀薄かつ泥状のエタノー
ル原料から省エネルギー的に無水エタノールを取得する
ことのできる該製造方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing absolute ethanol. More specifically, the present invention relates to a manufacturing method and apparatus capable of obtaining anhydrous ethanol from a dilute and muddy ethanol raw material in an energy-saving manner.

公知の稀薄原料からの無水アルコール製造装置は、直列
に接続された濃縮塔、共沸蒸留塔および溶剤回収塔から
なる装置の濃縮塔に稀薄原料を供給し、塔頂蒸気は夫々
独立の冷却源で冷却されるよう構成されている。
In a known apparatus for producing anhydrous alcohol from dilute raw materials, dilute raw materials are supplied to the concentrating column of the device, which consists of a concentrating column, an azeotropic distillation column, and a solvent recovery column connected in series, and the top vapor is each provided with an independent cooling source. It is designed to be cooled by

このため特に濃縮塔で消費する熱量は、たとえば該公知
方法で取得される無水アルコールの保有する熱量とはC
等量にも達し、そのコストは今日の省エネルギー時代に
おいては無視しえない程度のものである。特開昭58−
11317号は、この問題に関し、濃縮塔を第1塔(粗
濃縮塔)と第2塔(濃縮塔)に分け、該第2塔の塔頂蒸
気を圧縮昇温させてこの蒸気で第1塔の加熱に必要な水
蒸気を発生させ、該加熱後の凝縮液(94〜95%アル
コール)の一部を取得しく製品)、一部を該第2塔の環
流液とする如く構成している。これにより、第1.2塔
の所要加熱量は、上記圧縮に必要な電力をスチーム換算
してもなお公知の2塔式濃縮装置ニ較へて約172最の
熱量ですむことになっている。
Therefore, the amount of heat consumed in the concentrating column is different from the amount of heat possessed by the absolute alcohol obtained by the known method, for example.
The cost has reached a level that cannot be ignored in today's energy-saving era. Japanese Unexamined Patent Publication No. 1983-
No. 11317 deals with this problem by dividing the concentration column into a first column (crude concentration column) and a second column (concentration column), compressing and heating the top vapor of the second column, and using this vapor to feed the first column. The structure is such that the steam necessary for heating is generated, a part of the condensate (94 to 95% alcohol) after heating is obtained (product), and a part is used as the reflux liquid of the second column. As a result, the amount of heat required for the 1st and 2nd columns is approximately 172 times less than that of a known two-column concentrator, even if the electric power required for the compression is converted into steam. .

しかし、該方法で得られる製品は、84〜95%アルコ
ールであり、無水アルコールを得るための共沸塔以下の
熱源の合理化は達成されていない。
However, the product obtained by this method is 84-95% alcohol, and rationalization of the heat source below the azeotropic column for obtaining absolute alcohol has not been achieved.

木発明者等は、特開昭58−113717号において残
された課題を解決すべく研究して二発明を完成し、先に
特願昭57−138244号および仝58−70708
号として特許出願した。これらの発明の装置では、第1
塔(粗濃縮塔)および第2塔(濃縮塔)のいずれか一つ
を加圧塔、他の一つを常圧塔とし常圧塔の塔頂蒸気を機
械式圧縮ポンプで圧縮して被圧縮ガスが数基の缶の加熱
に使用できる如くシ、他の一つを加圧蒸留塔としてその
塔頂蒸気を共に常圧で操作する共沸蒸留塔と溶剤回収塔
の加熱に使用できる如くすることにより、共沸蒸留塔以
下の熱源の合理化を図った。
The inventors of the tree researched and completed two inventions in order to solve the problems left in Japanese Patent Application Laid-open No. 58-113717, and first published Japanese Patent Application No. 57-138244 and Japanese Patent Application No. 58-70708.
A patent application was filed as No. In the devices of these inventions, the first
Either one of the column (crude concentration column) and the second column (concentration column) is a pressure column, and the other one is a normal pressure column, and the top vapor of the normal pressure column is compressed with a mechanical compression pump. The compressed gas can be used to heat several reactors, and one can be used as a pressurized distillation column so that the top vapor can be used to heat the azeotropic distillation column and the solvent recovery column, both of which operate at normal pressure. By doing so, we aimed to rationalize the heat sources below the azeotropic distillation column.

また、同様の目的で他の一発明を完成し特願昭57−2
081184号として特許出願した。この発明の装置で
は、第1塔(粗濃縮塔)および第2塔(共沸塔)のいず
れか一つの塔頂ガスを蒸気タービンで機械的に圧縮し、
圧縮されたガスを同一の塔の缶液の加熱に使用し、他の
一つの塔の塔頂蒸気を吸収式熱ポンプ(兼しポイラー)
で凝縮させることにより同一の塔の缶液の熱源とし、該
吸収式熱ポンプの熱源には前述の蒸気タービンで使用ず
みの背圧蒸気を使用することにより熱源の合理化を図っ
た。しかしながら、これらの改良技術では、粗濃縮塔の
塔頂蒸気中に含まれる非被縮性のガスを分離せず、若し
くは分離することが不可能なため、エタノール原料とし
て前述の醪のような醗酵に基づく炭酸ガス(CO2)を
含有しているものを使用した場合には、非凝縮性ガスと
してのCo2が粗濃縮塔、儂縮塔若しくは共沸塔に蓄積
し、これらのガスの各塔々頂蒸気への混入は、圧縮機の
圧縮比を増加させ、被圧縮ガスが各基のレポイラーで凝
縮しないのでレポイラーの伝熱係数が低下し、結局該し
ポイラーの所要伝熱面積を増大させることが判った。
In addition, he completed another invention for the same purpose and applied for a patent application in 1984-2.
A patent application was filed as No. 081184. In the apparatus of this invention, the top gas of either one of the first column (crude concentration column) and the second column (azeotropic column) is mechanically compressed by a steam turbine,
The compressed gas is used to heat the bottom liquid in the same column, and the top vapor of another column is used as an absorption heat pump (also known as a boiler).
The heat source was rationalized by condensing it in the same tower and using the back pressure steam used in the steam turbine as the heat source for the absorption heat pump. However, these improved technologies do not separate or are impossible to separate the non-condensable gas contained in the vapor at the top of the crude condensation column. When a gas containing carbon dioxide (CO2) based on Mixing into the top steam increases the compression ratio of the compressor, and since the compressed gas is not condensed in each repoiler, the heat transfer coefficient of the repoiler decreases, which ultimately increases the required heat transfer area of the boiler. It turns out.

上述のようにC02が濃縮塔に蓄積する状況を考察する
と下記の如くである。
Considering the situation in which C02 accumulates in the concentration column as described above, the situation is as follows.

■先ず原料醪(6〜IO%エタノール含有)に含まれる
 Cfhの量は、CO2の溶解度上は水(30”(りと
みなせば、その溶解度は0.6B5mJL /水tan
 (日本化学会発行、化学便覧)であるので、原料1m
”ハr(約1000Kg/hr)に対して、 0.8B5 X 1 = 0.685Nm″/hrが溶
解している。
■First of all, the amount of Cfh contained in the raw material moromi (containing 6 to IO% ethanol) is determined by the solubility of CO2, which is 0.6 B5 mJL/water tan.
(Chemical Handbook, published by the Chemical Society of Japan), so 1m of raw material
"0.8 B5

■次に、この原料を密閉系の蒸留システムで処理した際
、 Copの排出先は、イ、蒸留されたエタノールおよ
び口、廃液中のいずれかである。しかしながら、後述す
る理由でエタノールへ移行するC02量は、原料から持
込まれるCO2に較べて著しく少なく、廃液中に移行す
るCO2は殆んどない。
■Next, when this raw material is processed in a closed distillation system, the Cop is discharged to either (i) the distilled ethanol, the distilled ethanol, or the waste liquid. However, for reasons described later, the amount of CO2 transferred to ethanol is significantly smaller than the CO2 brought in from the raw materials, and almost no CO2 is transferred to the waste liquid.

先づ前者については、無水エタノールガスが78℃で凝
縮し、この温度で溶解しうるC(h量を15℃の水に於
けるC02溶解度と7!3℃の水におけるそれとの比と
同じ比率(1/3.8)で低下するとすれば、エタノー
ル6重量%の原料1000Kg/hrに対して、+00
0X O,08X 2.3X 1/3.8÷0.79=
 0.048Nrrf /hr となる(た(し、 2.3は15℃のエタノールに対す
る CO2の溶解度、0.78はエタノールの比重であ
る)。上述の0.048Nrn”/hr *、”、前述
(7) 0.eEi5Nm’ /hr (原料から持込
まれるCfh量)に較べ著しく少ない。
Regarding the former, anhydrous ethanol gas condenses at 78°C, and the amount of C (h) that can be dissolved at this temperature is the same as the ratio of the C02 solubility in water at 15°C to that in water at 7!3°C. (1/3.8), for 1000 kg/hr of raw material containing 6% ethanol, +00
0X O, 08X 2.3X 1/3.8÷0.79=
0.048Nrrf/hr (2.3 is the solubility of CO2 in ethanol at 15°C, 0.78 is the specific gravity of ethanol). 7) It is significantly smaller than 0.eEi5Nm'/hr (amount of Cfh brought in from raw materials).

次に後者(廃液中に移行するC02)については、濃縮
塔(若しくは粗濃縮)の缶液(註、この一部が逐次排出
される)は、 100°C(常圧の場合)の水であり、
CO2の溶解度は、実質的に零である。
Next, regarding the latter (C02 transferred to waste liquid), the bottom liquid (note, a part of this is sequentially discharged) from the concentration tower (or crude concentration) is heated with water at 100°C (at normal pressure). can be,
The solubility of CO2 is essentially zero.

■■、■に述べた理由で蒸留システムに持込まれたCo
2は、その大部分系内に蓄積し、前述のトラブルを惹き
おこす。
Co introduced into the distillation system for the reasons stated in ■■ and ■
2, most of it accumulates within the system, causing the above-mentioned trouble.

木発明渚等は、この問題を解決すべく、原料中に含まれ
る炭酸カスを予め除去する装置として後に詳述する脱気
塔を濃縮塔、共沸蒸留塔ならびに溶剤回収塔からなる無
水エタノール製造装置に組み合わせ、この脱炭酸ガス装
置で処理されたエタノール原料を濃縮塔に供給できるよ
うにすることにより、前述のトラブルを解決した。
In order to solve this problem, Kikai Nagisa et al. developed an anhydrous ethanol production system consisting of a degassing tower, which will be described in detail later, as a device for preliminarily removing carbon dioxide residue contained in raw materials, a concentrating tower, an azeotropic distillation tower, and a solvent recovery tower. The above-mentioned trouble was solved by combining the decarboxylation device with the decarboxylation device so that the ethanol raw material treated with the decarbonation gas device could be supplied to the concentrating column.

以上のように本発明は、省エネルギー的無水アルコール
の製造法と装置の提供を目的とする。
As described above, the present invention aims to provide an energy-saving method and apparatus for producing anhydrous alcohol.

以下本発明の構成および効果を図のフローシートに基づ
いて詳細に説明する。
The configuration and effects of the present invention will be explained in detail below based on the flow sheet shown in the figure.

図において、醗酵法によって製造された醪のようなエタ
ノール原料(エタノール濃度1〜6mo1%)は、脱気
塔Aの中段へ配管1を通じて供給される。脱気塔A内は
、配管2で連結された真空発生装置Hにより50〜10
0mmHgabsに保たれている。
In the figure, an ethanol raw material such as moromi produced by a fermentation method (ethanol concentration 1 to 6 mo1%) is supplied to the middle stage of a degassing tower A through a pipe 1. The inside of the degassing tower A is 50 to 10
It is maintained at 0mmHgabs.

供給されたエタノール原料は、該塔内な着下する間に、
後述の表に示すように脱炭酸ガスされる。
While the supplied ethanol raw material is arriving in the tower,
Decarbonation is performed as shown in the table below.

供給されるエタノール原料の温度または塔内温度は限定
されないが、15〜30°C程度である。脱気塔Aの内
部構造は、限定されず、例えばぬれ壁塔、充填塔若しく
は棚板塔のいずれでもよい。該塔内を流下して脱炭酸ガ
スされたエタノール原料は、配管3およびポンプP−1
を経て濃縮塔Bの中段に供給される。
The temperature of the supplied ethanol raw material or the temperature inside the column is not limited, but is approximately 15 to 30°C. The internal structure of the degassing tower A is not limited, and may be, for example, a wet wall tower, a packed tower, or a plate tower. The ethanol raw material that has been decarbonized by flowing down inside the column is transferred to piping 3 and pump P-1.
It is supplied to the middle stage of concentration column B through .

前述の真空発生装置は、所要の真空度が得られるならば
、装置的に限定されず、例えば1)真空ポンプ又は水流
によるアスピレータ一方式、2)真空によるフラッシン
グ方式が採用できる。図に示された真空発生装置Hは、
後者で蒸気エゼクタ−に+ 、 Kaと凝縮器L 、 
L2の直列2段階の組合わせが脱気塔Aの塔頂と配管2
により連結されている。
The above-mentioned vacuum generating device is not limited in terms of device as long as the required degree of vacuum can be obtained, and for example, 1) a vacuum pump or water flow aspirator type, or 2) a vacuum flushing type can be adopted. The vacuum generator H shown in the figure is
In the latter, the steam ejector +, Ka and condenser L,
The combination of two stages in series of L2 is the top of degassing tower A and piping 2.
are connected by.

蒸気エジェクターに+ 、 &に所要の蒸気が凝縮器L
+ 、 L2に冷却水が供給されて前述の真空が発生し
、脱気塔A内のエタノール原料中の炭酸ガスを脱気する
。脱気された炭酸ガスは、配管2,2°、2”を経て、
凝縮した蒸気と共に水月槽Mを経て排出される。
The required steam is sent to the steam ejector +, & to the condenser L
+, cooling water is supplied to L2 to generate the above-mentioned vacuum, and carbon dioxide gas in the ethanol raw material in the degassing tower A is degassed. The degassed carbon dioxide gas passes through piping 2, 2°, 2”,
It is discharged through the suigetsu tank M together with the condensed steam.

濃縮塔Bに供給される脱炭酸されたエタノール原料と脱
炭酸前のそれとの量的°関係は、例えば次の表のように
なる。
The quantitative relationship between the decarboxylated ethanol raw material supplied to the concentration column B and that before decarboxylation is as shown in the following table, for example.

表 かくして、例えば、上述(3)の組成を持つ原料は、濃
縮塔Bでエタノール84.4重量%まで蒸留濃縮される
。該濃縮された塔頂蒸気は、配管4により圧縮機Qに導
かれる。他方、塔底液は、水(但し醗酵粕含有)となり
、配管7から逐次排出される。圧縮機Qに導かれた塔頂
蒸気(常圧)は、3〜4Kg/crn’Gに圧縮される
。圧縮された該蒸気は、配管4°により、塔Bに付設さ
れたレポイラーE−1(熱交換器)に導かれ、こへで配
管6により循環している塔Bの缶液を加熱して蒸発させ
ると共に自らは冷却凝縮される。前述の被圧縮蒸気の凝
縮温度は圧縮圧が4Kg/cm’Gのとき 112℃で
あり、他方塔Bの塔底液は実質的に水である(沸点10
0℃)。したがって塔底液中溶解物および塔内圧損失に
よる塔底液の沸点上昇を考慮しても塔Bが常圧で運転さ
れる限り前述の被圧縮蒸気は塔Bの塔底液の加熱源とし
て温度的には十分である。
Thus, for example, the raw material having the composition (3) above is distilled and concentrated in the concentration column B to 84.4% by weight of ethanol. The concentrated tower top vapor is led to the compressor Q through a pipe 4. On the other hand, the bottom liquid becomes water (containing fermentation lees) and is successively discharged from the pipe 7. The overhead vapor (at normal pressure) led to the compressor Q is compressed to 3 to 4 Kg/crn'G. The compressed vapor is led to the repoiler E-1 (heat exchanger) attached to tower B through piping 4°, where it heats the bottom liquid of tower B circulating through piping 6. As it evaporates, it cools and condenses itself. The condensation temperature of the aforementioned compressed vapor is 112°C when the compression pressure is 4 kg/cm'G, while the bottom liquid of column B is essentially water (boiling point 10
0℃). Therefore, even if the rise in the boiling point of the tower bottom liquid due to the dissolved matter in the tower bottom liquid and the loss of pressure inside the tower is taken into account, as long as tower B is operated at normal pressure, the above-mentioned compressed vapor can be used as a heating source for the tower bottom liquid in tower B. It is sufficient for the purpose.

レポイラーE−1で冷却凝縮された凝縮液(濃縮エタノ
ール)の一部は、凝縮液ポンプP−2により配管4’ 
、 5’を通じて塔Bに還流し、他の一部は配管4゛、
5を通じて共沸蒸留塔Cの上段近くに供給される。
A part of the condensate (concentrated ethanol) cooled and condensed by the repoiler E-1 is transferred to the pipe 4' by the condensate pump P-2.
, 5' to column B, and the other part is refluxed to column B through pipe 4',
5 near the upper stage of the azeotropic distillation column C.

数基Cは、共沸溶剤(例えばベンゼン)を使用する共沸
蒸留塔で塔頂から3m分共沸組成の蒸気(この場合、エ
タノール−水−ベンゼン)ヲ留出し、塔底からは配管1
0により無水エタノール(製品)を排出する。塔頂から
の3成分共沸蒸気は、配管8により圧縮機Qに導かれ、
3〜4Kg/crn’Gに圧縮される。今、圧縮圧を3
.4Kg/cm’Gとすれば、被圧1i!蒸気の凝縮温
度は85℃である。一方、塔Cの缶液は、無水エタノー
ルであって、塔Cが常圧で運転される場合、その沸点は
78℃である。
Several groups C are an azeotropic distillation column that uses an azeotropic solvent (for example, benzene), and from the top of the column, vapor with an azeotropic composition (in this case, ethanol-water-benzene) is distilled out for 3 m, and from the bottom of the column is pipe 1.
Anhydrous ethanol (product) is discharged by 0. The 3-component azeotropic vapor from the top of the tower is led to the compressor Q by a pipe 8,
Compressed to 3-4Kg/crn'G. Now, set the compression pressure to 3
.. If it is 4Kg/cm'G, the applied pressure is 1i! The condensation temperature of the steam is 85°C. On the other hand, the bottom liquid in column C is anhydrous ethanol, and when column C is operated at normal pressure, its boiling point is 78°C.

したがって、前述の被圧縮蒸気は、塔Cの缶液を加熱す
るに十分な温度差を有し、この温度差は塔内圧損失によ
る無水エタノールの沸点上昇を考慮してもなお十分であ
る。そこで前述の被圧縮蒸気は、配管8°を経て塔Cに
付設されたレポイラーE−2に導かれ、同じく配管11
によってレポイラーE−2に導かれた塔Cの缶液(無水
エタノール)を加熱して蒸発させ、自らは冷却されて凝
縮する。該凝縮液は、凝縮液ポンプP−3、配管9を通
じてデカンタ−Fに送られる。該凝縮液は、デカンタ−
F内で溶剤に富む相と水に富む相の二相に分離される。
Therefore, the above-mentioned compressed vapor has a temperature difference sufficient to heat the bottom liquid in column C, and this temperature difference is still sufficient even considering the rise in the boiling point of anhydrous ethanol due to the pressure loss inside the column. Therefore, the aforementioned vapor to be compressed is guided to the repoiler E-2 attached to the tower C through the pipe 8°, and is also guided to the repoiler E-2 attached to the column C.
The bottom liquid (anhydrous ethanol) from column C, which is led to repoiler E-2, is heated and evaporated, and itself is cooled and condensed. The condensate is sent to the decanter F through the condensate pump P-3 and piping 9. The condensate is collected in a decanter.
F is separated into two phases: a solvent-rich phase and a water-rich phase.

そして前者は、配管12により塔Cに戻る。The former then returns to tower C via piping 12.

後者(水に富む相)は、配管12によりデカンタ−Fか
ら溶剤回収塔りに送られる。数基では、塔頂かも配管1
4によりエタノール−水−溶剤の3成分共沸蒸気を留出
し、塔底からは配管17により水を排出する。該共沸蒸
気は、配管14を経て凝縮器E−3に入り、水により冷
却凝縮され、凝縮液は配管14′、ポンプP−4、配管
15を経て一部はデカンタ−Fに送られ他の一部はさら
に配管15゛を経て還流液として塔りに戻る。本発明に
あっては、塔りの塔頂蒸気(3成分蒸気)を圧縮して、
被圧縮ガスを塔りの缶の熱源とすることもできる。しか
し、■塔りのリポーラーE−4の所要熱量は他の塔B、
Cのリポーラーのそれに較べて著しく少なく、また、■
塔頂蒸気と塔底液の温度が大きいので、凝縮器E−3に
代えて圧縮機を設置することはそれほど有利ではない。
The latter (water-rich phase) is sent via line 12 from decanter F to the solvent recovery column. For several units, the top of the tower may be the piping 1
The azeotropic vapor of the three components ethanol-water-solvent is distilled out by means 4, and water is discharged from the bottom of the column through pipe 17. The azeotropic vapor enters the condenser E-3 via the pipe 14, is cooled and condensed with water, and the condensate is partially sent to the decanter F via the pipe 14', the pump P-4, and the pipe 15. A part of the liquid further passes through a 15-inch pipe and returns to the tower as a reflux liquid. In the present invention, the top steam (three component steam) of the tower is compressed,
The compressed gas can also be used as the heat source for the tower can. However, the amount of heat required for Repolar E-4 in the tower is different from that in the other tower B,
It is significantly less than that of C repolar, and ■
Since the temperatures of the top vapor and bottom liquid are high, it is not very advantageous to install a compressor in place of condenser E-3.

以上説明したところから明らかなように、本発明は、醗
酵法により得られ、従って炭酸ガスを含む稀薄エタノー
ル液を原料とし、ヒートポンプを適用した蒸留装置を用
いて無水エタノールを製造する際の次の二つの問題点を
解決できるという効果を有する。すなわち、■原料中に
含まれる炭酸カスがヒートポンプの圧縮機の圧縮比を増
大させることにより、圧縮機運転のための消費動力を増
大させ、および■ヒートポンプにより圧縮されたカスが
不凝縮性ガス(註、炭酸ガス)を含むため、該ガスを含
まない場合に較べてレポイラーの所要伝熱面積が増大す
るという問題点である。
As is clear from the above explanation, the present invention provides the following steps when producing anhydrous ethanol using a distillation apparatus to which a heat pump is applied, using a dilute ethanol solution obtained by a fermentation method and containing carbon dioxide gas as a raw material. This has the effect of solving two problems. In other words, (1) the carbon dioxide scum contained in the raw material increases the compression ratio of the heat pump compressor, thereby increasing the power consumption for compressor operation, and (2) the carbon dioxide scum compressed by the heat pump becomes a non-condensable gas ( Note: Since the repoiler contains carbon dioxide gas, the problem is that the required heat transfer area of the repoiler increases compared to a case where the repoiler does not contain the gas.

したがって上述のヒートポンプは機械式熱ポンプであっ
ても吸収式熱ポンプであってもエタノール原料中の炭酸
ガス除去により上述の効果がもたらされることになる。
Therefore, whether the heat pump described above is a mechanical heat pump or an absorption heat pump, the above-mentioned effects are brought about by removing carbon dioxide from the ethanol raw material.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の無水エタノール製造装置のフローシート
を示す。 図において、AおよびHは、脱炭酸ガス装置を構成し、
前者は脱気塔、後者は真空発生装置(註、蒸気エゼクタ
)を示す。また、B、C,Dはそれぞれ蒸留装置を構成
する濃縮塔、共沸蒸留塔および溶剤回収塔である。 また、Gl、Glはヒートポンプの圧縮機、E −1。 E−2およびE−4は夫々塔B、CおよびDに付設され
たレポイラー、E−3は塔りの凝縮器、Fは塔Cに付設
されるデカンタ−でP−1,P−2,P−3およびP−
4は夫々ポンプを示す。 以 」−
The figure shows a flow sheet of an apparatus for producing anhydrous ethanol of the present invention. In the figure, A and H constitute a decarboxylation device,
The former is a degassing tower, and the latter is a vacuum generator (note: steam ejector). Moreover, B, C, and D are a concentration column, an azeotropic distillation column, and a solvent recovery column, which constitute a distillation apparatus, respectively. In addition, Gl and Gl are heat pump compressors, and E-1. E-2 and E-4 are repoilers attached to columns B, C and D, respectively; E-3 is a column condenser; F is a decanter attached to column C; P-1, P-2, P-3 and P-
4 indicates a pump, respectively. ”−

Claims (4)

【特許請求の範囲】[Claims] (1)脱炭酸カス装置、濃縮塔、共沸蒸留塔および溶剤
回収塔からなる蒸留装置であってエタノール原料から無
水エタノールを製造するものにおいて、該脱炭酸ガス装
置は、脱気塔A、原料供給管1、エタノール蒸気配管2
.脱気液配管3.脱気液ポンプP−1および前記配管2
で結合された真空発生装置Hからなり、濃縮塔Bには、
脱気液配管3、エタノール蒸気配管4および該配管4で
数基Bと連結された圧縮気Q、エタノール凝縮液配管4
′および該配管4′で圧縮機Gと缶液配管6で数基Bと
連結された熱交換器E−1、該缶液配管6および廃液抜
出管7.配管4°および環流配管5“で数基Bと連結さ
れた濃縮液ポンプP−2が結合され、共沸蒸留塔Cには
、濃縮液配管5、共沸組成ガス配管8.該配管8で数基
と連結された圧縮aG!、共沸液配管8′および該配管
8′で圧縮機Gと缶液配管1】で数基Cと連結された熱
交換器E−2.該缶液配管11および水抜出管10.配
管8゛で熱交換器E−2と配管9でデカンタ−Fと連結
された共廓液ポンプP−3、環流液配管12該配管12
で数基Cと連結されたデカンタ−Fが結合され、溶剤回
収塔りには、配管13.配管14.該配管で数基と連結
された凝縮器E−3.配管14°および該配管14°で
凝縮器E−3と配管15でデカンタ−Fと連結されたポ
ンプP−4、該配管15および配管15と該塔々頂を連
結する配管15’ および水抜出配管17が結合されて
なる無水エタノール製造装置。
(1) In a distillation device consisting of a decarbonation sludge device, a concentration column, an azeotropic distillation column, and a solvent recovery column, which produce anhydrous ethanol from an ethanol raw material, the decarbonation gas device consists of a degassing column A, a raw material Supply pipe 1, ethanol vapor pipe 2
.. Degassed liquid piping 3. Degassed liquid pump P-1 and the piping 2
The concentrating column B consists of a vacuum generator H coupled with a
Degassing liquid piping 3, ethanol vapor piping 4, compressed air Q connected to several units B by said piping 4, ethanol condensate piping 4
' and a heat exchanger E-1 connected to the compressor G by the piping 4' and several units B by the can liquid piping 6, the can liquid piping 6 and the waste liquid extraction pipe 7. A concentrate pump P-2 connected to several units B is connected to a pipe 4° and a reflux pipe 5'', and the azeotropic distillation column C has a concentrate pipe 5, an azeotropic composition gas pipe 8. compressor aG!, which is connected to several units C!, azeotropic liquid piping 8', compressor G via said piping 8', and heat exchanger E-2, which is connected to several units C via boiler liquid piping 1]. 11 and a water drain pipe 10. A common liquid pump P-3 connected to a heat exchanger E-2 through piping 8 and a decanter F through piping 9, and a reflux liquid piping 12. Said piping 12
A decanter F connected to several units C is connected to the solvent recovery tower, and a pipe 13. Piping 14. Condenser E-3 connected to several condensers through the piping. Piping 14°, pump P-4 connected to condenser E-3 by piping 14° and decanter F by piping 15, piping 15, piping 15' connecting piping 15 to the top of the tower, and water extraction. An anhydrous ethanol production device in which piping 17 is connected.
(2)真空発生装置Hが直列に結合されたスチームエジ
ェクターKIと凝縮器LLの組合せおよびスチームエジ
ェクターんと凝縮器L2の組合わせからなり、該に+は
配管2で脱気塔Aと該んは連結管で該LIと結合され、
該L1とbは夫々排水管2°、2”で水封器Mと結合さ
れてなる特許請求の範囲第(1)項に記載の製造装置。
(2) The vacuum generator H consists of a combination of a steam ejector KI and a condenser LL connected in series, and a combination of a steam ejector and a condenser L2, in which + is connected to the degassing tower A through piping 2. is connected to the LI through a connecting pipe,
The manufacturing apparatus according to claim 1, wherein L1 and b are connected to a water seal M by drain pipes 2° and 2'', respectively.
(3)濃縮塔、共沸蒸留塔および溶剤回収塔からなる蒸
留装置を用いてエタノール原料から無水エタノールを製
造する方法において、濃縮塔の手前に脱気塔および真空
発生装置からなる炭酸ガス除去装置を付加し、前記濃縮
塔および共沸蒸留塔は加圧蒸留塔とし、前記脱気塔へ無
水エタノール原料を供給して減圧処理することにより脱
炭酸ガス処理し、該脱炭酸ガス処理された前記原料を濃
縮塔へ供給し、数基の塔頂蒸気を圧縮して被圧縮ガスで
数基の缶液を加熱して蒸気を発生させ、該加熱後の凝縮
液の一部を共沸蒸留塔へ供給し、他の一部を濃縮塔への
環流液とし、共沸蒸留塔の塔頂蒸気を圧縮して被圧縮ガ
スで数基の缶液を加熱して蒸気を発生させ、該加熱後の
凝縮液をデカンタ−へ送り、該デカンタ−で上下二層に
分離した上層液を共沸蒸留塔へ環流させ、塔底から無水
エタノールを抜出し、該デカンタ−の下層液を溶剤回収
塔へ供給し、溶剤回収塔の塔頂蒸気を冷却凝縮させて凝
縮液の一部を該塔々頂へ環流させ、他の一部をデカンタ
−へ環流させ、塔底液を缶で加熱して蒸気を発生させ、
塔底液(水)の一部を排出させることを特徴とする無水
エタノールの製造方法。
(3) In a method for producing anhydrous ethanol from ethanol raw material using a distillation apparatus consisting of a concentrating column, an azeotropic distillation column, and a solvent recovery column, a carbon dioxide removal device consisting of a degassing column and a vacuum generator is placed before the concentrating column. The concentrating column and the azeotropic distillation column are pressurized distillation columns, and the anhydrous ethanol raw material is supplied to the degassing column and subjected to reduced pressure treatment to decarbonate the decarbonated gas. The raw material is supplied to the concentrating column, the vapor at the top of several columns is compressed, the liquid in several columns is heated with the gas to be compressed to generate steam, and a part of the condensed liquid after the heating is sent to the azeotropic distillation column. The other part is used as the reflux liquid to the concentrating column, and the top vapor of the azeotropic distillation column is compressed and several bottoms are heated with the compressed gas to generate steam, and after the heating, The condensed liquid is sent to a decanter, the upper layer liquid separated into upper and lower layers by the decanter is refluxed to the azeotropic distillation column, anhydrous ethanol is extracted from the bottom of the column, and the lower layer liquid of the decanter is supplied to the solvent recovery column. Then, the vapor at the top of the solvent recovery column is cooled and condensed, a part of the condensed liquid is refluxed to the top of the column, the other part is refluxed to the decanter, and the bottom liquid is heated in a can to convert the vapor. generate,
A method for producing anhydrous ethanol, which comprises discharging a portion of the bottom liquid (water).
(4)脱気塔に稀薄エタノール原料を供給し、塔内を1
5〜40℃、塔内圧を20〜200麿mHgとして脱炭
酸ガスする特許請求の範囲第一(3)項に記載の方法。
(4) Supply diluted ethanol raw material to the degassing tower, and
The method according to claim 1 (3), in which decarbonation is carried out at a temperature of 5 to 40°C and an internal pressure of 20 to 200 mHg.
JP58227561A 1983-12-01 1983-12-01 Apparatus for producing absolute ethanol and production of absolute ethanol Granted JPS60226837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227561A JPS60226837A (en) 1983-12-01 1983-12-01 Apparatus for producing absolute ethanol and production of absolute ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227561A JPS60226837A (en) 1983-12-01 1983-12-01 Apparatus for producing absolute ethanol and production of absolute ethanol

Publications (2)

Publication Number Publication Date
JPS60226837A true JPS60226837A (en) 1985-11-12
JPH0254811B2 JPH0254811B2 (en) 1990-11-22

Family

ID=16862834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227561A Granted JPS60226837A (en) 1983-12-01 1983-12-01 Apparatus for producing absolute ethanol and production of absolute ethanol

Country Status (1)

Country Link
JP (1) JPS60226837A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048335A1 (en) 2007-10-12 2009-04-16 Epcon Energy & Process Control As Method for dewatering a mixture of mostly ethanol and water
JP2010065001A (en) * 2008-09-12 2010-03-25 Nippon Refine Kk Method and apparatus for separating and recovering ethanol and water from fermentation moromi
JP2011162502A (en) * 2010-02-12 2011-08-25 Hirotoshi Horizoe Method for producing absolute ethanol
JP2015134321A (en) * 2014-01-17 2015-07-27 東洋エンジニアリング株式会社 Distillation tower
JP2016145161A (en) * 2015-02-06 2016-08-12 国立大学法人名古屋大学 Distillation apparatus of hydrous ethanol, and manufacturing method of absolute ethanol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138244A (en) * 1981-02-19 1982-08-26 Matsushita Electric Ind Co Ltd Automatic answering telephone set
JPS5927841A (en) * 1982-08-09 1984-02-14 Res Assoc Petroleum Alternat Dev<Rapad> Method and apparatus for preparation of absolute ethanol
JPS5998025A (en) * 1982-11-29 1984-06-06 Res Assoc Petroleum Alternat Dev<Rapad> Preparation and device for anhydrous ethanol
JPS59196833A (en) * 1983-04-21 1984-11-08 Res Assoc Petroleum Alternat Dev<Rapad> Method and apparatus for producing anhydrous methanol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138244A (en) * 1981-02-19 1982-08-26 Matsushita Electric Ind Co Ltd Automatic answering telephone set
JPS5927841A (en) * 1982-08-09 1984-02-14 Res Assoc Petroleum Alternat Dev<Rapad> Method and apparatus for preparation of absolute ethanol
JPS5998025A (en) * 1982-11-29 1984-06-06 Res Assoc Petroleum Alternat Dev<Rapad> Preparation and device for anhydrous ethanol
JPS59196833A (en) * 1983-04-21 1984-11-08 Res Assoc Petroleum Alternat Dev<Rapad> Method and apparatus for producing anhydrous methanol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048335A1 (en) 2007-10-12 2009-04-16 Epcon Energy & Process Control As Method for dewatering a mixture of mostly ethanol and water
JP2010065001A (en) * 2008-09-12 2010-03-25 Nippon Refine Kk Method and apparatus for separating and recovering ethanol and water from fermentation moromi
JP2011162502A (en) * 2010-02-12 2011-08-25 Hirotoshi Horizoe Method for producing absolute ethanol
JP2015134321A (en) * 2014-01-17 2015-07-27 東洋エンジニアリング株式会社 Distillation tower
JP2016145161A (en) * 2015-02-06 2016-08-12 国立大学法人名古屋大学 Distillation apparatus of hydrous ethanol, and manufacturing method of absolute ethanol

Also Published As

Publication number Publication date
JPH0254811B2 (en) 1990-11-22

Similar Documents

Publication Publication Date Title
RU2396242C2 (en) Method of methanol recuperation
US6254734B1 (en) Barometric evaporation process and evaporator
RU2611499C2 (en) Process and plant for distillation of methanol with heat recuperation
CN105218315B (en) A kind of method and device of the refined methyl alcohol of use divided-wall distillation column combination heat pump
CN110407173B (en) Waste acid treatment system and method for treating waste acid by using same
CN206881182U (en) The device of energy-efficient concentrate
CN104262089B (en) The method and device that the dehydration of a kind of bio-fuel is refined
TW512218B (en) Method and apparatus for producing nitrogen
JP2011050860A (en) Anhydrization method of hydrated organic substance
JPH01502964A (en) Distillation apparatus and method
CN106730967A (en) A kind of utilization top gaseous phase cut condenses the system and method for thermal rectification
RU2617506C2 (en) Method and apparatus for distillation of methanol and heat recovery
US4645569A (en) Process for producing anhydrous ethanol
CN110404285A (en) Four column distillations and UF membrane integrated system and its method for distilling ethyl alcohol
CN107158734A (en) The device and its energy-efficient concentrating method of N ethyl piperazidines of energy-efficient concentrate
JPS60226837A (en) Apparatus for producing absolute ethanol and production of absolute ethanol
EP4215494A1 (en) Separation column for treating condensed water, and method therefor
CN110483249A (en) A kind of six tower quadruple effect rectificating method of single column steam drive type methanol of not by-product fusel oil
JP2004089882A (en) Separation apparatus for mixture, separation method using the same and method for producing aromatic carboxylic acid
CN210495282U (en) Four-tower distillation and membrane separation integrated system
JPS6055117B2 (en) Anhydrous ethanol manufacturing method and device
RU2482903C1 (en) Method of producing krypton-xenon mix and device to this end
CN109134405B (en) Waste heat recovery equipment and process utilizing MVR technology
CN107998689B (en) Removing CO in the medium-to-variable gas acidic condensate2And O2Heat integrated rectification process
JP2004114029A (en) Method of separating and recovering water-soluble volatile component in waste water