JPS6055117B2 - Anhydrous ethanol manufacturing method and device - Google Patents

Anhydrous ethanol manufacturing method and device

Info

Publication number
JPS6055117B2
JPS6055117B2 JP58070708A JP7070883A JPS6055117B2 JP S6055117 B2 JPS6055117 B2 JP S6055117B2 JP 58070708 A JP58070708 A JP 58070708A JP 7070883 A JP7070883 A JP 7070883A JP S6055117 B2 JPS6055117 B2 JP S6055117B2
Authority
JP
Japan
Prior art keywords
column
pipe
concentrating
ethanol
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58070708A
Other languages
Japanese (ja)
Other versions
JPS59196833A (en
Inventor
利昭 赤羽
有正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Original Assignee
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI filed Critical SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority to JP58070708A priority Critical patent/JPS6055117B2/en
Publication of JPS59196833A publication Critical patent/JPS59196833A/en
Publication of JPS6055117B2 publication Critical patent/JPS6055117B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、無水エタノールの製造方法および装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing absolute ethanol.

更に詳しくは、本発明は、稀薄かつ泥状のエタノール原
料から、直接かつ、省エネルギー的に無水エタノールを
取得することのできる該製造方法および装置に関する。
公知の稀薄原料からの無水アルコール製造方法および装
置は、直列に接続された濃縮塔、共沸蒸留塔および溶剤
回収塔からなる装置の濃縮塔に稀薄原料を供給し、各塔
は夫々独立の熱源で加熱され、塔頂塔気は夫々独立の冷
却源で冷却されている。
More specifically, the present invention relates to a production method and apparatus that can directly and energy-savingly obtain anhydrous ethanol from a dilute and muddy ethanol raw material.
In the known method and apparatus for producing anhydrous alcohol from dilute raw materials, a dilute raw material is supplied to a concentrating column of an apparatus consisting of a concentrating column, an azeotropic distillation column, and a solvent recovery column connected in series, and each column has an independent heat source. The air at the top of the tower is cooled by independent cooling sources.

このため特に濃縮塔で消費する熱量は、たとえば該公知
方法で取得される無水アルコールの保有する熱量とはぼ
等量にも達し、そのコストは今日の省エネルギー時代に
おいては無視しえない程度のものである。特開昭56−
11317号は、この問題に関し、濃縮塔を第1塔(粗
濃縮塔)と第2塔(濃縮塔)に分け、該第2塔の塔頂蒸
気を圧縮昇温させてこの蒸気で第1塔の加熱に必要な水
蒸気を発生させ、該加熱後の凝縮液(94〜95%アル
コール)の一部を取得し(製品)、一部を該第2塔の還
流液とする如く構成している。これにより、第1、2塔
の所要加熱量は、上記圧縮に必要な電力をスチーム換算
してもなお公知の2塔式濃縮装置に較べて約11糧の熱
量ですむこととなつている。しかし、該方法て得られる
製品は94〜95%アルーコールであり、無水アルコー
ルを得る為の共沸塔以下の熱源の合理化は達成されてい
ない。
For this reason, the amount of heat consumed in the concentrating column is almost equivalent to the amount of heat possessed by the absolute alcohol obtained by the known method, and the cost thereof cannot be ignored in today's energy-saving era. It is. Japanese Unexamined Patent Publication 1973-
No. 11317 deals with this problem by dividing the concentration column into a first column (crude concentration column) and a second column (concentration column), compressing and heating the top vapor of the second column, and using this vapor to feed the first column. The system is configured so that the steam necessary for heating is generated, a part of the condensate (94 to 95% alcohol) after heating is obtained (product), and a part is used as the reflux liquid of the second column. . As a result, the amount of heat required for the first and second towers is still about 11 times less than that of a known two-column concentrator, even if the electric power required for the compression is converted into steam. However, the product obtained by this method is 94-95% alcohol, and rationalization of the heat source below the azeotropic column for obtaining anhydrous alcohol has not been achieved.

本発明者等は、特開56−113717号において残さ
れた課題を解決すべく鋭意研究した。
The present inventors conducted extensive research to solve the problems left behind in JP-A No. 56-113717.

その結果、第1濃縮塔の塔頂蒸気を圧縮した被圧縮ガス
て・は、該塔の缶液(100℃)を加熱すること共に第
2濃縮塔を加圧式としその塔頂蒸気(たとえば113℃
)で常圧塔である共沸蒸留塔および溶剤回収塔の缶を加
熱し、加熱後の凝縮液を第2濃縮塔に供給することによ
つて前記の問題を解決した。以上のように、本発明は省
エネルギー的無水アルコールの製造法と装置の提供を目
的とする。以下本発明の構成及び効果を図に基づいて詳
細に説明する。図において、例えば醗酵法によつて製造
された醪のようなエタノール原料(エタノール濃度1〜
6n101%)は、粗濃縮塔Aの中段へポンプp−1お
よび配管1を通じて供給させる。
As a result, the gas to be compressed, which is the top vapor of the first concentrating column, is heated by heating the bottom liquid (100°C) of the first concentrating column and pressurizing the second concentrating column. ℃
), the above problem was solved by heating the cans of the azeotropic distillation column and the solvent recovery column, which are atmospheric pressure columns, and supplying the heated condensate to the second concentrating column. As described above, the present invention aims to provide an energy-saving method and apparatus for producing absolute alcohol. The configuration and effects of the present invention will be explained in detail below based on the drawings. In the figure, for example, ethanol raw material such as moromi produced by fermentation method (ethanol concentration 1 to
6n101%) is supplied to the middle stage of the crude concentration column A through pump p-1 and piping 1.

その間該原料・は熱光換器E−1(予熱器)を通じて予
熱される。塔A内圧は常圧で運転される。加熱は塔底に
取付けられた熱交換器E−2(加熱缶)を通じ後述の塔
頂被圧縮ガスを用いて行う。今、塔頂蒸気の留出工タノ
ール濃度を24.1m0I%とすると、その留出温度は
、常圧におけるエタノール・水の平衡関係から82.5
℃となる。この塔頂蒸気は、配管2、圧縮機G1配管2
″および熱交換器(加熱缶)E−2を経由して凝縮され
、ポンプp−2、配管3、ポンプp−3および配管4を
経由して一部は、第2濃縮塔Bの中段に供給され残部は
還流としてA塔に戻り、A塔の塔底液は配管17および
熱交換器E−1を経て排出される。B塔内は加圧2〜6
k91c1tG例えば2.4k91dGで運転される。
加熱は塔底に取付けられた熱交換器E−3(加熱器)を
通じスチームを用いて行う。エタノール濃度24.1m
01%のA塔からの凝縮液はB塔内で濃縮され、塔頂蒸
気のエタノール濃度を74.7m01%とする。この塔
頂蒸気は、配管5,6、共沸蒸留塔Cおよび溶剤回収塔
Dの熱交換気E−4およびE一6を経由して凝縮され、
配管6″、凝縮液タンクV1ポンプp−4および配管7
を経由して一部は第2濃縮塔Bに還流し、他の一部は配
管8を経由共沸蒸留塔Cへ供給される。塔Aの塔底は水
であり、その沸点は、常圧で100℃、他方、塔頂温度
は留出濃度を前述の如く24.1m01%とすれば82
.5℃であり、塔底温度は10(代)でこれに塔内圧損
失による温度上昇および熱伝導に必要な温度差を15℃
とすると加圧下の蒸気の凝縮温度は115℃となり、そ
の成績係数η=11.9となる。この成績係数を圧縮比
であられすと2.0となるが、常圧1塔式の場合に塔底
液を同じように圧縮蒸気で加熱しようとすると塔底温度
10CfCに必要な15℃を加えた115℃が蒸気の圧
縮後の凝縮温度となり、これに対応する成績係数は10
.&換算した圧縮比は2.8となる。したがつて2塔式
の方が圧縮比が小さくて所要動力を少なくてすむ。B塔
の塔底液は、前述のように配管23を経てA塔の塔頂へ
還流液として供給される。共沸蒸留塔Cは常圧で運転さ
れる。該塔の缶(熱交換器E−4)は、前述のようにB
塔の蒸気で加熱され、塔頂近くには、前述のB塔蒸気の
凝縮液が配管8から、共沸溶剤が配管10から、および
デカンダーFからの共沸溶剤−エタノールが配管12か
ら供給され、塔底の配管11から無水エタノールが抜き
出される。塔底液の温度は79′C(註 エタノールの
沸点)、熱交換器E−4に供給されるB塔々頂蒸気の温
度は前述のように例えば塔を3..4at0で操作し留
出濃度を前記の如く、74.7m01%とするとエタノ
−ルー水の平衡関係より温度は110℃となるので伝熱
に必要な温度差は、充分である。C塔の塔頂からは、三
成分共沸蒸気が配管9を経て熱交換器E一5(凝縮器)
に導かれ、冷却水で冷却され生じた凝縮液は、デカンタ
ーFに導かれる。該凝縮液は、デカンターで共沸溶剤に
富む層と水分に富む層に分けられ、前者は前述のように
塔Cに戻され、後者は、配管13を経て溶剤回収塔へ供
給される。溶剤回収塔Dは常圧で運転される。該塔の缶
(熱交換器E−6)は、前述のようにB塔の蒸気て加熱
され、塔頂近くには、前述のC塔デカンターの水に富む
層液が配管13から、塔頂蒸気の凝縮液(溶剤)が配管
16から還流液として供給され、塔底の配管15から水
が抜き出される。塔底液の温度は100℃(註 水の沸
点)、熱交換器E一6に供給されるB塔塔頂蒸気の温度
は、前述のように113′Cであるから、伝熱に必要な
温度差は充分である。配管14からの凝縮液の一部はデ
カンターFに戻される。以上のように共沸蒸留塔Cおよ
び溶剤回収塔Dの缶の熱源はB塔々頂蒸気であるから、
公知方法のように独立の加熱源を全く必要としない。ま
た、本発明は、濃度塔を2塔式とした前述の特開昭56
−113717号と比較しても、4B塔の塔頂蒸気の潜
熱が高度に利用されている点および、@A塔々頂蒸気の
圧縮ガスは、全量A塔の缶(熱交換器E−1)の加熱に
利用され、4の場合と同様に熱利用が高度であり、およ
び(ハ)独立の加熱源は、B塔の缶(熱交換器E−3)
に対するもののみでよいから熱管理が容易である。
Meanwhile, the raw material is preheated through the heat-light exchanger E-1 (preheater). The internal pressure of tower A is operated at normal pressure. Heating is performed using a gas to be compressed at the top of the tower, which will be described later, through a heat exchanger E-2 (heating can) attached to the bottom of the tower. Now, if the distillate ethanol concentration in the tower top vapor is 24.1m0I%, the distillation temperature is 82.5% from the equilibrium relationship between ethanol and water at normal pressure.
℃. This tower top steam is transferred to pipe 2, compressor G1 pipe 2
'' and a heat exchanger (heating can) E-2, and a part of it is condensed via pump p-2, piping 3, pump p-3, and piping 4, and is transferred to the middle stage of the second concentrating column B. The remaining part is returned to the A column as reflux, and the bottom liquid of the A column is discharged through the pipe 17 and the heat exchanger E-1.The inside of the B column is pressurized to 2 to 6
k91c1tG, for example, is operated at 2.4k91dG.
Heating is performed using steam through a heat exchanger E-3 (heater) attached to the bottom of the column. Ethanol concentration 24.1m
The condensate from column A at 0.01% is concentrated in column B to bring the ethanol concentration of the column overhead vapor to 74.7m01%. This tower overhead vapor is condensed via pipes 5 and 6, heat exchange gases E-4 and E-6 of the azeotropic distillation column C and the solvent recovery column D,
Pipe 6″, condensate tank V1 pump p-4 and pipe 7
A part is refluxed to the second concentrating column B, and the other part is supplied to the azeotropic distillation column C via piping 8. The bottom of column A is water, and its boiling point is 100°C at normal pressure, while the temperature at the top of the column is 82°C, assuming the distillate concentration is 24.1m01% as mentioned above.
.. The temperature at the bottom of the tower is in the 10s, plus the temperature rise due to pressure loss inside the tower and the temperature difference required for heat conduction, which is 15°C.
Then, the condensation temperature of steam under pressure is 115° C., and its coefficient of performance η=11.9. When this coefficient of performance is expressed as a compression ratio, it becomes 2.0, but if you try to heat the bottom liquid with compressed steam in the same way in the case of a normal-pressure one-column type, then add the necessary 15℃ to the bottom temperature of 10CfC. 115℃ is the condensation temperature after vapor compression, and the corresponding coefficient of performance is 10.
.. &The converted compression ratio is 2.8. Therefore, the two-column type has a lower compression ratio and requires less power. The bottom liquid of the B column is supplied as a reflux liquid to the top of the A column via the pipe 23 as described above. Azeotropic distillation column C is operated at normal pressure. The column can (heat exchanger E-4) is B
It is heated by the steam of the column, and near the top of the column, the above-mentioned condensate of the B column vapor is supplied from pipe 8, an azeotropic solvent is supplied from pipe 10, and azeotropic solvent-ethanol from decanter F is supplied from pipe 12. Anhydrous ethanol is extracted from the pipe 11 at the bottom of the tower. The temperature of the column bottom liquid is 79'C (note: the boiling point of ethanol), and the temperature of the B column overhead vapor supplied to heat exchanger E-4 is, for example, 3.5C. .. If the distillate is operated at 4at0 and the distillate concentration is 74.7m01% as described above, the temperature will be 110°C due to the equilibrium relationship between ethanol and water, so the temperature difference necessary for heat transfer is sufficient. From the top of the C tower, the three-component azeotropic vapor passes through the pipe 9 to the heat exchanger E-5 (condenser).
The condensate produced by cooling with cooling water is led to a decanter F. The condensate is separated in a decanter into an azeotropic solvent-rich layer and a water-rich layer, the former being returned to column C as described above, and the latter being fed via line 13 to the solvent recovery column. Solvent recovery column D is operated at normal pressure. The can of the column (heat exchanger E-6) is heated by the steam of the B column as described above, and near the top of the column, the water-rich layer liquid from the C column decanter is passed from the pipe 13 to the top of the column. Steam condensate (solvent) is supplied as a reflux liquid from pipe 16, and water is extracted from pipe 15 at the bottom of the column. The temperature of the bottom liquid is 100°C (note: the boiling point of water), and the temperature of the steam at the top of the B tower supplied to heat exchanger E-6 is 113'C, as mentioned above. The temperature difference is sufficient. A portion of the condensate from pipe 14 is returned to decanter F. As mentioned above, the heat source for the cans of the azeotropic distillation column C and the solvent recovery column D is the overhead steam of the B column.
No separate heating source is required as in the known method. Further, the present invention utilizes the above-mentioned Japanese Patent Application Laid-Open No. 56-1991, in which the concentration tower is of a two-tower type.
-113717, the latent heat of the top steam of the 4B tower is utilized to a high degree, and the compressed gas of @A tower top steam is completely ), the heat utilization is high as in case 4, and (c) the independent heating source is the can of tower B (heat exchanger E-3).
Heat management is easy because only the heat is required.

″図面の簡単な説明 図は本発明の無水エタノール製造装置のフローシートを
示す。
``The simple explanatory diagram of the drawing shows a flow sheet of the absolute ethanol production apparatus of the present invention.

Claims (1)

【特許請求の範囲】 1 濃縮塔、共沸蒸留塔および溶剤回収塔からなる蒸留
装置を用いてエタノール原料から無水エタノールを製造
する方法において、濃縮塔を直列に2塔とし、常圧で操
作する第1濃縮塔の塔頂蒸気は、該塔に付設した圧縮機
で圧縮して被圧縮ガスが該塔の缶の加熱に使用できる如
くし、該加熱後の凝縮液の一部を第2濃縮塔へ供給し、
他の一部を第1濃縮塔々頂への環流液とし、第2濃縮塔
を加圧蒸留塔としてその塔頂蒸気を共に常圧で操作する
共沸蒸留塔と溶剤回収塔の缶の加熱に使用できる如くし
、該加熱後の凝縮液の一部は加圧下に操作する第2濃縮
塔の塔頂へ環流させ、他の一部を共沸蒸留塔への供給液
とし、前記第2濃縮塔の塔底液を前記第1濃縮塔への環
流液とすることを特徴とする無水エタノールの製造方法
。 2 特許請求の範囲第1項記載の方法において、第2濃
縮塔の塔内圧力を2〜6kg/cm^2Gとする方法。 3 特許請求の範囲第1項記載の方法において、第1濃
縮塔の塔頂蒸気を2〜4kg/cm^2Gまで圧縮する
方法。4 濃縮塔、共沸蒸留塔および溶剤回収塔からな
る蒸留装置であつてエタノール原料から無水エタノール
を製造するものにおいて、濃縮塔を常圧式粗濃縮塔Aと
該塔で発生させたエタノールを濃縮する加圧式濃縮塔B
とし、該塔Aで発生させたエタノール蒸気を圧縮する圧
縮機G、共沸蒸留塔Cおよび溶剤回収塔Dからなり、常
圧式粗濃縮塔Aには、原料供給管1、熱交換器E−1お
よび缶液抜出管17を有し、該塔と圧縮機G間にはエタ
ノール蒸気配管2を圧縮機Gと濃縮塔B間には圧縮ガス
配管2′、熱交換器E−2、粗濃縮液配管3、凝縮液ポ
ンプp−2(昇圧ポンプp−3)、および粗濃縮液供給
管4を有し、粗濃縮塔Aと凝縮液ポンプp−2間には粗
濃縮配管3を有し、加圧濃縮塔Bには、還流液受入管7
、エタノール蒸気配管5および6、熱交換器E−3、E
−4およびE−6、濃縮液配管6′、濃縮液タンクV、
濃縮液ポンプp−4および抜出液配管6を有し、共沸蒸
留塔Cには前記熱交換器E−4および無水エタノール抜
出管11を塔底部に有し、該塔Cと溶剤回収塔D間には
共沸蒸気配管9、熱交換器E−5、デカンターF、デカ
ンター抜出液配管12および13を有し、溶剤回収塔D
には、熱交換器E−6および水抜出管15を塔底部に有
し、該塔々頂とデカンターF間には、溶剤蒸気配管14
、熱交換器E−7および溶剤配管16を熱交換器E−7
と溶剤回収塔D間にも溶剤配管16を、それぞれ結合若
しくは設置したことを特徴とする無水エタノールの製造
装置。 5 原料供給管1と水抜出管17を交差させた位置に熱
交換器E−1を有することを特徴とする無水エタノール
の特許請求の範囲第4項に記載の製造装置。6 常圧式
粗濃縮塔、加圧式濃縮塔B、共沸蒸留塔Cおよび溶剤回
収塔Dにそれぞれ加熱缶としての熱交換器E−2、E−
3、E−4およびE−6を設置してなる特許請求の範囲
第4項に記載の装置。
[Claims] 1. A method for producing anhydrous ethanol from an ethanol raw material using a distillation apparatus consisting of a concentrating column, an azeotropic distillation column, and a solvent recovery column, in which two concentrating columns are arranged in series and operated at normal pressure. The top vapor of the first concentrating column is compressed by a compressor attached to the column so that the compressed gas can be used to heat the can of the column, and a part of the condensate after heating is transferred to the second concentrating column. supply to the tower,
The other part is used as the reflux liquid at the top of the first concentrating column, and the second concentrating column is used as a pressurized distillation column, and the top vapor is heated in the cans of the azeotropic distillation column and the solvent recovery column, both of which are operated at normal pressure. A part of the condensate after heating is refluxed to the top of the second concentration column operated under pressure, and the other part is used as a feed liquid to the azeotropic distillation column. A method for producing anhydrous ethanol, characterized in that the bottom liquid of the concentrating column is used as the reflux liquid to the first concentrating column. 2. The method according to claim 1, in which the internal pressure of the second concentrating column is 2 to 6 kg/cm^2G. 3. The method according to claim 1, in which the top vapor of the first concentrating column is compressed to 2 to 4 kg/cm^2G. 4. In a distillation apparatus consisting of a concentrating column, an azeotropic distillation column, and a solvent recovery column, which produces anhydrous ethanol from an ethanol raw material, the concentrating column is an atmospheric pressure crude concentrating column A and the ethanol generated in the column is concentrated. Pressurized concentration tower B
It consists of a compressor G that compresses the ethanol vapor generated in the column A, an azeotropic distillation column C, and a solvent recovery column D. 1 and a bottom liquid extraction pipe 17, an ethanol vapor pipe 2 is connected between the column and the compressor G, and a compressed gas pipe 2', a heat exchanger E-2, and a rough It has a concentrate pipe 3, a condensate pump p-2 (boosting pump p-3), and a crude concentrate supply pipe 4, and a crude concentrate pipe 3 is provided between the crude concentration column A and the condensate pump p-2. The pressurized concentration tower B has a reflux liquid receiving pipe 7.
, ethanol steam piping 5 and 6, heat exchanger E-3, E
-4 and E-6, concentrate piping 6', concentrate tank V,
The azeotropic distillation column C has the heat exchanger E-4 and the anhydrous ethanol extraction pipe 11 at the bottom of the column, and is connected to the column C and the solvent recovery pipe. Between the column D are an azeotropic steam pipe 9, a heat exchanger E-5, a decanter F, and decanter effluent pipes 12 and 13.
has a heat exchanger E-6 and a water withdrawal pipe 15 at the bottom of the tower, and a solvent vapor pipe 14 between the top of the tower and the decanter F.
, the heat exchanger E-7 and the solvent pipe 16 are connected to the heat exchanger E-7.
An apparatus for producing anhydrous ethanol, characterized in that a solvent pipe 16 is also connected or installed between the and the solvent recovery column D. 5. An apparatus for producing anhydrous ethanol according to claim 4, characterized in that it has a heat exchanger E-1 at a position where the raw material supply pipe 1 and the water withdrawal pipe 17 intersect. 6 Heat exchangers E-2 and E- as heating cans are installed in the normal pressure crude concentration column, pressure concentration column B, azeotropic distillation column C, and solvent recovery column D, respectively.
3. The device according to claim 4, comprising: E-4 and E-6.
JP58070708A 1983-04-21 1983-04-21 Anhydrous ethanol manufacturing method and device Expired JPS6055117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070708A JPS6055117B2 (en) 1983-04-21 1983-04-21 Anhydrous ethanol manufacturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070708A JPS6055117B2 (en) 1983-04-21 1983-04-21 Anhydrous ethanol manufacturing method and device

Publications (2)

Publication Number Publication Date
JPS59196833A JPS59196833A (en) 1984-11-08
JPS6055117B2 true JPS6055117B2 (en) 1985-12-03

Family

ID=13439351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070708A Expired JPS6055117B2 (en) 1983-04-21 1983-04-21 Anhydrous ethanol manufacturing method and device

Country Status (1)

Country Link
JP (1) JPS6055117B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226837A (en) * 1983-12-01 1985-11-12 Res Assoc Petroleum Alternat Dev<Rapad> Apparatus for producing absolute ethanol and production of absolute ethanol
JP2903096B2 (en) * 1990-05-17 1999-06-07 工業技術院長 Method and apparatus for separating azeotropic mixed solution
NO328571B1 (en) 2007-10-12 2010-03-22 Epcon Energy & Process Control Process by dewatering a mixture of predominantly ethanol and water
CN102039058B (en) * 2010-11-26 2012-12-26 天津大学 Large-scale methanol multi-effect energy-saving rectifying device and process
CN102728085B (en) * 2011-08-25 2014-06-11 温州正展机械有限公司 Multiple-effect cyclic organic solvent recovery concentrator
JP6289112B2 (en) 2014-01-17 2018-03-07 東洋エンジニアリング株式会社 Distillation tower
CN106422388B (en) * 2016-10-26 2019-02-19 广东中科天元新能源科技有限公司 The differential distillation energy saver and its production technology of double thick tower production top grade alcohol

Also Published As

Publication number Publication date
JPS59196833A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
CN105363235B (en) The heat pump distillation apparatus and method of sulfide in a kind of removing MTBE
CN206881182U (en) The device of energy-efficient concentrate
CN104105531A (en) Process and plant for distillation of methanol with heat recuperation
JPS6055117B2 (en) Anhydrous ethanol manufacturing method and device
CN104093464A (en) Process and plant for distillation of methanol with heat recovery
CN107158734A (en) The device and its energy-efficient concentrating method of N ethyl piperazidines of energy-efficient concentrate
CN101058534B (en) Device and method for preparing dimethyl ether from methanol
JPS6253702A (en) Distillation accompanied by energy recovery by re-compression of steam used in ejector
CN211411045U (en) Methanol distillation tower
JPS597313B2 (en) Alcohol distillation equipment
CN104478752B (en) A kind of spandex fiber production process DMAC refining system
JPS5941400B2 (en) Anhydrous ethanol manufacturing method and device
CN106631697A (en) Separation method for normal propyl alcohol and isopropyl alcohol
CN110483249A (en) A kind of six tower quadruple effect rectificating method of single column steam drive type methanol of not by-product fusel oil
CN205832659U (en) Ethylene glycol distills multistage energy recovery system
CN205323257U (en) Ethanol differential pressure distillation plant with flash distillation
CN102583395A (en) Heat pump rectification method for refining trichlorosilane
JPH0254811B2 (en)
JP2903096B2 (en) Method and apparatus for separating azeotropic mixed solution
CN109320406A (en) A kind of big temperature difference thermal sensitivity system rectifier unit and method
CN111777539B (en) Multi-effect rectification system and method of N-methyl pyrrolidone
CN219922090U (en) Low-energy MTO methanol rectifying device utilizing reaction heat
CN216755426U (en) Organosilicon rectifier unit hot-water heating system
CN217708904U (en) Cold hydrogenation reaction tail gas heat recycling system for polycrystalline silicon production
CN218248588U (en) Differential pressure coupling rectification equipment for methyl chlorosilane monomers