JP2016145161A - Distillation apparatus of hydrous ethanol, and manufacturing method of absolute ethanol - Google Patents

Distillation apparatus of hydrous ethanol, and manufacturing method of absolute ethanol Download PDF

Info

Publication number
JP2016145161A
JP2016145161A JP2015022004A JP2015022004A JP2016145161A JP 2016145161 A JP2016145161 A JP 2016145161A JP 2015022004 A JP2015022004 A JP 2015022004A JP 2015022004 A JP2015022004 A JP 2015022004A JP 2016145161 A JP2016145161 A JP 2016145161A
Authority
JP
Japan
Prior art keywords
ethanol
solvent
layer
distillation column
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015022004A
Other languages
Japanese (ja)
Other versions
JP6312614B2 (en
Inventor
堀添 浩俊
Hirotoshi Horizoe
浩俊 堀添
洋 町田
Hiroshi Machida
洋 町田
和哉 徳永
Kazuya Tokunaga
和哉 徳永
慶一 和田
Keiichi Wada
慶一 和田
知明 桂川
Tomoaki Katsuragawa
知明 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jx Eng Corp
Nagoya University NUC
Raiznext Corp
Original Assignee
Jx Eng Corp
Nagoya University NUC
JX Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Eng Corp, Nagoya University NUC, JX Engineering Corp filed Critical Jx Eng Corp
Priority to JP2015022004A priority Critical patent/JP6312614B2/en
Publication of JP2016145161A publication Critical patent/JP2016145161A/en
Application granted granted Critical
Publication of JP6312614B2 publication Critical patent/JP6312614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distillation apparatus of hydrous ethanol, having an appropriate theoretical plate number, excellent in energy saving and having a simplified appliance, and a manufacturing method of absolute ethanol using the same.SOLUTION: A distillation apparatus of hydrous ethanol, including a distillation column 1, a compressor 2, an intermediate heating part 3 and a separation tank 4 is configured such that: there are included an upper layer 1a, an intermediate layer 1b, a lower layer 1c, a solvent supply port and a vapor outlet 11 on an apex of the column, a hydrous ethanol supply port between the upper layer 1a and the intermediate layer 1b, an intermediate liquid holding part 1d between the intermediate layer 1b and the lower layer 1c, and a reboiler 14 and an absolute ethanol taking-out port 12 on a bottom of the column; the compressor 2 is connected to a vapor outlet 11 of the apex of the distillation column; the separation tank 4 stores condensate liquid 18 of vapor used as a heat source in the intermediate heating part 3 so as to gravitationally separate water and a solvent; and there is included means for recycling the solvent separated in the separation tank 4 to a solvent supply port 8 of the apex of the distillation column. A manufacturing method of absolute ethanol, using the distillation apparatus is also provided.SELECTED DRAWING: Figure 1

Description

本発明は、含水エタノールの蒸留装置、およびその装置を用いる無水エタノールの製造方法に関する。   The present invention relates to a water-containing ethanol distillation apparatus and a method for producing absolute ethanol using the apparatus.

近年、環境意識の高まりと共に、二酸化炭素排出量を低減するために、化石燃料ではなくバイオマスをエネルギー源として積極的に活用しようとする動きが活発である。その代表例として、サトウキビ、トウモロコシ、草、木などのバイオマスを糖化発酵して製造されるバイオエタノールがある。
このような糖化発酵により製造されるバイオエタノールは低濃度のエタノール水溶液であり、そのエタノール濃度は5〜10質量%程度で、残りのほとんどは水である。
このバイオエタノールを自動車用燃料や燃料基材(例えば、エチルtert‐ブチルエーテル;ETBE)の原料として使用するには、バイオエタノールを濃縮・脱水してエタノール濃度が99.6質量%以上の無水エタノールにする必要がある。
In recent years, with increasing environmental awareness, in order to reduce carbon dioxide emissions, there is an active movement to actively use biomass instead of fossil fuel as an energy source. A typical example is bioethanol produced by saccharification and fermentation of biomass such as sugarcane, corn, grass, and wood.
Bioethanol produced by such saccharification and fermentation is a low-concentration ethanol aqueous solution whose ethanol concentration is about 5 to 10% by mass, and most of the remaining is water.
In order to use this bioethanol as a raw material for automobile fuels and fuel base materials (for example, ethyl tert-butyl ether; ETBE), bioethanol is concentrated and dehydrated to obtain absolute ethanol with an ethanol concentration of 99.6% by mass or more. There is a need to.

バイオエタノールはカーボンニュートラルであるため二酸化炭素の削減に寄与し、その削減効果は製造エネルギーが少ないほど大きくなる。しかし、従来の蒸留濃縮と共沸蒸留脱水とによるバイオエタノールの濃縮脱水法では、バイオエタノール発熱量の約30%の製造エネルギーが必要であるため、その削減が急務の課題である。   Since bioethanol is carbon neutral, it contributes to the reduction of carbon dioxide, and the reduction effect increases with less production energy. However, the conventional bioethanol concentration and dehydration method by distillation concentration and azeotropic distillation dehydration requires about 30% of the production energy of the bioethanol heating value, and the reduction is an urgent issue.

エタノールと水の混合物は共沸点があるために、蒸留法ではエタノール濃度を約96質量%以上には濃縮できない。そこで、本発明者は、バイオエタノールを蒸気再圧縮蒸留法により含水エタノール(エタノール濃度:約85〜96質量%)を製造し、含水エタノールをブタンやプロパン溶媒による抽出蒸留法により、エタノール濃度99.9質量%以上の無水エタノールを製造する省エネシステムを開発した(特許文献1、2参照)。   Since a mixture of ethanol and water has an azeotropic point, the ethanol concentration cannot be concentrated to about 96% by mass or more by the distillation method. Therefore, the present inventor produced water-containing ethanol (ethanol concentration: about 85 to 96% by mass) from the bioethanol by the vapor recompression distillation method, and the ethanol concentration was 99. An energy-saving system for producing 9% by mass or more of absolute ethanol was developed (see Patent Documents 1 and 2).

含水エタノール(エタノール濃度:約85〜96質量%)をブタンやプロパン溶媒で抽出蒸留して無水エタノールを製造する従来のシステムについて、図2及び図3に基いて、次に説明する。   A conventional system for producing anhydrous ethanol by extracting and distilling hydrous ethanol (ethanol concentration: about 85 to 96% by mass) with a butane or propane solvent will be described below with reference to FIGS.

図2に示すシステムは一塔式のもので、原料となる含水エタノールは配管31により抽出蒸留塔30の中間部に供給される。一方、溶媒は抽出蒸留塔30の塔頂部に溶媒供給配管32より液体の状態で供給される。この溶媒としてはエタノールとの親和性がよく疎水性でエタノールとの共沸混合物を形成しない(又は形成しにくい)、ブタンまたはプロパンが適することを本発明者は見出した。この溶媒は、エタノール回収段30aにおいて、蒸気中のエタノールを吸収しながら流下し、エタノール濃縮段30bにおいて、配管31から供給された原料中のエタノールを選択的に吸収し、溶媒と親和性のない水分を蒸気相に追い出し、更に揮発性の高い溶媒を気化させながら流下する。その結果、抽出蒸留塔30の塔底部の無水エタノール取り出し配管33からは、溶媒や水分を実質的に含まない無水エタノールを回収することができる。本方式では、蒸留塔の塔頂部から配管34を通して流出する蒸気を凝縮器35で冷却して、分離槽36で水分を分離するため、蒸気の有するエネルギーは凝縮器35により全て失われる。このため、リボイラー37に供給される加熱用水蒸気が必要となり、大量のエネルギーが消費されるという問題があった。   The system shown in FIG. 2 is of a single tower type, and hydrous ethanol as a raw material is supplied to an intermediate part of the extractive distillation tower 30 through a pipe 31. On the other hand, the solvent is supplied in a liquid state from the solvent supply pipe 32 to the top of the extractive distillation tower 30. As the solvent, the present inventors have found that butane or propane is suitable because it has good affinity with ethanol and is hydrophobic and does not form (or hardly forms) an azeotrope with ethanol. The solvent flows down while absorbing ethanol in the vapor in the ethanol recovery stage 30a, and selectively absorbs ethanol in the raw material supplied from the pipe 31 in the ethanol concentration stage 30b, and has no affinity for the solvent. The water is driven out into the vapor phase, and it flows down while vaporizing a more volatile solvent. As a result, absolute ethanol substantially free of solvent and water can be recovered from the anhydrous ethanol take-out pipe 33 at the bottom of the extractive distillation column 30. In this method, since the steam flowing out from the top of the distillation column through the pipe 34 is cooled by the condenser 35 and the water is separated in the separation tank 36, all the energy of the steam is lost by the condenser 35. For this reason, the steam for heating supplied to the reboiler 37 is required, and a large amount of energy is consumed.

図3に示すシステムは二塔式で、抽出蒸留塔40と溶媒分離塔41との2塔から成る。この方式では、抽出蒸留塔40の底部配管42から引き抜かれる液組成について、エタノールに対する溶媒の比率を増加させることができ、液の沸点を低くすることができる。これにより、抽出蒸留塔40の塔頂部と塔底部の温度差が小さくなり、抽出蒸留塔40の塔頂部配管43を通して流出する蒸気を小さい圧縮比(小さい動力)で圧縮機44により圧縮して、配管45を流れる圧縮蒸気の凝縮温度を塔底部配管46から引き抜かれる液の温度より高くし、配管45を流れる蒸気の凝縮潜熱をリボイラー47の熱源として使用するようにしたものである。このため、リボイラー47に供給する熱量を殆ど補うことができ、図2に示す従来システムのように大量の潜熱を捨てることなく、回収利用する省エネシステムが構築されている。
しかし、塔底部から配管42を通して流出する塔底液は、無水エタノールとほぼ同量の溶媒から成るので、溶媒分離塔41の中間部に供給する必要があり、溶媒分離塔41の塔頂部に液体溶媒を供給する配管48や塔底液を加熱するリボイラー49など余分な設備が必要となるとともに、未だ十分にエネルギー消費量を抑えるものではなかった。
The system shown in FIG. 3 is a two-column system, and consists of two columns, an extractive distillation column 40 and a solvent separation column 41. In this system, the ratio of the solvent to ethanol can be increased for the liquid composition drawn from the bottom pipe 42 of the extractive distillation tower 40, and the boiling point of the liquid can be lowered. As a result, the temperature difference between the top and bottom of the extractive distillation tower 40 is reduced, and the steam flowing out through the top pipe 43 of the extractive distillation tower 40 is compressed by the compressor 44 with a small compression ratio (small power), The condensation temperature of the compressed steam flowing through the pipe 45 is made higher than the temperature of the liquid drawn out from the tower bottom pipe 46, and the latent heat of condensation of the steam flowing through the pipe 45 is used as a heat source for the reboiler 47. For this reason, the amount of heat supplied to the reboiler 47 can be almost supplemented, and an energy saving system for recovery is constructed without throwing away a large amount of latent heat as in the conventional system shown in FIG.
However, since the column bottom liquid flowing out from the column bottom through the pipe 42 is composed of almost the same amount of solvent as absolute ethanol, it is necessary to supply it to the middle part of the solvent separation column 41, and the liquid is added to the column top of the solvent separation column 41. Extra equipment such as a pipe 48 for supplying the solvent and a reboiler 49 for heating the column bottom liquid is required, and the energy consumption has not been sufficiently suppressed.

特開平3−157340号公報JP-A-3-157340 特開2011−162502号公報JP 2011-162502 A

本発明は上記のような事情に鑑みなされたものであって、本発明が解決する課題は、十分に低水分の無水エタノールを高い収率で得ることができ、省エネルギー性に優れ、設備が簡略化された含水エタノールの蒸留装置を提供することにある。また、この蒸留装置を用いて、エネルギー消費を抑え、高収率で無水エタノールを製造する方法を提供することにある。   The present invention has been made in view of the circumstances as described above, and the problem to be solved by the present invention is that it is possible to obtain sufficiently low-moisture anhydrous ethanol in a high yield, which is excellent in energy saving and simplified in equipment. Another object is to provide a water-containing ethanol distillation apparatus. Another object of the present invention is to provide a method for producing absolute ethanol in a high yield while suppressing energy consumption using this distillation apparatus.

本発明者は上記課題を解決するために鋭意研究を重ねた結果、蒸留塔を、上層、中間層及び下層に分け、上層と中間層との間に含水エタノールを供給するとともに、中間層と下層との間から中間液を抜き出し、これと蒸留塔頂部から抜き出される蒸気を圧縮したものとを熱交換させることにより、設備の大幅な簡略化とともに、エネルギー消費量も削減できることを見出した。   As a result of intensive studies to solve the above problems, the inventor divided the distillation column into an upper layer, an intermediate layer, and a lower layer, and supplied water-containing ethanol between the upper layer and the intermediate layer. It was found that the intermediate liquid was extracted from between the two and the heat exchanged with the compressed steam extracted from the top of the distillation column, thereby greatly simplifying the facility and reducing energy consumption.

本発明は、かかる知見に基づきなされたもので、次のとおりである。
[1]蒸留塔、圧縮機、中間加熱部及び分離槽を備え、前記蒸留塔は、上層、中間層及び下層を有しており、塔頂部に溶媒供給口及び蒸気出口、上層と中間層との間に含水エタノール供給口、中間層と下層との間に中間液保持部、塔底部にリボイラー及び無水エタノール取り出し口を、それぞれ有し、前記圧縮機は前記蒸留塔頂部の前記蒸気出口に接続され、前記中間加熱部は前記中間液保持部に保持された中間液を、前記圧縮機で圧縮された蒸気を熱源として加熱するものであり、前記分離槽は前記中間加熱部で熱源として利用された蒸気の凝縮液を収容して水と溶媒とを分離するものであり、前記分離槽で分離された溶媒を前記蒸留塔頂部の溶媒供給口に還流する手段を有する、含水エタノールの蒸留装置。
[2]上記溶媒が、ノルマルブタン、イソブタン、またはノルマルブタンとイソブタンの混合物、或いはプロパンである、上記[1]に記載の含水エタノールの蒸留装置。
[3]上記中間加熱部が、中間液保持部の中間液温度を蒸留塔頂部の温度より3〜20℃高く保持するものである上記[1]又は[2]に記載の含水エタノールの蒸留装置。
The present invention has been made based on such findings and is as follows.
[1] A distillation column, a compressor, an intermediate heating unit, and a separation tank are provided. The distillation column has an upper layer, an intermediate layer, and a lower layer, and a solvent supply port and a vapor outlet at the top of the column, an upper layer and an intermediate layer, A hydrous ethanol supply port, an intermediate liquid holding unit between the intermediate layer and the lower layer, a reboiler and an anhydrous ethanol extraction port at the bottom of the column, respectively, and the compressor is connected to the steam outlet at the top of the distillation column The intermediate heating unit heats the intermediate liquid held in the intermediate liquid holding unit using steam compressed by the compressor as a heat source, and the separation tank is used as a heat source in the intermediate heating unit. An apparatus for distilling water-containing ethanol, which contains water condensate and separates water and solvent, and has means for refluxing the solvent separated in the separation tank to the solvent supply port at the top of the distillation column.
[2] The water-containing ethanol distillation apparatus according to [1], wherein the solvent is normal butane, isobutane, a mixture of normal butane and isobutane, or propane.
[3] The apparatus for distilling hydrous ethanol according to [1] or [2], wherein the intermediate heating unit holds the intermediate liquid temperature of the intermediate liquid holding unit 3 to 20 ° C. higher than the temperature at the top of the distillation column. .

[4]上記[1]に記載の含水エタノールの蒸留装置を用い、上層と中間層との間に含水エタノールを供給し、上層上へ溶媒を供給し、中間層から流出する中間液を中間液保持部に保持し、中間液保持部から流出する中間液を下層へ供給し、下層から気化した溶媒は、中間液保持部の開口を通して中間層へ供給され、下層からの流出液をリボイラーで加熱し、前記中間保持部に保持されている中間液を、蒸留塔頂部から取り出した蒸気を圧縮機で圧縮した流体で加熱し、熱源に用いた流体を分離槽にて溶媒と水に分離し、分離された溶媒を上層上へ供給する溶媒として用い、蒸留塔底部から無水エタノールを取り出す無水エタノールの製造方法。 [4] Using the water-containing ethanol distillation apparatus according to [1] above, water-containing ethanol is supplied between the upper layer and the intermediate layer, a solvent is supplied onto the upper layer, and the intermediate solution flowing out from the intermediate layer is converted into the intermediate solution. The intermediate liquid flowing out from the intermediate liquid holding part is supplied to the lower layer, and the solvent evaporated from the lower layer is supplied to the intermediate layer through the opening of the intermediate liquid holding part, and the effluent from the lower layer is heated by the reboiler. The intermediate liquid held in the intermediate holding part is heated with a fluid obtained by compressing the vapor taken out from the top of the distillation column with a compressor, and the fluid used as a heat source is separated into a solvent and water in a separation tank, A method for producing absolute ethanol, in which the separated solvent is used as a solvent to be supplied onto the upper layer, and absolute ethanol is extracted from the bottom of the distillation column.

本発明は、塔頂部からの蒸気を圧縮して中間液の熱源とするので、リボイラーの熱量を低減でき、必要なエネルギーが少なくなり、かつ、一つの蒸留塔で無水エタノールを効率よく得ることができる。したがって、低水分の無水エタノールを高い収率で得ることができ、 設備を大幅に簡略化できるとともに、省エネルギー性に優れるという格別の効果を奏する。   Since the present invention compresses the vapor from the top of the column and uses it as a heat source for the intermediate liquid, the amount of heat of the reboiler can be reduced, the required energy is reduced, and absolute ethanol can be efficiently obtained with one distillation column. it can. Therefore, low-moisture absolute ethanol can be obtained in a high yield, the facility can be greatly simplified, and the energy saving performance is excellent.

本発明の一実施形態による含水エタノールの蒸留装置を説明するための図である。It is a figure for demonstrating the distillation apparatus of the water-containing ethanol by one Embodiment of this invention. 従来の一塔式システムによる含水エタノールの蒸留方法を説明するための図である。It is a figure for demonstrating the distillation method of the water-containing ethanol by the conventional one-column system. 従来の二塔式システムによる含水エタノールの蒸留方法を説明するための図である。It is a figure for demonstrating the distillation method of the water-containing ethanol by the conventional two-column system.

本発明の含水エタノールの蒸留装置に含まれる蒸留塔は、上層、中間層及び下層に分かれており、上層と中間層との間に含水エタノールの供給口を有し、中間層と下層との間に中間液保持部を有し、蒸留塔頂部に溶媒供給口及び蒸気出口を備え、塔底部にリボイラー及び無水エタノール取り出し口を備える。
上記蒸留塔の上層は、蒸気相中のエタノールを回収するためのエタノール回収部として機能する。上層における蒸気相中のエタノールは、液体の溶媒に吸収されながら塔を流下する。
The distillation column included in the water-containing ethanol distillation apparatus of the present invention is divided into an upper layer, an intermediate layer, and a lower layer, and has a supply port for water-containing ethanol between the upper layer and the intermediate layer, and between the intermediate layer and the lower layer. And a solvent supply port and a vapor outlet at the top of the distillation column, and a reboiler and an anhydrous ethanol outlet at the bottom of the column.
The upper layer of the distillation column functions as an ethanol recovery unit for recovering ethanol in the vapor phase. Ethanol in the vapor phase in the upper layer flows down the column while being absorbed by the liquid solvent.

この蒸留塔の中間層は、蒸気相中のエタノール濃度を上昇させ、水分濃度を低下させるためのエタノール濃縮脱水部又は水分離部として機能する。中間層中の液体の溶媒は、原料中のエタノールを選択的に吸収し、溶媒と親和性のない水分を蒸気相に追い出しながら流下し、エタノールと溶媒との混合物である中間液を中間液保持部及び下層に供給する。   The intermediate layer of the distillation column functions as an ethanol concentration dehydration unit or a water separation unit for increasing the ethanol concentration in the vapor phase and decreasing the water concentration. The liquid solvent in the intermediate layer selectively absorbs ethanol in the raw material and flows it down while expelling moisture incompatible with the solvent into the vapor phase, and holds the intermediate liquid that is a mixture of ethanol and solvent as the intermediate liquid. Supply to part and lower layer.

蒸留塔の下層は、溶媒からエタノールを分離するための溶媒分離部として機能する。下層に供給されたエタノールと溶媒との混合物は、下層の上部から下部に流下しながらエタノール中の溶媒が気化分離され、水と溶媒を実質的に含有しないエタノールが塔底部に流下する。
この蒸留塔の上層、中間層及び下層の構造は、蒸留塔として一般的に用いられるものであれば特に制限はない。たとえば、気液接触構造体を内部に有する縦長円筒の構造を用いることができる。上層は、中間層の略鉛直方向の上方に、また、下層は、中間層の略鉛直方向の下方に位置している。
The lower layer of the distillation column functions as a solvent separation unit for separating ethanol from the solvent. In the mixture of ethanol and solvent supplied to the lower layer, the solvent in ethanol is vaporized and separated while flowing from the upper part to the lower part of the lower layer, and ethanol substantially free of water and solvent flows to the bottom of the column.
The structures of the upper layer, intermediate layer and lower layer of the distillation column are not particularly limited as long as they are generally used as a distillation column. For example, a vertically long cylindrical structure having a gas-liquid contact structure inside can be used. The upper layer is located above the intermediate layer in the substantially vertical direction, and the lower layer is located below the intermediate layer in the substantially vertical direction.

上記中間液保持部は、エタノールと溶媒との混合物を一定量保持する部分である。中間液保持部の構造は、エタノールと溶媒との混合物である中間液を一定量保持しながら下層に供給することができ、下層で発生する溶媒の蒸気が通過できる空隙を有する構造であれば、特に制限はない。たとえば、開口を有する棚板であって、開口周囲に堰を有する構造とすることが好ましい。かかる構造とすることにより、棚板上の堰の高さ以下の部分に混合物を一定量保持することができ、混合物が一定量を超えると堰から溢れて下層に流れ落ち、また、棚板に設けた開口部により、下層で発生した溶媒の蒸気が、中間層へ到達することができる。
また、この中間液保持部においては、エタノール中に溶媒が40〜60質量%存在することが好ましく、45〜55質量%存在することがより好ましい。中間液保持部におけるエタノール中の溶媒の濃度を上記の範囲とすることにより、上述の熱エネルギー(リボイラーの熱負荷と圧縮機の動力)を少なくすることができるため、好ましい。
The intermediate liquid holding part is a part for holding a certain amount of a mixture of ethanol and a solvent. The structure of the intermediate liquid holding part can be supplied to the lower layer while holding a certain amount of the intermediate liquid that is a mixture of ethanol and a solvent, and if the structure has a gap through which the vapor of the solvent generated in the lower layer can pass, There is no particular limitation. For example, it is preferable that the shelf plate has an opening and has a weir around the opening. By adopting such a structure, a certain amount of the mixture can be held in a portion below the height of the weir on the shelf, and if the mixture exceeds a certain amount, it overflows from the weir and flows down to the lower layer, and is provided on the shelf. Through the opening, the solvent vapor generated in the lower layer can reach the intermediate layer.
Moreover, in this intermediate | middle liquid holding | maintenance part, it is preferable that 40-60 mass% of solvents exist in ethanol, and it is more preferable that 45-55 mass% exists. By setting the concentration of the solvent in ethanol in the intermediate liquid holding unit within the above range, the above-described heat energy (the heat load of the reboiler and the power of the compressor) can be reduced, which is preferable.

本発明の蒸留装置は、上記蒸留塔に、更に、圧縮機、中間加熱部及び分離槽を備える。
圧縮機の吸引口は、蒸留塔頂部にある蒸気出口に接続されており、この蒸気出口より回収された蒸気を圧縮する。圧縮された蒸気は中間加熱部における熱源として、中間液保持部に保持された中間液の加熱に利用される。中間液保持部の温度(T1)は、蒸留塔頂部の温度(T2)よりも3〜20℃高くなるように調整されることが好ましく、5〜10℃高いのがより好ましい。
The distillation apparatus of the present invention further includes a compressor, an intermediate heating unit, and a separation tank in the distillation column.
The suction port of the compressor is connected to a steam outlet at the top of the distillation column, and compresses the steam recovered from this steam outlet. The compressed steam is used as a heat source in the intermediate heating section for heating the intermediate liquid held in the intermediate liquid holding section. The temperature (T1) of the intermediate liquid holding part is preferably adjusted to be 3 to 20 ° C. higher than the temperature (T2) at the top of the distillation column, and more preferably 5 to 10 ° C.

ここで、T1とT2との温度差をΔT=T1−T2と定義すると、ΔTが小さいほど圧縮機の圧縮比は小さくできるが、あまり小さいと当該中間液保持部における液中のエタノールに対する溶媒量が増加して蒸留塔底部の液を加熱するために設けられたリボイラーの必要熱量(熱負荷)が増大する。一方、ΔTを大きくすると、当該中間液保持部の溶媒量は減少して当該リボイラーの熱負荷は減少するが、圧縮機の圧縮比を大きくしなければならない。すなわち、リボイラーの熱負荷と圧縮機の動力とを考慮した熱エネルギーを最少にするには、ΔTに最適条件が存在する。本発明者は、種々検討の結果、ΔT<3〜20℃が好ましく、ΔT<5〜10がより好ましいことを見出した。
なお、本発明の中間加熱部は、上記蒸留塔と一体になっていてもよく、又は、蒸留塔とは分離された装置として構成されていてもよい。
Here, if the temperature difference between T1 and T2 is defined as ΔT = T1-T2, the compression ratio of the compressor can be reduced as ΔT is smaller, but if it is too small, the amount of solvent relative to ethanol in the liquid in the intermediate liquid holding unit Increases and the required amount of heat (heat load) of the reboiler provided for heating the liquid at the bottom of the distillation column increases. On the other hand, when ΔT is increased, the amount of solvent in the intermediate liquid holding unit is reduced and the thermal load on the reboiler is reduced, but the compression ratio of the compressor must be increased. That is, there is an optimum condition for ΔT in order to minimize the heat energy in consideration of the heat load of the reboiler and the power of the compressor. As a result of various studies, the present inventor has found that ΔT <3 to 20 ° C. is preferable and ΔT <5 to 10 is more preferable.
In addition, the intermediate heating part of this invention may be integrated with the said distillation tower, or may be comprised as an apparatus isolate | separated from the distillation tower.

上記分離槽は、中間加熱部で熱源として利用された蒸気の凝縮液を収容し、水と溶媒とを分離するものである。水と溶媒は、その比重差が大きいため、比重分離により容易に分離することができる。
この分離槽には、分離された溶媒を蒸留塔頂部にある溶媒供給口に還流する手段が設けられている。この還流は、分離槽が蒸留塔頂部よりも加圧されている場合には、配管を接続することのみで可能であるが、必要に応じてポンプなどで還流することもできる。
The said separation tank accommodates the vapor | steam condensate utilized as a heat source in the intermediate heating part, and isolate | separates water and a solvent. Since water and solvent have a large specific gravity difference, they can be easily separated by specific gravity separation.
The separation tank is provided with means for refluxing the separated solvent to the solvent supply port at the top of the distillation column. When the separation tank is pressurized from the top of the distillation column, this reflux can be performed only by connecting a pipe, but it can also be refluxed with a pump or the like as necessary.

本発明の蒸留装置の処理対象の含水エタノールの含水率には特に制限がないが、一般的には、3質量%〜20質量%であることが好ましく、バイオマス等の発酵で得られる低濃度エタノールを、通常の蒸留方法で濃縮して得られる濃縮物や共沸混合物を用いることがより好ましい。
なお、本発明における水と溶媒を実質的に含有しないエタノールまたは無水エタノールとは、含水率が0.4質量%以下、溶媒の含有率が0.01質量%以下のエタノールをいう。
Although there is no restriction | limiting in particular in the water content of the water-containing ethanol of the distillation target of this invention, Generally, it is preferable that it is 3 mass%-20 mass%, and low concentration ethanol obtained by fermentation of biomass etc. It is more preferable to use a concentrate or an azeotrope obtained by concentrating the above by a conventional distillation method.
In the present invention, ethanol or absolute ethanol substantially free of water and solvent refers to ethanol having a water content of 0.4% by mass or less and a solvent content of 0.01% by mass or less.

本発明で使用される溶媒は、本発明の蒸留装置において使用することができるものであれば特に制限がないが、エタノールとの親和性がよく疎水性でエタノールとの共沸混合物を実質的に形成しない溶媒が好ましく、ノルマルブタン、イソブタン、ノルマルブタンとイソブタンとの混合物、又はプロパンがより好ましい。これらの好ましい溶媒を使用することにより、溶媒とエタノールが共沸混合物を形成することなく、蒸留塔頂部から排出される蒸気中へのエタノールの混入をより低く抑えることができる。
また、本発明の無水エタノールの製造方法においては、用いる溶媒やエタノールの含水量等を考慮して蒸留装置の運転条件を選定するが、具体的には、蒸留装置内の圧力0.1〜5MPa、塔頂温度15〜150℃、塔底温度78〜250℃の範囲から適宜選定するとよい。
The solvent used in the present invention is not particularly limited as long as it can be used in the distillation apparatus of the present invention. However, it has a good affinity with ethanol and is hydrophobic and substantially forms an azeotrope with ethanol. Solvents that do not form are preferred, with normal butane, isobutane, a mixture of normal butane and isobutane, or propane being more preferred. By using these preferable solvents, the mixing of ethanol into the vapor discharged from the top of the distillation column can be further suppressed without the solvent and ethanol forming an azeotrope.
Further, in the method for producing absolute ethanol of the present invention, the operating conditions of the distillation apparatus are selected in consideration of the solvent used, the water content of ethanol, and the like. Specifically, the pressure in the distillation apparatus is 0.1 to 5 MPa. The column top temperature may be suitably selected from the range of 15 to 150 ° C. and the column bottom temperature of 78 to 250 ° C.

次に、本発明の蒸留装置の一実施態様として、図1に基づき、その詳細を説明する。
図1は、蒸留塔1、圧縮機2、中間加熱部である中間加熱器3および分離槽4を備える含水エタノールの蒸留装置である。蒸留塔1は、略鉛直方向に延びた筒状であり、その両端は閉じている。蒸留塔1の内部には、鉛直方向に上方から上層1a、中間層1b及び下層1cを備えている。これらは気液接触構造体であり、気液の接触効率を増大させるために一般に使用される棚段、不規則充填物、規則充填物などから、適宜選定して使用される。
Next, the details of one embodiment of the distillation apparatus of the present invention will be described with reference to FIG.
FIG. 1 shows a distillation apparatus for hydrous ethanol comprising a distillation column 1, a compressor 2, an intermediate heater 3 as an intermediate heating unit, and a separation tank 4. The distillation column 1 has a cylindrical shape extending in a substantially vertical direction, and both ends thereof are closed. Inside the distillation column 1, an upper layer 1a, an intermediate layer 1b, and a lower layer 1c are provided in the vertical direction from above. These are gas-liquid contact structures, and are appropriately selected from shelves, irregular packings, regular packings, etc. that are generally used to increase the gas-liquid contact efficiency.

含水エタノール(エタノール濃度;約85〜96質量%)は配管5から供給され、原料予熱器6で予熱後、含水エタノール供給口7から蒸留塔1に供給される。含水エタノール供給口7は、上層1aと中間層1bの間に位置している。
溶媒は、蒸留塔1の最上部である塔頂部に設けられた溶媒供給口8から液体状態で供給される。この液体の溶媒は、上層(エタノール回収部)1aにおいて蒸気相中のエタノールを吸収しながら流下し、中間層(エタノール濃縮脱水部)1bでは原料中のエタノールを選択的に抽出し、溶媒と親和性のない水分を蒸気相に追い出しながら流下する。
Hydrous ethanol (ethanol concentration; about 85 to 96% by mass) is supplied from the pipe 5, preheated by the raw material preheater 6, and then supplied from the hydrous ethanol supply port 7 to the distillation column 1. The hydrous ethanol supply port 7 is located between the upper layer 1a and the intermediate layer 1b.
The solvent is supplied in a liquid state from a solvent supply port 8 provided at the top of the distillation column 1. This liquid solvent flows down while absorbing the ethanol in the vapor phase in the upper layer (ethanol recovery part) 1a, and the ethanol in the raw material is selectively extracted in the intermediate layer (ethanol concentration dehydration part) 1b. It flows down while expelling insoluble moisture into the vapor phase.

中間層1bと下層1cの間には、中間液保持部1dが設けられている。中間液保持部1dは、蒸留塔1の内壁に接続し、略水平方向に延びる平板状の棚板1e、この棚板1eに設けられた開口1f、及び開口1fの外周部に沿って略鉛直方向上方に延びる板状の堰1gで構成されている。中間液保持部1dにはエタノールと溶媒との混合物である中間液が保持され、その一部分は、配管9を経由して中間加熱器3に導入され、圧縮機2により圧縮された蒸気を熱源として加熱され、配管10を経由して再び中間液保持部1dに戻される。この中間液保持部1dの中間液温度は中間加熱器3で調整することができる。即ち、熱エネルギー(蒸留塔底部のリボイラーの熱負荷と圧縮機の動力)が最少になるように、中間液保持部1dの中間液温度を蒸留塔頂部の蒸気出口11を通して流出する蒸気の温度より3〜20℃、好ましくは5〜10℃高くなるように調整する。
中間液保持部1dには、エタノールと溶媒との混合物が一定量保持されるように堰1gが設けられ、堰1gを越えた液は開口1fから下層(溶媒分離部)1cに流下する。そして、この混合物は、下層(溶媒分離部)1cの上部から下部に流下しながらエタノール中の溶媒が気化分離され、蒸留塔1の塔底部の無水エタノール取り出し口12から実質的に溶媒を含まない無水エタノールが回収される。
An intermediate liquid holding unit 1d is provided between the intermediate layer 1b and the lower layer 1c. The intermediate liquid holding unit 1d is connected to the inner wall of the distillation column 1 and extends substantially horizontally along a flat shelf 1e extending in a substantially horizontal direction, an opening 1f provided in the shelf 1e, and an outer periphery of the opening 1f. It consists of a plate-like weir 1g extending upward in the direction. The intermediate liquid holding unit 1d holds an intermediate liquid that is a mixture of ethanol and a solvent. A part of the intermediate liquid is introduced into the intermediate heater 3 via the pipe 9, and the steam compressed by the compressor 2 is used as a heat source. It is heated and returned to the intermediate liquid holding part 1d again via the pipe 10. The intermediate liquid temperature of the intermediate liquid holding part 1 d can be adjusted by the intermediate heater 3. That is, the intermediate liquid temperature of the intermediate liquid holding part 1d is determined from the temperature of the steam flowing out through the steam outlet 11 at the top of the distillation column so that the thermal energy (the heat load of the reboiler at the bottom of the distillation tower and the power of the compressor) is minimized. 3-20 degreeC, Preferably it adjusts so that it may become 5-10 degreeC high.
The intermediate liquid holding unit 1d is provided with a weir 1g so that a fixed amount of a mixture of ethanol and a solvent is held, and the liquid exceeding the weir 1g flows down from the opening 1f to the lower layer (solvent separation unit) 1c. Then, in this mixture, the solvent in ethanol is vaporized and separated while flowing from the upper part to the lower part of the lower layer (solvent separation part) 1c, and the solvent is substantially free from the anhydrous ethanol outlet 12 at the bottom of the distillation column 1. Absolute ethanol is recovered.

また、蒸留塔1の塔底部の配管13から取り出された塔底液は、リボイラー14により無水エタノールの沸点になるように加熱され、配管15を経由して蒸留塔1の塔底部へ戻される。蒸留塔1の塔底部で発生した蒸気は溶媒に一部エタノールが混合しており、下層(溶媒分離部)1cを上昇し、中間液保持部1dに設けた貫通する空隙である開口1fを経由して上昇するが、上層(エタノール回収部)1aで蒸気中のエタノールは回収される。貫通する空隙である開口1fは、堰1gを越えて流下する液が逆流しない蒸気速度になるように設計されている。   Further, the column bottom liquid taken out from the piping 13 at the bottom of the distillation column 1 is heated to the boiling point of absolute ethanol by the reboiler 14 and returned to the column bottom of the distillation column 1 through the piping 15. The vapor generated at the bottom of the distillation column 1 is partially mixed with ethanol, and then goes up the lower layer (solvent separation unit) 1c and passes through an opening 1f which is a through-hole provided in the intermediate liquid holding unit 1d. However, the ethanol in the steam is recovered in the upper layer (ethanol recovery part) 1a. The opening 1f, which is a through-hole, is designed to have a vapor velocity at which the liquid flowing down over the weir 1g does not flow backward.

蒸留塔1の塔頂部に設けられた蒸気出口11から取り出された、実質的にエタノールを含まない溶媒と水分の混合蒸気は、圧力調整弁16および配管17を経由して圧縮機2へ導入されて圧縮される。圧縮された蒸気は、配管18を経由して中間加熱部3の熱源として供給される。この蒸気の凝縮温度が中間液保持部1dの中間液温度より高くなるように、圧縮機2で圧縮する。配管18から供給される蒸気の凝縮温度と中間保持部1dの中間液温度との差が大きいと中間加熱器3は小さくできるが、圧縮機2の動力が大きくなるので、経済性を考慮して最適な圧縮比に設計される。   A vapor mixture of a solvent and water substantially free of ethanol, which is taken out from a vapor outlet 11 provided at the top of the distillation column 1, is introduced into the compressor 2 via a pressure control valve 16 and a pipe 17. Compressed. The compressed steam is supplied as a heat source of the intermediate heating unit 3 via the pipe 18. The vapor is compressed by the compressor 2 so that the condensation temperature of the vapor is higher than the intermediate liquid temperature of the intermediate liquid holding unit 1d. If the difference between the condensing temperature of the steam supplied from the pipe 18 and the intermediate liquid temperature of the intermediate holding part 1d is large, the intermediate heater 3 can be made small, but the power of the compressor 2 becomes large. Designed for optimal compression ratio.

配管18から供給される蒸気は、その凝縮潜熱を中間加熱器3の熱源として用い、凝縮液となり配管19から分離槽4に供給される。液体状態において、水は溶媒(比重:約0.5〜0.6)よりも比重が大きいので容易に重力沈降分離し、分離槽4の下部から配管20を経由して水が抜出される。水が実質的に分離された溶媒は分離槽4の上部から配管21を経由して取り出され、圧力調整弁22および配管23を経由して溶媒供給口8から蒸留塔1の塔頂部に再循環される。配管21,23および圧力調整弁22が、分離槽4から溶媒供給口8に還流する手段となる。
分離槽4の底部から配管20により抜き出される水への溶媒の溶解度は非常に小さいので、溶媒の損失は極めて少ない。なお、運転開始時や運転中に溶媒を供給する配管を、配管23などに接続することができるが、図1では省略している。
The steam supplied from the pipe 18 uses the latent heat of condensation as a heat source for the intermediate heater 3, becomes a condensate, and is supplied from the pipe 19 to the separation tank 4. In the liquid state, since water has a specific gravity greater than that of the solvent (specific gravity: about 0.5 to 0.6), it is easily separated by gravity sedimentation, and water is extracted from the lower part of the separation tank 4 via the pipe 20. The solvent from which water has been substantially separated is taken out from the upper part of the separation tank 4 through the pipe 21 and recirculated from the solvent supply port 8 to the top of the distillation column 1 through the pressure regulating valve 22 and the pipe 23. Is done. The pipes 21 and 23 and the pressure adjustment valve 22 serve as a means for refluxing from the separation tank 4 to the solvent supply port 8.
Since the solubility of the solvent in the water extracted from the bottom of the separation tank 4 by the pipe 20 is very small, the loss of the solvent is extremely small. A pipe for supplying the solvent at the start of the operation or during the operation can be connected to the pipe 23 or the like, but is omitted in FIG.

溶媒供給口8からの溶媒の導入量は、中間層(エタノール濃縮脱水部)1bにおいて水分を蒸気相に完全に追い出すために必要な量であり、上層(エタノール回収部)1aにおいてエタノールを回収するに必要な量よりも十分大きい。このため、下層(溶媒分離部)1cの上部から上昇する蒸気中のエタノールは十分回収可能である。
すなわち、図3に示される従来型の蒸留装置における、配管48から供給される溶媒とエタノール回収部41aは不要になる。これにより、本発明の蒸留装置では、従来2塔必要であった蒸留塔を1塔に統合することが可能となり、溶媒循環量が減少し圧縮機の動力をその分だけ削減することができる。
The amount of solvent introduced from the solvent supply port 8 is an amount necessary for completely removing water into the vapor phase in the intermediate layer (ethanol concentration dehydration unit) 1b, and ethanol is recovered in the upper layer (ethanol recovery unit) 1a. Large enough than needed. For this reason, ethanol in the vapor | steam rising from the upper part of lower layer (solvent separation part) 1c is fully recoverable.
That is, the solvent supplied from the pipe 48 and the ethanol recovery unit 41a in the conventional distillation apparatus shown in FIG. As a result, in the distillation apparatus of the present invention, it is possible to integrate the distillation tower, which conventionally required two towers, into one tower, thereby reducing the amount of solvent circulation and reducing the compressor power accordingly.

また、図1に示される本発明の蒸留装置を図3に示される従来型の蒸留装置と対比すると、図3のエタノール回収部41aは図1の上層(エタノール回収部)1aでの代用により削減され、熱交換器は4基から3基に削減され、制御装置は5系統から2系統に削減される。そして、本発明の蒸留装置により配管の半減などが達成され、設備コストの削減と運転制御の簡素化による運転人員の削減が可能となる。また、設置スペースやメインテナンス費の削減も可能となる。   Further, when the distillation apparatus of the present invention shown in FIG. 1 is compared with the conventional distillation apparatus shown in FIG. 3, the ethanol recovery part 41a in FIG. 3 is reduced by substituting the upper layer (ethanol recovery part) 1a in FIG. The number of heat exchangers is reduced from four to three, and the number of control devices is reduced from five to two. And, the distillation apparatus of the present invention can reduce piping by half and the like, and it is possible to reduce the operating cost by reducing the equipment cost and simplifying the operation control. In addition, installation space and maintenance costs can be reduced.

(プロセスシミュレータによるプロセス計算)
ブタンまたはプロパン、エタノール、水からなる系について広範囲条件での相平衡データを測定し、高精度の相平衡モデルを開発した。そのモデルを市販の汎用プロセスシミュレータPRO II(Simulation Sciences Inc)に組み込み、プロセスシミュレーションを行った。
なお、上記プロセスシミュレーションの結果と図3に示すフローに相当する装置での実測値とが、ほぼ一致することを既に確認している。
(Process calculation by process simulator)
A phase equilibration model for a system consisting of butane, propane, ethanol, and water was measured over a wide range of conditions, and a highly accurate phase equilibration model was developed. The model was incorporated into a commercially available general-purpose process simulator PRO II (Simulation Sciences Inc), and a process simulation was performed.
It has already been confirmed that the result of the process simulation and the actual measurement value in the apparatus corresponding to the flow shown in FIG.

(実施例1)
本発明の実施態様である図1の蒸留装置について、原料であるエタノール濃度90質量%の含水エタノールを5.5t/hrで供給し、蒸留塔頂部へ供給する溶媒のノルマルブタンを100t/hr、蒸留塔内圧力を0.6MPaとして、上記シミュレータによりプロセスシミュレーションを行った。なお、上記原料の含水エタノールは、エタノール濃度10%の含水エタノールを単純蒸留することにより得られるので、これをベースにした。
その結果を表1に示す。なお、表1において、蒸留塔1の中間液保持部及び塔頂部の温度を、それぞれ、T11及びT12と表記した。
回収エタノール純度は99.9質量%以上、エタノール回収率96%以上であった。
Example 1
About the distillation apparatus of FIG. 1 which is an embodiment of the present invention, hydrous ethanol having an ethanol concentration of 90% by mass as a raw material is supplied at 5.5 t / hr, and normal butane as a solvent supplied to the top of the distillation column is 100 t / hr. The process simulation was performed by the simulator with the pressure in the distillation column being 0.6 MPa. The raw water-containing ethanol was obtained by simple distillation of water-containing ethanol having an ethanol concentration of 10%.
The results are shown in Table 1. In Table 1, the temperatures of the intermediate liquid holding part and the tower top part of the distillation column 1 are denoted as T 11 and T 12 , respectively.
The recovered ethanol purity was 99.9% by mass or more, and the ethanol recovery rate was 96% or more.

(比較例1)
従来システムである図2のシステムについて、実施例1と同様にプロセスシミュレーションを行った。
その結果を表1に示す。なお、表1において、抽出蒸留塔30の塔底部及び塔頂部の温度を、それぞれ、T301及びT302と表記した。
回収エタノール純度は99.9質量%以上、エタノール回収率96%以上であった。
(Comparative Example 1)
For the system of FIG. 2 which is a conventional system, a process simulation was performed in the same manner as in Example 1.
The results are shown in Table 1. In Table 1, the temperatures of the bottom and top of the extractive distillation column 30 are denoted as T 301 and T 302 , respectively.
The recovered ethanol purity was 99.9% by mass or more, and the ethanol recovery rate was 96% or more.

(比較例2)
従来システムである図3のシステムについて、実施例1と同様にプロセスシミュレーションを行った。
その結果を表1に示す。なお、表1において、抽出蒸留塔40の塔底部及び塔頂部の温度を、それぞれ、T401及びT402と表記した。
回収エタノール純度は99.9質量%以上、エタノール回収率96%以上であった。
(Comparative Example 2)
A process simulation was performed in the same manner as in Example 1 for the system of FIG.
The results are shown in Table 1. In Table 1, the temperatures of the bottom and top of the extractive distillation tower 40 are denoted as T 401 and T 402 , respectively.
The recovered ethanol purity was 99.9% by mass or more, and the ethanol recovery rate was 96% or more.

Figure 2016145161
Figure 2016145161

表1に示されるとおり、図2の従来システム(比較例1)は所要エネルギー(圧縮機の動力+加熱エネルギー)が大きすぎて実用的でない。
また、図1の本発明システム(実施例1)は図3の従来システム(比較例2)に比べて、理論段数が20段少なく、所要エネルギーは約10%少ないという効果を示している。
溶媒がイソブタン、ノルマルブタンとイソブタンとの混合物及びプロパンの場合も、溶媒がノルマルブタンの場合とほぼ同様な結果がそれぞれ得られた。
As shown in Table 1, the conventional system of FIG. 2 (Comparative Example 1) is not practical because the required energy (compressor power + heating energy) is too large.
Further, the system of the present invention (Example 1) in FIG. 1 has the effect that the number of theoretical plates is 20 steps less and the required energy is about 10% less than the conventional system (Comparative Example 2) in FIG.
When the solvent was isobutane, a mixture of normal butane and isobutane, and propane, almost the same results as those obtained when the solvent was normal butane were obtained.

本発明により、省エネルギーのために2塔式にせざるを得なかった従来のシステムを、1塔の蒸留塔に集約してシステムを簡素化することが可能となった。また、本発明のシステムは、蒸留塔が1塔であるにも関わらず省エネルギー性が損なわれることがなく、逆に省エネルギー性を向上できる。   According to the present invention, it has become possible to simplify the system by consolidating the conventional system, which had to be a two-column system for energy saving, into a single distillation column. In addition, the system of the present invention can improve the energy saving property without impairing the energy saving property although the number of distillation columns is one.

本発明の含水エタノールの蒸留装置は、含水エタノール、特には、糖化発酵により製造されるバイオエタノール中の水分を除去し、無水エタノールを得るために有用で、このようにして得られる無水エタノールは、自動車用燃料や燃料基材の原料、さらには、各種溶剤(有機溶媒)、有機合成原料、消毒剤などとして利用することができる。   The apparatus for distilling water-containing ethanol of the present invention is useful for removing water from water-containing ethanol, in particular, bioethanol produced by saccharification and fermentation to obtain absolute ethanol. It can be used as raw materials for automobile fuels and fuel base materials, as well as various solvents (organic solvents), organic synthetic raw materials, disinfectants, and the like.

1 蒸留塔(抽出蒸留脱水塔)
1a 上層(エタノール回収部)
1b 中間層(エタノール濃縮脱水部(水分離部))
1c 下層(溶媒分離部)
1d 中間液保持部
2 圧縮機
3 分離槽
3 中間加熱器
14 リボイラー
16,22 圧力制御装置
1 Distillation tower (extraction distillation dehydration tower)
1a Upper layer (ethanol recovery unit)
1b Intermediate layer (ethanol concentration dehydration part (water separation part))
1c Lower layer (solvent separator)
1d Intermediate liquid holding unit 2 Compressor 3 Separation tank 3 Intermediate heater 14 Reboiler 16, 22 Pressure control device

Claims (4)

蒸留塔、圧縮機、中間加熱部及び分離槽を備え、
前記蒸留塔は、上層、中間層及び下層を有しており、塔頂部に溶媒供給口及び蒸気出口、上層と中間層との間に含水エタノール供給口、中間層と下層との間に中間液保持部、塔底部にリボイラー及び無水エタノール取り出し口を、それぞれ有し、
前記圧縮機は、前記蒸留塔頂部の前記蒸気出口に接続され、
前記中間加熱部は、前記中間液保持部に保持された中間液を前記圧縮機で圧縮された蒸気を熱源として加熱するものであり、
前記分離槽は、前記中間加熱器で熱源として利用された蒸気の凝縮液を収容して水と溶媒とを分離するものであり、
前記分離槽で分離された溶媒を前記蒸留塔頂部の溶媒供給口に還流する手段を有する、含水エタノールの蒸留装置。
Equipped with distillation tower, compressor, intermediate heating part and separation tank,
The distillation column has an upper layer, an intermediate layer, and a lower layer, a solvent supply port and a steam outlet at the top of the column, a hydrous ethanol supply port between the upper layer and the intermediate layer, and an intermediate liquid between the intermediate layer and the lower layer. Reboiler and dehydrated ethanol outlet at the bottom and bottom of the tower, respectively,
The compressor is connected to the steam outlet at the top of the distillation column;
The intermediate heating section heats the intermediate liquid held in the intermediate liquid holding section by using steam compressed by the compressor as a heat source,
The separation tank contains vapor condensate used as a heat source in the intermediate heater and separates water and solvent,
An apparatus for distilling hydrous ethanol, comprising means for refluxing the solvent separated in the separation tank to a solvent supply port at the top of the distillation column.
上記溶媒が、ノルマルブタン、イソブタン、ノルマルブタンとイソブタンの混合物、又はプロパンである、請求項1に記載の含水エタノールの蒸留装置。   The apparatus for distilling hydrous ethanol according to claim 1, wherein the solvent is normal butane, isobutane, a mixture of normal butane and isobutane, or propane. 上記中間加熱部が、中間液保持部の温度を蒸留塔頂部の温度より3〜20℃高く保持するものである、請求項1又は請求項2に記載の含水エタノールの蒸留装置。   The apparatus for distilling water-containing ethanol according to claim 1 or 2, wherein the intermediate heating unit holds the temperature of the intermediate liquid holding unit 3 to 20 ° C higher than the temperature at the top of the distillation column. 請求項1に記載の含水エタノールの蒸留装置を用い、
上層と中間層との間に含水エタノールを供給し、
上層上部へ溶媒を供給し、中間層から流出する中間液を中間液保持部に保持し、
中間液保持部から流出する中間液を下層へ供給し、
下層から気化した溶媒は、中間液保持部の開口を通して中間層へ供給され、
下層からの流出液をリボイラーで加熱し、
前記中間保持部に保持されている中間液を、蒸留塔頂部から取り出した蒸気を圧縮機で圧縮した流体で加熱し、
熱源に用いた流体を分離槽にて溶媒と水に分離し、
分離された溶媒を上層上部へ供給する溶媒として用い、
蒸留塔底部から無水エタノールを取り出す無水エタノールの製造方法。
Using the water-containing ethanol distillation apparatus according to claim 1,
Hydrous ethanol is supplied between the upper layer and the middle layer,
Supply the solvent to the upper part of the upper layer, hold the intermediate liquid flowing out from the intermediate layer in the intermediate liquid holding part,
Supply the intermediate liquid flowing out from the intermediate liquid holding part to the lower layer,
The solvent evaporated from the lower layer is supplied to the intermediate layer through the opening of the intermediate liquid holding unit,
Heat the effluent from the lower layer with a reboiler,
The intermediate liquid held in the intermediate holding part is heated with a fluid obtained by compressing the steam taken out from the top of the distillation column with a compressor,
The fluid used for the heat source is separated into solvent and water in the separation tank,
Use the separated solvent as the solvent to be supplied to the upper part of the upper layer,
An absolute ethanol production method in which absolute ethanol is taken out from the bottom of a distillation column.
JP2015022004A 2015-02-06 2015-02-06 Hydrous ethanol distillation apparatus and method for producing absolute ethanol Active JP6312614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022004A JP6312614B2 (en) 2015-02-06 2015-02-06 Hydrous ethanol distillation apparatus and method for producing absolute ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022004A JP6312614B2 (en) 2015-02-06 2015-02-06 Hydrous ethanol distillation apparatus and method for producing absolute ethanol

Publications (2)

Publication Number Publication Date
JP2016145161A true JP2016145161A (en) 2016-08-12
JP6312614B2 JP6312614B2 (en) 2018-04-18

Family

ID=56686025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022004A Active JP6312614B2 (en) 2015-02-06 2015-02-06 Hydrous ethanol distillation apparatus and method for producing absolute ethanol

Country Status (1)

Country Link
JP (1) JP6312614B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187140A (en) * 2020-01-14 2020-05-22 石化盈科信息技术有限责任公司 Energy-saving method and device for deisobutanizer
CN115253350A (en) * 2022-08-05 2022-11-01 淄博万华机械设备有限公司 Double-tower MVR continuous distillation recovery system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104243A (en) * 1979-02-06 1980-08-09 Asahi Chem Ind Co Ltd Purification of olefinic unsaturated nitrile
JPS60226837A (en) * 1983-12-01 1985-11-12 Res Assoc Petroleum Alternat Dev<Rapad> Apparatus for producing absolute ethanol and production of absolute ethanol
US4626321A (en) * 1983-08-22 1986-12-02 Trustees Of Dartmouth College Distillation systems and methods
JPH03157340A (en) * 1989-11-14 1991-07-05 Tsuushiyousangiyoushiyou Kiso Sangiyoukiyokuchiyou Production of anhydrous alcohol
JP2009263349A (en) * 2008-03-31 2009-11-12 Mitsubishi Chemicals Corp Method for producing easily polymerizable compound and method for preventing polymerization
JP2011162502A (en) * 2010-02-12 2011-08-25 Hirotoshi Horizoe Method for producing absolute ethanol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104243A (en) * 1979-02-06 1980-08-09 Asahi Chem Ind Co Ltd Purification of olefinic unsaturated nitrile
US4626321A (en) * 1983-08-22 1986-12-02 Trustees Of Dartmouth College Distillation systems and methods
JPS60226837A (en) * 1983-12-01 1985-11-12 Res Assoc Petroleum Alternat Dev<Rapad> Apparatus for producing absolute ethanol and production of absolute ethanol
JPH03157340A (en) * 1989-11-14 1991-07-05 Tsuushiyousangiyoushiyou Kiso Sangiyoukiyokuchiyou Production of anhydrous alcohol
JP2009263349A (en) * 2008-03-31 2009-11-12 Mitsubishi Chemicals Corp Method for producing easily polymerizable compound and method for preventing polymerization
JP2011162502A (en) * 2010-02-12 2011-08-25 Hirotoshi Horizoe Method for producing absolute ethanol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187140A (en) * 2020-01-14 2020-05-22 石化盈科信息技术有限责任公司 Energy-saving method and device for deisobutanizer
CN115253350A (en) * 2022-08-05 2022-11-01 淄博万华机械设备有限公司 Double-tower MVR continuous distillation recovery system and method

Also Published As

Publication number Publication date
JP6312614B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
TWI421121B (en) Low-energy extractive distillation process for dehydration of aqueous ethanol
KR101804637B1 (en) Distillation device
US8287698B2 (en) Process and system for producing alcohol by split-feed distillation
CA2698315A1 (en) Liquid separation by membrane assisted vapor stripping process
CN103282336B (en) For the production of high-purity neopentyl glycol next door tower and use its manufacture method
JP2016502463A (en) Alkanol production equipment
JP2011162502A (en) Method for producing absolute ethanol
US20140150493A1 (en) Process and apparatus for removing heat and water from flue gas
CN102875329B (en) A kind of heat pump distillation is separated technique and the device of primary isoamyl alcohol isomers
CN104968636A (en) Device for preparing alkanol
JP6312614B2 (en) Hydrous ethanol distillation apparatus and method for producing absolute ethanol
CN103484154B (en) Condensed water stripping stabilization of crude oil method and special purpose device thereof
CN205730432U (en) A kind of mechanical steam recompression Distallation systm
CN105237370A (en) Method for producing cyclohexanone by cyclohexanol dehydrogenation
US20230159418A1 (en) Process and Apparatus for distillation
US4303478A (en) Process for distillatively separating liquid mixtures
CN109704920A (en) From the energy-saving process method and device of low concentration fermentation liquid production alcohol fuel
KR101127160B1 (en) Method for separating orazeotropic mixtures using the column having a divided wall
CN203677978U (en) Vapor-compression type alcohol recovery tower
CN103910605B (en) The technique of a kind of infiltration evaporation system and refined biological propyl carbinol thereof
JP6612961B1 (en) Distillation equipment
CN105713113B (en) Method for recovering heat of gas-phase material in condensation kettle
JP2017159220A (en) Separation method of liquid mixture
CN104560115B (en) Absorbing-stabilizing system and its workflow and application and a kind of method for preparing stable gasoline
CN209537349U (en) A kind of VCM rectification system of energy-saving and water-saving

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6312614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250