JPH0346271A - Mis type field effect transistor - Google Patents

Mis type field effect transistor

Info

Publication number
JPH0346271A
JPH0346271A JP18057789A JP18057789A JPH0346271A JP H0346271 A JPH0346271 A JP H0346271A JP 18057789 A JP18057789 A JP 18057789A JP 18057789 A JP18057789 A JP 18057789A JP H0346271 A JPH0346271 A JP H0346271A
Authority
JP
Japan
Prior art keywords
zns
insulating film
znse
gate insulating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18057789A
Other languages
Japanese (ja)
Inventor
Toru Saito
徹 斉藤
Toshiya Yokogawa
俊哉 横川
Satoshi Kamiyama
智 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18057789A priority Critical patent/JPH0346271A/en
Publication of JPH0346271A publication Critical patent/JPH0346271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To obtain an interface excellent in property so as to improve a MISFET in characteristics by a method wherein a gate insulating film is formed on a GaAs substrate by alternately laminating two types or more of different II-V compound semiconductor thin films. CONSTITUTION:A superlattice 7 composed of two types or more of II-V compound semiconductors 7a and 7b is laminated on a GaAs substrate 1 to serve as a gate insulating film. For instance, the thin films 7a of ZnSe and 7b of ZnS are alternately laminated to form a ZnSe/ZnS distorted superlattice 7, and when the superlattice 7 is used as a gate insulating film, GaAs, ZnSe, and ZnS crystal are different from each other in lattice constant, but as the layers forming the gate insulating film are extremely small in thickness, the lattice is distorted, dislocation caused by lattice disconformity is not induced, and uncoupled hands are very few at an interface of GaAs/insulating film. By this setup, an insulating film very small in interface state density can be formed, so that a metal/insulator/semiconductor field effect transistor MISFET of high performance can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、G a A s基板を用いた金属/絶縁物/
半導体形電界効果トランジスタ(以下MISFETと称
す)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides metal/insulator/
The present invention relates to a semiconductor field effect transistor (hereinafter referred to as MISFET).

(従来の技術) 近年、G a A sは、Siに比べ電子移動度が大き
く、超高速論理素子材料として注目されている。
(Prior Art) In recent years, GaAs has higher electron mobility than Si and has attracted attention as a material for ultrahigh-speed logic elements.

現在、GaAsを用いた論理素子は、G a A s 
M ESFETが主流であるが、MESFETに比べて
、消費電力が小さく、高集積化が可能なGaAsMIS
FETの実用化が強く期待されている。
Currently, logic elements using GaAs are
Although MESFETs are the mainstream, GaAsMISs have lower power consumption and can be highly integrated than MESFETs.
There are strong expectations for the practical application of FETs.

一般に、Si基板の表面に、絶縁膜を形成する方法は、
熱酸化により良質のSiO□膜を形成する。
Generally, the method of forming an insulating film on the surface of a Si substrate is as follows:
A high quality SiO□ film is formed by thermal oxidation.

しかしながら、GaAs基板の場合は、Asは蒸気圧が
高く熱脱離を起こすために、良質の熱酸化膜を得ること
は不可能であった。従って、G a A s基板上に化
学的気相成長法(以下CVDと称す)や、スパッタ法等
により、低温で絶縁膜を形成していた。
However, in the case of a GaAs substrate, it has been impossible to obtain a high-quality thermal oxide film because As has a high vapor pressure and causes thermal desorption. Therefore, an insulating film has been formed on a GaAs substrate at a low temperature by chemical vapor deposition (hereinafter referred to as CVD), sputtering, or the like.

従来のMISFETについて、第4図(a)および(b
)により説明する。
Regarding the conventional MISFET, Fig. 4(a) and (b)
).

第4図(a)における第1の従来例のMISFETは、
半絶縁性G a A s基板1の表面に、化学的気相成
長によるSio、膜2のゲート絶縁膜を介して形成した
ゲート電極3を挟んで、不純物イオンが注入されたn0
拡散領域4上にソース・ドレイン電極5が形成されたも
のである。
The first conventional MISFET in FIG. 4(a) is as follows:
Impurity ions are implanted onto the surface of a semi-insulating GaAs substrate 1 with a gate electrode 3 formed via a gate insulating film of SIO film 2 by chemical vapor deposition.
Source/drain electrodes 5 are formed on the diffusion region 4.

第4図(b)における第2の従来例のMISFETが、
上記の第1の従来例と異なる点は、半絶縁性GaAs基
板1の表面に、エピタキシャル成長によるZ n S 
z S 6l−r(0,03< x <0.05)膜6
を介してゲート電極3が形成されている点で、その他は
変わりがない。
The second conventional MISFET in FIG. 4(b) is
The difference from the above-mentioned first conventional example is that ZnS is grown epitaxially on the surface of the semi-insulating GaAs substrate 1.
z S 6l-r (0,03<x<0.05) membrane 6
There is no other difference except that the gate electrode 3 is formed through the gate electrode 3.

なお、第1の従来例では、5in2膜2の替りに、Si
、N4膜を、又第2の従来例ではZn5zSe14膜6
の替りにGayAQl−xA8(0< X < 1 )
膜をそれぞれ形成した例もある。
In addition, in the first conventional example, instead of the 5in2 film 2, Si
, N4 film, and in the second conventional example, Zn5zSe14 film 6
GayAQl-xA8 (0<X<1) instead of
There are also examples in which separate films were formed.

(発明が解決しようとする問題点) しかしながら、第1の従来例では、G a A s基板
1とSin、膜2又はSi、N4膜の界面には、多量の
未結合が存在し、界面準位を形成していることが知られ
ている。このため、GaAs基板1に対しSio2膜2
の比抵抗が大きいため、GaAs基板1とSin、膜2
の間の界面準位密度が、1X10”an−”eV−1程
度と大きくなり、FETとして実用化するのは難しいと
いう問題があった。
(Problems to be Solved by the Invention) However, in the first conventional example, there are a large amount of unbonded bonds at the interface between the GaAs substrate 1 and the Sin, film 2 or Si, N4 film, and the interface quasi It is known that they form a position. For this reason, the Sio2 film 2 is
Since the resistivity of GaAs substrate 1 and the film 2 are large,
There was a problem in that the interface state density between the two was as large as about 1×10"an-"eV-1, making it difficult to put it into practical use as an FET.

また、第2の従来例では、Zn5zSe1−x膜6は。Furthermore, in the second conventional example, the Zn5zSe1-x film 6 is as follows.

GaAs基板1に格子整合し、且つ、禁制帯幅が、Ga
Asより大きく、さらに、上記のSio、膜2に比べて
界面準位密度が小さく、且つ、比抵抗も小さいが、伝導
帯のバンド不連続量が。
It is lattice matched to the GaAs substrate 1 and has a forbidden band width.
It is larger than As, and has a lower interface state density and resistivity than the above-mentioned Sio film 2, but the amount of band discontinuity in the conduction band.

zn S a 、03 S eo 、7 / Q6Ag
で0.02eV、G a A Q A s/GaAsで
0.17eVと小さく、界面にキャリアを有効に閉じ込
めることが難しいという問題があった。
zn S a , 03 S eo , 7 / Q6Ag
It is as small as 0.02 eV for GaA Q A s/GaAs and 0.17 eV for GaA Q A s/GaAs, which poses a problem that it is difficult to effectively confine carriers at the interface.

本発明は上記の問題を解決するもので、GaAs基板を
用いた高性能のMISFETを提供するものである。
The present invention solves the above problems and provides a high-performance MISFET using a GaAs substrate.

(m1題を解決するための手段) 上記の課題を解決するため、本発明はGaAs基板上に
、異なる2種類以上の■−■族化合物半導体からなる超
格子を堆積し、ゲート絶縁膜とするものである。
(Means for Solving Problem m1) In order to solve the above problems, the present invention deposits a superlattice made of two or more different types of ■-■ group compound semiconductors on a GaAs substrate, and uses it as a gate insulating film. It is something.

また、G a A s基板とSin、膜又はSi、Nl
膜等の絶縁膜との間に異なる2種類以上のII −VI
族化合物半導体からなる超格子を挿入するものである。
In addition, GaAs substrate and Sin, film or Si, Nl
Two or more different types of II-VI between insulating films such as films
This method involves inserting a superlattice made of group compound semiconductors.

(作 用) G a A s基板上に、例えば、ZnSe、ZnS薄
膜を交互に積層したZnSe/ZnS歪超格子でゲート
絶縁膜を形成すると、GaAs、ZnSeおよびZnS
結晶は、それぞれ格子定数が異なるが、ゲート絶縁膜を
形成する各層厚は極めて薄いため、格子が歪み、格子不
整合による転位が発生せず、GaAs/絶縁膜界面の未
結合手が極めて少なくなる。
(Function) When a gate insulating film is formed on a GaAs substrate using, for example, a ZnSe/ZnS strained superlattice in which ZnSe and ZnS thin films are alternately laminated, GaAs, ZnSe and ZnS
Each crystal has a different lattice constant, but since the thickness of each layer forming the gate insulating film is extremely thin, lattice distortion and dislocation due to lattice mismatch do not occur, and dangling bonds at the GaAs/insulating film interface are extremely reduced. .

従って、Sin、膜、又は513N4膜に比べて、界面
準位密度の著しく小さな絶縁膜の形成が可能となる。
Therefore, it is possible to form an insulating film with a significantly lower density of interface states than a Sin film or a 513N4 film.

第3図(a)および(b)は、G a A s基板上に
ZnSe/ZnS歪超格子およびG a A s基板に
格子整合したZnS、、、、Ss、、、、をそれぞれ形
成した時のエネルギーバンド図である。ZnSe/Zn
S歪超格子を絶縁膜として用いた場合、ZnSSe膜を
用いた場合に比べ、GaAs/絶縁膜界面での伝導帯の
エネルギー不連続量が約0.15eV大きい、歪超格子
は、GaAs界面に蓄積された電子にとって大きな障壁
となり、ゲート電極への漏れ電流を著しく軽減する。な
お、Zn5a/ZnS歪超格子で説明したが、ZnTe
/ZnS、Zn5Ss/ZnS、ZnTeS/ZnS、
ZnSeTe/ZnSを用いても、同様の効果が得られ
る。
Figures 3(a) and (b) show the results when a ZnSe/ZnS strained superlattice is formed on a GaAs substrate and ZnS, . . . , Ss, . FIG. ZnSe/Zn
When an S strained superlattice is used as an insulating film, the amount of energy discontinuity in the conduction band at the GaAs/insulating film interface is approximately 0.15 eV larger than when a ZnSSe film is used. It acts as a large barrier to the accumulated electrons and significantly reduces leakage current to the gate electrode. Although the explanation was given using Zn5a/ZnS strained superlattice, ZnTe
/ZnS, Zn5Ss/ZnS, ZnTeS/ZnS,
Similar effects can be obtained by using ZnSeTe/ZnS.

G a A s基板とSio、膜あるいはSi、N、膜
等のゲート絶縁膜との界面に、例えば、ZnSeとZn
Sからなる歪超格子を挿入すると、界面に歪エネルギー
が貯えられ、転位の発生を抑制し、界面の未結合手の数
を軽減することができる。これより、従来のSin、膜
又はSi、N4膜単層のMISFETに比べて相互コン
ダクタンス等の特性が向上する。
For example, ZnSe and Zn are added at the interface between the GaAs substrate and the gate insulating film such as Sio, film or Si, N, film.
When a strained superlattice made of S is inserted, strain energy is stored at the interface, suppressing the generation of dislocations, and reducing the number of dangling bonds at the interface. As a result, characteristics such as mutual conductance are improved compared to conventional single-layer MISFETs of Sin, film, or Si, N4 film.

なお、ZnSe/ZnS歪超格子の替わりにZnTe/
ZnS、ZnSSe/ZnS 、ZnTeS/ZnS。
In addition, instead of ZnSe/ZnS strained superlattice, ZnTe/
ZnS, ZnSSe/ZnS, ZnTeS/ZnS.

ZnSeTe/ZnSを用いても、同様の効果が得られ
る。
Similar effects can be obtained by using ZnSeTe/ZnS.

(実施例) 本発明の実施例2例について、第1図および第2図によ
り説明する。
(Example) Two examples of the present invention will be described with reference to FIGS. 1 and 2.

第1図は、ZnSe/ZnS歪超格子7をゲート絶縁膜
として用いた第1の実施例の要部拡大断面図である。な
お、第4図に示した従来例と同じ構成部には、同一符号
を付して説明を進める。
FIG. 1 is an enlarged sectional view of a main part of a first embodiment in which a ZnSe/ZnS strained superlattice 7 is used as a gate insulating film. Note that the same components as in the conventional example shown in FIG. 4 are given the same reference numerals and the explanation will be continued.

Siイオン注入を用いてソース・ドレイン領域となるn
0拡散領域4を形成した半絶縁性G a A s基板上
の上に、有機金属気相成長法により。
n to become source/drain regions using Si ion implantation.
0 diffusion region 4 was formed on a semi-insulating GaAs substrate by metal organic vapor phase epitaxy.

ZnSe/ZnS歪超格子7を堆積した。原料ガスには
、ジメチル亜鉛、ジメチルセレン、硫化水素を用い、成
長温度を550℃とした。
A ZnSe/ZnS strained superlattice 7 was deposited. Dimethylzinc, dimethylselenium, and hydrogen sulfide were used as raw material gases, and the growth temperature was set at 550°C.

歪超格子7は、膜厚50AのZnSe7aと、膜厚50
入のZnS 7bをそれぞれ10層交互に積層して全面
に形成した後、反応性イオンエツチング法によりゲート
電極3の部分以外の歪超格子7を除去した。
The strained superlattice 7 is made of ZnSe7a with a film thickness of 50A and a film with a film thickness of 50A.
After ten layers of ZnS 7b were alternately stacked on the entire surface, the strained superlattice 7 except for the gate electrode 3 was removed by reactive ion etching.

ソース・ドレイン電極5はA u / Q 6を真空蒸
着した後、400℃1分間の熱処理を施しオーム性電極
とし、ゲート電極3は、Auの真空蒸着により形成した
The source/drain electrodes 5 were formed by vacuum evaporating Au/Q 6 and then subjected to heat treatment at 400° C. for 1 minute to form ohmic electrodes, and the gate electrode 3 was formed by vacuum evaporating Au.

このようにして得られたGaAsM I S F E 
Tのゲート長は1μm、ゲート幅は10μmである。試
作品について、ドレイン電流−ドレイン電圧特性を測定
した結果、室温で相互コンダクタンス500+s Si
請を得た。
GaAsM I S F E thus obtained
The gate length of T is 1 μm and the gate width is 10 μm. As a result of measuring the drain current-drain voltage characteristics of the prototype, it was found that the transconductance was 500+s Si at room temperature.
I got the request.

また、キャリア密度2 X 10” (!m−”を半絶
縁性GaAs基板上に、同様の手法でZnSe/ZnS
歪超格子を堆積し、Au電極を蒸着してMISダイオー
ドを試作し、その容量−電圧特性から求めた界面準位密
度の最小値は、I XIOllam−”eV−1であっ
た。
In addition, ZnSe/ZnS was deposited using the same method on a semi-insulating GaAs substrate with a carrier density of 2 × 10” (!m-”).
A MIS diode was prototyped by depositing a strained superlattice and evaporating an Au electrode, and the minimum value of the interface state density determined from its capacitance-voltage characteristics was IXIOllam-''eV-1.

本実施例のように、ZnSe/ZnS歪超格子7をゲー
ト絶縁膜に用いると、良好な界面特性が得られ、MIS
FETの特性が向上する。
When the ZnSe/ZnS strained superlattice 7 is used as the gate insulating film as in this example, good interface characteristics can be obtained and MIS
The characteristics of FET are improved.

また、ゲート電極3への漏れ電流密度は、5v印加時に
、1 p A / d以下で、従って、ZnSe/Zn
S歪超格子7の比抵抗がro1!Ω・0以上となりZn
SSe膜やA Q G a A s膜に比べ、絶縁性に
優れている。
Furthermore, the leakage current density to the gate electrode 3 is less than 1 pA/d when 5V is applied, and therefore, the ZnSe/Zn
The specific resistance of the S strain superlattice 7 is ro1! Ω・0 or more and Zn
It has superior insulation properties compared to SSe films and AQGaAs films.

なお、ZnSe/ZnS歪超格子7の替わりにZnTa
/ZnS、ZnSSe/ZnS、ZnTa5/ZnS、
ZnSeTe/ZnS歪超格子を用いた場合も同様の結
果が得られた。
Note that ZnTa instead of the ZnSe/ZnS strained superlattice 7
/ZnS, ZnSSe/ZnS, ZnTa5/ZnS,
Similar results were obtained using a ZnSeTe/ZnS strained superlattice.

第2図は、GaAs基板lとSj、02膜2との間にZ
nSe/ZnS歪超格子7を挿入した第2の実施例の要
部拡大断面図である。
FIG. 2 shows a Z
FIG. 7 is an enlarged sectional view of a main part of a second embodiment in which an nSe/ZnS strained superlattice 7 is inserted.

第2の実施例が、第1図に示した第1の実施例と異なる
点は、歪超格子7が、50人のZnSeと50入のZn
Sをそれぞれ2層交互に積層して形成した点と、続いて
原料ガスとしてモノシランおよび酸化二窒素を用いたプ
ラズマCVDにより800λのSin、膜2を堆積した
点である。その点は変わらないので、同じ構成部には同
一符号を付して、その説明を省略する。
The second embodiment is different from the first embodiment shown in FIG.
Two layers of S were formed by alternately stacking each layer, and then a film 2 of 800λ of Sin was deposited by plasma CVD using monosilane and dinitrogen oxide as raw material gases. Since this point remains the same, the same components are given the same reference numerals and their explanations will be omitted.

試作したGaAsM I S F E Tは、ゲート長
がlμLゲート幅がlOμ冒で、ドレイン電流−ドレイ
ン電圧特性を測定した結果、室温で相互コンダクタンス
500m S / mを得た。また、ゲート電極への漏
れ電流密度を測定した結果、lnA/aJ以下であった
The prototype GaAs MISFET had a gate length of 1 μL and a gate width of 10 μL, and as a result of measuring the drain current-drain voltage characteristics, a mutual conductance of 500 mS/m was obtained at room temperature. Further, as a result of measuring the leakage current density to the gate electrode, it was less than lnA/aJ.

本実施例のように、GaAs基板1とSio、膜2の間
に、ZnSe/ZnS歪超格子7を挿入することによっ
て、MISFETの特性が大幅に向上した。
By inserting the ZnSe/ZnS strained superlattice 7 between the GaAs substrate 1 and the Sio film 2 as in this example, the characteristics of the MISFET were significantly improved.

なお、ZnSe/ZnS歪超格子7の替わりにZnTe
/ZnS、Zn5Ss/ZnS、ZnTeS/ZnS、
ZnSeTe/ZnSを用いても同様の結果が得られた
Note that ZnTe is used instead of the ZnSe/ZnS strained superlattice 7.
/ZnS, Zn5Ss/ZnS, ZnTeS/ZnS,
Similar results were obtained using ZnSeTe/ZnS.

(発明の効果) 以上説明したように、本発明によれば、室温で相互フン
ダクタンスが500+a S / rm程度の高性能な
GaAsMISFETトランジスタが得られる。
(Effects of the Invention) As described above, according to the present invention, a high-performance GaAs MISFET transistor having a mutual fundance of about 500+a S/rm at room temperature can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるZnSe/ZnS歪超格子をゲー
ト絶縁膜としたGaAsM I S F E Tの要部
拡大断面図、第2図は本発明による、界面にZnSe/
ZnS歪超格子を挿入したGaAsMISFETの要部
拡大断面図、第3図(a)および(b)はそれぞれZn
Se/ZnS歪超格子/GaAsおよびZ n S 1
) 、 63 S 66 、 g 7 / G a A
 Sのエネルギーバンド図、第4図(a)および(b)
はそれぞれSin、膜およびZnSSe膜をゲート絶縁
膜に用いた従来のG a A 5Ml5FETの要部拡
大断面図である。 工・・・半絶縁性G a A s基板、 2・・・Si
o、膜、3・・・ゲート電極、 4・・・n°拡散領域
。 5・・・ソース・ドレイン電極、  6・・・ZnS。 S el−x膜、  7=−ZnSe/ZnS歪超格子
、7a−−−ZnSe、  7b−ZnS。
FIG. 1 is an enlarged cross-sectional view of the main part of a GaAsMISFET using a ZnSe/ZnS strained superlattice as a gate insulating film according to the present invention, and FIG.
Figures 3(a) and 3(b) are enlarged cross-sectional views of the main parts of a GaAs MISFET with a ZnS strained superlattice inserted, respectively.
Se/ZnS strained superlattice/GaAs and Z n S 1
), 63 S 66, g 7 / G a A
Energy band diagram of S, Figure 4 (a) and (b)
These are enlarged cross-sectional views of essential parts of a conventional GaA 5Ml5FET using a Sin film, a ZnSSe film, and a ZnSSe film as the gate insulating film, respectively. Engineering...Semi-insulating GaAs substrate, 2...Si
o, film, 3... gate electrode, 4... n° diffusion region. 5... Source/drain electrode, 6... ZnS. Sel-x film, 7=-ZnSe/ZnS strained superlattice, 7a---ZnSe, 7b-ZnS.

Claims (4)

【特許請求の範囲】[Claims] (1)GaAs基板の上にゲート絶縁膜を介してゲート
電極を形成したMIS形電界効果トランジスタにおいて
、上記のゲート絶縁膜が2種類以上の異種II−VI族化合
物半導体薄膜を交互に積層して形成されたことを特徴と
するMIS形電界効果トランジスタ。
(1) In a MIS field effect transistor in which a gate electrode is formed on a GaAs substrate via a gate insulating film, the gate insulating film is formed by alternately laminating two or more different types of II-VI compound semiconductor thin films. An MIS type field effect transistor characterized by being formed.
(2)上記のII−VI族化合物半導体が、ZnSe/Zn
S、ZnTe/ZnS、ZnSSe/ZnS、ZnTe
S/ZnS、ZnSeTe/ZnSであることを特徴と
する請求項(1)記載のMIS形電界効果トランジスタ
(2) The above II-VI group compound semiconductor is ZnSe/Zn
S, ZnTe/ZnS, ZnSSe/ZnS, ZnTe
The MIS type field effect transistor according to claim 1, characterized in that it is S/ZnS or ZnSeTe/ZnS.
(3)GaAs基板とSi系のゲート絶縁膜との間に2
種類以上の異種II−VI族化合物半導体膜を交互に積層し
て挿入したことを特徴とするMIS形電界効果トランジ
スタ。
(3) Between the GaAs substrate and the Si-based gate insulating film,
A MIS type field effect transistor characterized in that more than one type of different type II-VI group compound semiconductor films are alternately stacked and inserted.
(4)上記のII−VI族化合物半導体が、ZnSe/Zn
S、ZnTe/ZnS、ZnSSe/ZnS、ZnTe
S/ZnS、ZnSeTe/ZnSであることを特徴と
する請求項(3)記載のMIS形電界効果トランジスタ
(4) The above II-VI group compound semiconductor is ZnSe/Zn
S, ZnTe/ZnS, ZnSSe/ZnS, ZnTe
The MIS type field effect transistor according to claim 3, characterized in that it is S/ZnS or ZnSeTe/ZnS.
JP18057789A 1989-07-14 1989-07-14 Mis type field effect transistor Pending JPH0346271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18057789A JPH0346271A (en) 1989-07-14 1989-07-14 Mis type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18057789A JPH0346271A (en) 1989-07-14 1989-07-14 Mis type field effect transistor

Publications (1)

Publication Number Publication Date
JPH0346271A true JPH0346271A (en) 1991-02-27

Family

ID=16085704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18057789A Pending JPH0346271A (en) 1989-07-14 1989-07-14 Mis type field effect transistor

Country Status (1)

Country Link
JP (1) JPH0346271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045233A (en) * 2007-08-20 2009-03-05 Physical Air Corporation Co Ltd Training method and apparatus
US20180006131A1 (en) * 2016-06-30 2018-01-04 International Business Machines Corporation Lattice matched and strain compensated single-crystal compound for gate dielectric

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045233A (en) * 2007-08-20 2009-03-05 Physical Air Corporation Co Ltd Training method and apparatus
US20180006131A1 (en) * 2016-06-30 2018-01-04 International Business Machines Corporation Lattice matched and strain compensated single-crystal compound for gate dielectric
US9876090B1 (en) * 2016-06-30 2018-01-23 International Business Machines Corporation Lattice matched and strain compensated single-crystal compound for gate dielectric

Similar Documents

Publication Publication Date Title
JP2542448B2 (en) Field effect transistor and method of manufacturing the same
JP3364119B2 (en) Hydrogen-terminated diamond MISFET and method for manufacturing the same
JPH0766971B2 (en) Silicon carbide semiconductor device
JPH04312982A (en) Semiconductor polycrystalline diamond electronic device and manufacture thereof
JP2000223697A (en) Heterojunction field effect transistor
US7187045B2 (en) Junction field effect metal oxide compound semiconductor integrated transistor devices
JP3308755B2 (en) Method for manufacturing hydrogen-terminated diamond semiconductor device with element isolation
JPS62271475A (en) Semiconductor device
CN107359127B (en) Fe-doped spin field effect transistor of sapphire substrate and manufacturing method thereof
JPH0346271A (en) Mis type field effect transistor
CN109904227B (en) Diamond-based field effect transistor with low-work-function conductive grid and preparation method thereof
US20120018704A1 (en) Uniaxial tensile strain in semiconductor devices
JPH0719888B2 (en) Field effect transistor and method of manufacturing the same
CN107527949B (en) Heterojunction spin field effect transistor based on Cr-doped 4H-SiC substrate and preparation method thereof
CN107425059B (en) Cr-doped heterojunction spin field effect transistor and preparation method thereof
JPH01119065A (en) Iii-v compound semiconductor field-effect transistor
JPS6292327A (en) Semiconductor device and manufacture thereof
CN112103190B (en) Structure of semiconductor device and preparation method thereof
US20240079477A1 (en) Vertical gallium oxide transistor and preparation method thereof
CN107359122B (en) Preparation method of Mn-doped heterojunction spin field effect transistor
JPS59165460A (en) Semiconductor device and manufacture thereof
JPH02196436A (en) Semiconductor device
JP2633009B2 (en) Compound semiconductor field effect transistor and method of manufacturing the same
Liu et al. Diamond Metal-Oxide-Semiconductor Field-Effect Transistors on a Large-Area Wafer
JPS63161625A (en) Manufacture of field-effect transistor