JPH0343213B2 - - Google Patents

Info

Publication number
JPH0343213B2
JPH0343213B2 JP59191891A JP19189184A JPH0343213B2 JP H0343213 B2 JPH0343213 B2 JP H0343213B2 JP 59191891 A JP59191891 A JP 59191891A JP 19189184 A JP19189184 A JP 19189184A JP H0343213 B2 JPH0343213 B2 JP H0343213B2
Authority
JP
Japan
Prior art keywords
alkaline earth
earth metal
temperature
sintering
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59191891A
Other languages
English (en)
Other versions
JPS6086023A (ja
Inventor
Fuiritsupu Burowaei Jan
Furansowa Koronbe Jan
Dooje Patoriku
Manie Kuroodo
Howason Reji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROONU PUURAN RUSHERUSHU
Original Assignee
ROONU PUURAN RUSHERUSHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROONU PUURAN RUSHERUSHU filed Critical ROONU PUURAN RUSHERUSHU
Publication of JPS6086023A publication Critical patent/JPS6086023A/ja
Publication of JPH0343213B2 publication Critical patent/JPH0343213B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、チタン酸アルカリ土金属の微粉末の
製造法、これより得られるチタン酸アルカリ土金
属微粉末並びにコンデンサ一又は抵抗器の製造に
用いられるセラミツク組成物への使用に関する。
チタン酸アルカリ土金属、特にチタン酸バリウ
ムは、セラミツク組成物の製造に大いに利用され
る材料である。
従来の技術 チタン酸バリウムの各種の製造法が知られてい
る。これは、特に、揮発性陰イオンを含有するバ
リウム塩、例えば炭酸バリウムと酸化チタンとの
間でシヤモツトを形成させることによつて製造さ
れる(Chemical Abstracts20、166870g)。この
場合には、反応は1000〜1400℃の温度に行われる
が、これが誘電体処方物の製造中に1350℃よりも
高い焼結終了時温度をもたらす。
このような方法は多くの欠点を有する。
まず、反応と焼結を高温で行う必要があるため
にかなりのエネルギー消費を伴なう。
さらに、誘電体組成物の製造の際には、チタン
酸バリウム以外に、誘電体を形成するチタン酸バ
リウムの各層の間を接触させるように働く材料を
使用することが知られている。しかしながら、焼
結反応が高温で行われることを考慮して、これら
の条件に耐えることができ、したがつて高い融点
を有する材料を使用することが必要である。した
がつて、このために、コンデンサーの場合には、
例えば銀、白金及びパラジウムのような貴金属を
選定することになつてしまう。
発明の目的 したがつて、本発明の目的は、低温で焼結でき
る、即ち、膨張試験(5℃/分で加熱)で測定し
て1350℃よりも低い焼結終了時温度を有し、した
がつてエネルギー及び材料の点でかなり経済的な
らしめるチタン酸アルカリ土金属を提供すること
である。
本発明により期待される他の目的は、迅速に焼
結する、即ち、1300℃で2時間加熱した後に測定
される密度が所望するチタン酸アルカリ土金属の
理論密度の95%以上であるようなチタン酸アルカ
リ土金属を提供することである。迅速な焼結によ
りエネルギーの点で相当に経済的となり、優れた
生産性を得るのが可能となる。
また、本発明は、チタン酸アルカリ土金属の非
常に微細な粉末を優れた生産性でもつて得るのを
可能にさせる。この粉末は、微視的レベルでみて
物性が一様であつて、特に、固体状態で反応させ
ることによつて他の化合物と結合させたセラミツ
ク製品の製造に適している。
発明の開示 これらの目的は、本発明に従つて、 (a) 0.8〜2.5のPHを有し且つ10〜100Åの大きさ
のTiO2の基本微結晶を200〜1000Åの大きさの
ミクロン以下の粒体に凝集させたものを含むチ
タンゾルを硝酸アルカリ土金属の溶液と混合
し、 (b) 次いで得られた懸濁液の乾燥を行い、 (c) 乾燥生成物を700℃〜1300℃の温度で30分間
〜24時間の期間及び1から0に低下するNOx
の分圧下に焼成し、 (d) 得られた粉末の粉砕を要すれば行う 工程からなることを特徴とするチタン酸アルカリ
土金属の微粉末の製造法によつて達成される。
0.8〜2.5、好ましくは1.8〜2.2のPHを有し且つ
10〜100Åの大きさのTiO2の基本微結晶を200〜
1000Åの大きさを有するミクロン以下の粒体に凝
集させたものを含むチタンゾルは、任意の適当な
技術によつて、特に、所望のゾルと同じ大きさの
基本結晶を有するが1ミクロンのオーダーの巨視
的粒体が混入されている二酸化チタンゲルを解凝
させることによつて得ることができる。
本発明の好ましい実施態様によれば、基本微結
晶の大きさが50Åのオーダーであつて、ほぼ400
Åのミクロン以下の粒体に凝集され、そして1ミ
クロンのオーダーの巨視的粒体を含有してもよい
二酸化チタンゲルが好ましくは解凝せしめられ
る。このゲルは、好ましくは、イルメナイトを硫
酸(その硫酸イオン含有量は3〜15%、好ましく
は6〜8%であり、その酸性度は水性懸濁液
(TiO2として表わして300g/)のPHが1〜3
であるようなものである)で浸蝕させることから
なる周知の二酸化チタン製造法中に得られる。
上記のような大きさのチタンゾル粒子は、硝酸
アルカリ土金属溶液クとの混合時にアルカリ土金
属のより良い分布が得られ、究極的には微細で均
質な粉末を得るのに帰与する。
水とTiO2から本質上なる解凝したゲルは、あ
まりに低いTiO2濃度を有してはならない。なぜ
ならば、水分があまりにも多いと本法の後続工程
で得られるゾルの乾燥が一層困難となり且つ長く
なるからである。他方、あまりにも高いTiO2
有量は本法の満足な進行を妨害し得ることが認め
られた。本法を開始させるには5〜35重量%の
TiO2含有量を有する解凝ゲルが好ましくは用い
られ、そして本発明の特別の一具体例によれば15
%のTiO2含有量を有する解凝ゲルが用いられる。
本発明の方法によれば、次いで、硝酸アルカリ
土金属の水溶液がゲルの解凝によつて得られるゾ
ル又は懸濁液と混合される。アルカリ土金属は、
好ましくはバリウム、ストロンチウム又はカルシ
ウムであつて、コンデンサー又は抵抗器用の誘電
体組成物における基本アルカリ土金属元素として
使用されるものである。
硝酸アルカリ土金属を添加する際の重要なパラ
メータは、M/Ti原子比(Mはアルカリ土金属
を表わす)である。事実、本発明の方法によつて
得られるチタン酸アルカリ土金属の焼結適性は特
にこの比に左右されることが認められた。
0.96よりも小さく及び1.05よりも大きいM/Ti
原子比の値ではチタン酸アルカリ土金属粉末の満
足できる密度上昇は得られないことが認められ
た。これと反対に、0.96〜1.05の間のM/Ti比の
値では、チタン酸アルカリ土金属粉末を1300℃で
2時間加熱した後に測定される密度は理論値の95
%より十分に高く又はこれに等しいことがわかつ
た。それでも、この範囲内では、できるだけ低い
焼結終了時温度(膨張試験により測定。5℃/分
で加熱)を得るように0.96〜1の間のM/Ti比で
作業するのが好ましい。事実、1〜1.05の比で
は、チタン酸アルカリ土金属の焼結終了時温度
は、膨張試験(5℃/分で加熱)により測定して
1350℃に等しいか、又はこの値を僅かに越え得る
ものである。
硝酸アルカリ土金属溶液の導入工程の終了時で
は、アルカリ土金属溶液中チタンの完全に均質な
懸濁液が得られる。
このようにして得られた懸濁液は、ほぼ5〜15
%の乾燥物を含有する。したがつて、この溶液は
乾燥されねばならない。
この乾燥は、任意に知られた手段で、特に噴霧
化、即ち溶液を熱い雰囲気中に吹付けることによ
つて行うことができる。
この乾燥は、好ましくは、例えば本出願人によ
り完成され、そして特に仏国特許第2257326号、
同2419754号及び2431321号に記載の型のフラツシ
ユ反応器で行われる。この場合には、ガスから旋
状運動によつて発射され、渦状の溜めに流され
る。懸濁液はガスのら旋状軌道の対称軸線と合致
する軌道上に注入され、これによりガスの運動量
がこの懸濁液の粒子の方に完全に伝達せしめられ
る。さらに、反応器内の粒子の保持時間は極めて
短く、1/10秒以内であつて、これはガスとの過度
に長い接触による過熱の危険を除去させる。
ガス及び懸濁液のそれぞれの流量に応じて、ガ
スの流入温度は400〜700℃であり、そして乾燥固
形物の温度は120〜160℃である。
これにより、数ミクロンのオーダー、例えば1
〜10ミクロンの粒度を有する乾燥生成物が得られ
る。
次いで、この乾燥生成物は焼成される。
焼成は、700〜1300℃、好ましくは1000〜1150
℃の温度で行われる。焼成期間は、30分間〜24時
間、例えば好ましくは6〜15時間の間であつてよ
い。
本発明によれば、焼成は窒素酸化物NOx(1
x2)の雰囲気中でNOxの分圧が焼成中に1
から0まで低下するような条件で行われる。特に
好ましい使用態様によれば、焼成は、所望の焼成
温度に達したときにほぼ10〜30分間にわたり空気
で徐々にパージすることによつてNOxの分圧が
焼成中に1から0まで低下するようなNOxと空
気との雰囲気中で達成される。
上記のようなNOxの除去により硝酸アルカリ
土金属の分解が促進され、完全な分解が達成され
る。
この焼成の後に、ほぼ1〜10ミクロンの巨視的
粒度を有するチタン酸アルカリ土金属粉末が得ら
れる。この1〜10ミクロンの粒度はほぼ500Å〜
8000Åの大きさの基本微結晶、即ちミクロン以下
の粒体からなる。
ほぼ1050℃より低い焼成温度で得られた生成物
は、誘電体処方物の製造に直接使用することがで
きる。これに対して、ほぼ1050℃以上の焼成温度
で得られた生成物は、2000〜8000Å、好ましくは
2000〜3000Åの間の基本微結晶よりなる有用な粉
末を得るように一般に粉砕しなければならない。
この場合に粉末の粒度分布はほぼ0.5〜3ミクロ
ンの間にある。
温度及び焼成時間(後者は粒子の大きさと相関
している)の変更により下記の傾向が明らかにさ
れる。即ち、焼成温度が低いほど焼成時間を延長
させねばならず、また焼成温度が高いほど焼成時
間を短縮することができる。
チタン酸アルカリ土金属粉末の特性は、次のよ
うに決定される。
チタン酸アルカリ土金属粉末を2重量%の割合
の結合剤と混合する。この結合剤は当該技術分野
で周知の結合剤のうちから選ばれ、例えばロドビ
オール4/20(Rhodoviol4/20、登録商標)であ
る。
この混合物を2t/cm2の圧力下でペレツト化す
る。次いで焼結を行う。焼結は一般に約800℃で
始まる。膨張計による測定を行い、記録されたい
わゆる「焼結終了時」の温度が機械的収縮終了時
で測定される温度である。
本発明によつて得られるチタン酸アルカリ土金
属粉末は、特に有用な性質を持つている。事実、
その焼結終了時温度(膨張計で測定、5/℃分で
加熱)が1350℃よりも低く、したがつて低温で焼
結するが、なお非常に迅速に焼結する。なぜなら
ば、1300℃で2時間加熱した後に測定された密度
が問題のチタン酸アルカリ土金属の理論密度の95
%以上であるからである。
本発明によつて得られるチタン酸アルカリ土金
属粉末は、当該技術分野で知られた方法及び処方
に従つてコンデンサー及び抵抗器を製造するのに
用いることができる。
実施例 本発明の他の利点及び特色は下記の実施例を見
れば明らかとなろう。
例 1 15重量%とTiO2を含有する1066gのチタンゾ
ルが出発物質である。この懸濁液のPHは2であ
る。得られた懸濁液は、ほぼ50Åの基本微結晶か
ら形成されたほぼ400Åのミクロン以下の粒体よ
りなる。次いでこのチタンゾルを8重量%のBa
(NO32を含有する6534gのBa(NO32溶液と混
合する(Ba/Ti比=1)。
15分間かきまぜることにより均質化した後、こ
の混合物を噴霧乾燥する。
乾燥は、仏国特許第2257326号、同2419754号及
び同2431321号に記載のようなフラツシユ反応器
で行う。ガスの流入温度は550℃であり、乾燥温
度は150℃である。
これにより718gの乾燥生成物が得られた。こ
れは、1〜10μmの粒度を球状凝集体よりなる。
次いで、乾燥生成物を1150℃で焼成する。温度
上昇速度は9℃/分である。温度が横ばい状態に
達したならばNOx焼成雰囲気を空気でパージす
ることによつて徐々に除去する(NOxの除去時
間:20分間)。
これにより466gのBaTiO3が得られた。
得られたこのチタン酸バリウムを粉砕する。
この粒度分布(Coulter法)は0.5〜3μmの間で
ある。
基本微結晶の大きさは2000〜5000Åである。
チタン酸バリウムを2t/cm2の圧力下に乾式ペレ
ツト化した後にその焼結を行う。焼結は700℃の
領域で始まり、1270℃で終了する(温度上昇:5
℃/分)。1300℃で2時間焼結した後の密度は理
論密度の96%に等しい。
例 2 第二の試験は、例1に記載の乾燥生成物を1050
℃で6時間焼成することからなる。温度上昇速度
及び反応雰囲気は同じである。
焼成生成物を同じ条件下で粉砕し、ペレツト化
する。焼結は700℃の領域で始め、1240℃で終了
する。1300℃で2時間焼結させた後の密度は理論
密度の96%に等しい。
例 3 乾燥生成物の製造条件は、硝酸バリウム溶液の
量を除いて例1の条件と同じである。
しかして、8%のBa(NO32を含有する6272.6
gのBa(NO32y溶液をチタンゾル(例1と同じ
量)と混合する(Ba/Ti比=0.96)。
焼成、粉砕及び焼結条件は例2の条件と同じで
ある。
焼結は800℃の領域で始め、1240℃で終了する。
1300℃で2時間焼結させた後の密度は理論密度
の95%に等しい。
例 4 乾燥生成物の製造条件は、硝酸バリウム溶液の
量を除いて、例1の条件と同じである。
しかして、8%のBa(NO32を含有する6664.68
gのBa(NO32溶液をチタンゾル(例1と同じ
量)と混合する(Ba/Ti比=1.02)。
焼成、粉砕及び焼結条件は例2の条件と同じで
ある。
焼結は700℃の領域で始め、1350℃で終了する。
1300℃で2時間焼結させた後の密度は理論密度
の97%に等しい。

Claims (1)

  1. 【特許請求の範囲】 1 (a) 0.8〜2.5のPHを有し且つ10〜100Åの大
    きさのTiO2の基本微結晶を200〜1000Åの大き
    さのミクロン以下の粒体に凝集させたものを含
    むチタンゾルを硝酸アルカリ土金属の溶液と混
    合し、 (b) 次いで得られた懸濁液の乾燥を行い、 (c) 乾燥生成物を700℃〜1300℃の温度で30分間
    〜24時間の期間及び1から0に減少するNOx
    の分圧下に焼成し、 (d) 得られた粉末の粉砕を要すれば行う 工程からなることを特徴とするチタン酸アルカリ
    土金属の微粉末の製造法。 2 第一工程の混合中に用いられるM/Ti原子
    比(Mはアルカリ土金属を表わす)が0.96〜
    1.05、好ましくは0.96〜1であることを特徴とす
    る特許請求の範囲第1項記載の製造法。 3 焼成中におけるNOxの分圧の低下が空気で
    徐々にパージすることにより達せられることを特
    徴とする特許請求の範囲第1項記載の製造法。
JP59191891A 1983-09-14 1984-09-14 チタン酸アルカリ土金属、その製造法及びセラミツク組成物への使用 Granted JPS6086023A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8314618A FR2551743B1 (fr) 1983-09-14 1983-09-14 Titanate d'alcalino-terreux, son procede de preparation et son application dans des compositions ceramiques
FR83.14618 1983-09-14

Publications (2)

Publication Number Publication Date
JPS6086023A JPS6086023A (ja) 1985-05-15
JPH0343213B2 true JPH0343213B2 (ja) 1991-07-01

Family

ID=9292212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191891A Granted JPS6086023A (ja) 1983-09-14 1984-09-14 チタン酸アルカリ土金属、その製造法及びセラミツク組成物への使用

Country Status (9)

Country Link
US (1) US4748016A (ja)
EP (1) EP0141696B1 (ja)
JP (1) JPS6086023A (ja)
AT (1) ATE38654T1 (ja)
AU (1) AU568875B2 (ja)
CA (1) CA1261117A (ja)
DE (1) DE3475181D1 (ja)
FR (1) FR2551743B1 (ja)
IE (1) IE60192B1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2257326B1 (ja) * 1973-06-19 1976-05-28 Rhone Progil
JPS61168527A (ja) * 1985-01-22 1986-07-30 Jgc Corp チタン酸塩系磁器原料の製造法
FR2578240B1 (fr) * 1985-03-01 1987-04-17 Rhone Poulenc Spec Chim Titanate de neodyme et titanate de baryum neodyme, leurs procedes de preparation et leurs applications dans des compositions ceramiques
US4764493A (en) * 1986-06-16 1988-08-16 Corning Glass Works Method for the production of mono-size powders of barium titanate
US5089466A (en) * 1987-12-17 1992-02-18 The University Of Colorado Foundation, Inc. Stable mixed metal superconductive oxides containing nitrogen
FR2628409B1 (fr) * 1988-03-09 1991-02-01 Rhone Poulenc Chimie Procede de preparation de titanates d'alcalino-terreux
EP0335773B1 (fr) * 1988-03-30 1994-08-31 Rhone-Poulenc Chimie Procédé de préparation d'oxyde de titane
GB8809608D0 (en) * 1988-04-22 1988-05-25 Alcan Int Ltd Sol-gel method of making ceramics
FR2633605B1 (fr) * 1988-07-01 1991-07-12 Rhone Poulenc Chimie Procede de preparation d'oxyde de titane et d'articles a base d'oxyde de titane
US5389340A (en) * 1989-12-28 1995-02-14 Tokuyama Corporation Module and device for detecting NOX gas
FR2678603B1 (fr) * 1991-07-03 1993-09-17 Rhone Poulenc Chimie Compositions a base de titanates d'alcalino-terreux et/ou de terres rares et leur preparation.
FR2705659A1 (fr) * 1991-12-11 1994-12-02 Rhone Poulenc Chimie Procédé de préparation de fergusonites et produits obtenus.
US5821186A (en) * 1996-11-01 1998-10-13 Lockheed Martin Energy Research Corporation Method for preparing hydrous titanium oxide spherules and other gel forms thereof
US6602919B1 (en) 1999-09-17 2003-08-05 Ut-Battelle Llc Method for preparing hydrous zirconium oxide gels and spherules
JP3770096B2 (ja) 2001-03-12 2006-04-26 株式会社村田製作所 チタン酸バリウム粉末の製造方法、誘電体セラミック、ならびに積層セラミックコンデンサ
EP1270512B1 (en) * 2001-06-25 2009-10-14 Evonik Degussa GmbH Process for thermal decomposition and pre-calcination of barium titanyl oxalate for the production of barium titanate

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758911A (en) * 1956-03-16 1956-08-14 Nat Lead Co Preparation of alkaline earth metal titanates
US2964413A (en) * 1958-05-07 1960-12-13 Nat Lead Co Preparation of alkaline earth metal titanates
US3292994A (en) * 1963-05-07 1966-12-20 Horizons Inc Controlled particle size batio3
US3577487A (en) * 1968-05-22 1971-05-04 Grace W R & Co Preparation of submicron sized alkaline earth titanate and zirconate powders
JPS5137639B2 (ja) * 1971-12-17 1976-10-16
JPS5139199B2 (ja) * 1972-03-07 1976-10-26
FR2257326B1 (ja) * 1973-06-19 1976-05-28 Rhone Progil
US3932313A (en) * 1973-12-28 1976-01-13 Texas Instruments Incorporated Process for manufacture of positive temperature coefficient materials
US4061583A (en) * 1974-03-13 1977-12-06 Murata Manufacturing Co., Ltd. Preparation of titanates
FR2276086A1 (fr) * 1974-06-28 1976-01-23 Rhone Poulenc Ind Procede et appareil pour assurer une reaction entre des courants fluides
US4058592A (en) * 1976-06-30 1977-11-15 Union Carbide Corporation Preparation of sub-micron metal oxide powders from chloride-containing compounds
FR2419754A1 (fr) * 1978-03-14 1979-10-12 Rhone Poulenc Ind Dispositif pour la mise en contact de substances se presentant sous au moins deux phases differentes
US4318995A (en) * 1980-04-25 1982-03-09 Bell Telephone Laboratories, Incorporated Method of preparing lightly doped ceramic materials
JPS5788030A (en) * 1980-11-20 1982-06-01 Matsushita Electric Ind Co Ltd Manufacture of barium titanate
JPS5945928A (ja) * 1982-09-08 1984-03-15 Sony Corp チタン酸ストロンチウム微粒子の製造方法
US4537865A (en) * 1984-07-11 1985-08-27 Murata Manufacturing Co., Ltd. Process for preparing a particulate ceramic material

Also Published As

Publication number Publication date
FR2551743B1 (fr) 1985-10-25
IE842323L (en) 1985-03-14
IE60192B1 (en) 1994-06-15
EP0141696A1 (fr) 1985-05-15
EP0141696B1 (fr) 1988-11-17
FR2551743A1 (fr) 1985-03-15
AU568875B2 (en) 1988-01-14
JPS6086023A (ja) 1985-05-15
ATE38654T1 (de) 1988-12-15
DE3475181D1 (en) 1988-12-22
US4748016A (en) 1988-05-31
CA1261117A (fr) 1989-09-26
AU3293784A (en) 1985-03-21

Similar Documents

Publication Publication Date Title
JPH0343213B2 (ja)
US5009876A (en) Method of manufacturing barium titanate BaTiO3
JPS61205621A (ja) 安定化されたジルコニアの製造法
US3577487A (en) Preparation of submicron sized alkaline earth titanate and zirconate powders
JP3154509B2 (ja) チタン酸バリウムおよびその製造方法
DE112006000294B4 (de) Verfahren zur Herstellung von Pulverteilchen mit Nanogröße
JPH0573712B2 (ja)
JPH07330340A (ja) タングステン酸金属、それらの製造方法およびそれらの使用
KR920000783B1 (ko) 네오디뮴 티타네이트 또는 바륨 네오디뮴 티타네이트의 제조방법
US5716565A (en) Process for making ultra-fine stabilized zirconia particles
JPH05178617A (ja) チタン酸塩からなる球形微粉末の製造方法及びそれにより得られた球形微粉末
US5660773A (en) Process for making ultra-fine yttrium-iron-garnet particles
US5660772A (en) Process for making ultra-fine barium hexaferrite particles
JPS60176968A (ja) SnO↓2−ΖrO↓2−TiO↓2系誘電体磁器の製造法
US5308807A (en) Production of lead zirconate titanates using zirconia sol as a reactant
JPS61111957A (ja) セラミック誘電体の製造方法
JPH0664924A (ja) 球状チタン酸バリウム系半導体磁器材料粉末およびその製造方法
JP2568148B2 (ja) 稀土元素のチタン酸塩を基剤とする組成物の調製
JPH01122906A (ja) 超電導体粉末、焼結体及びその製造方法
JPS62230622A (ja) ペロブスカイト型化合物の製造法
JP3393157B2 (ja) 多結晶半導体繊維およびその製造方法
JPH0427166B2 (ja)
JPH06227816A (ja) ペロブスカイト型前駆体粉末及びその製造方法
JPS6395119A (ja) ペロブスカイト原料粉末の製法
JP3012021B2 (ja) リン酸系焼結体およびその製造方法