JPH0338734B2 - - Google Patents

Info

Publication number
JPH0338734B2
JPH0338734B2 JP54146682A JP14668279A JPH0338734B2 JP H0338734 B2 JPH0338734 B2 JP H0338734B2 JP 54146682 A JP54146682 A JP 54146682A JP 14668279 A JP14668279 A JP 14668279A JP H0338734 B2 JPH0338734 B2 JP H0338734B2
Authority
JP
Japan
Prior art keywords
doped region
impurity doped
insulating film
region
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54146682A
Other languages
Japanese (ja)
Other versions
JPS5670664A (en
Inventor
Keizo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP14668279A priority Critical patent/JPS5670664A/en
Publication of JPS5670664A publication Critical patent/JPS5670664A/en
Publication of JPH0338734B2 publication Critical patent/JPH0338734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明はMOS型半導体装置の製造方法にかか
り、特に高融点金属をゲート電極材料として用い
たMOS型半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a MOS type semiconductor device, and particularly to a method for manufacturing a MOS type semiconductor device using a high melting point metal as a gate electrode material.

Mo,W,Pt等の高融点金属をゲート電極材料
に用いたMOS型半導体装置は従来用いられてい
る不純物を添加したポリシリコンをゲート電極に
用いたいわゆるシリコンゲートに比べてその電気
伝導率が大きく、加工精度が高い等の長所を有し
ている。しかし一方酸化性雰囲気に対して弱く一
担、高い融点金属を成長後は酸化性雰囲気中を経
る工程を行えないという欠点を有している。又、
高融点金属と基板Siの反応が容易に起りしかもと
どまることなく進むという欠点を有している。そ
れ故、ゲートの高融点金属をそのままSi基板に接
続する必要がある回路では、通常のシリコンゲー
トMOSでは埋め込みコンタクトという手法を用
いることにより行つていたが、高融点金属ゲート
MOSでは不可能であり、ゲート金属とSi基板に
接続する金属とは別々の金属を用いて後に接続し
ていた。しかしこの方法では写真蝕刻法の回数が
増すこと、工程が長くなること、占有面積が大き
くなること等の欠点が存在している。
MOS type semiconductor devices that use high-melting point metals such as Mo, W, and Pt as gate electrode materials have lower electrical conductivity than conventional silicon gates that use impurity-doped polysilicon as gate electrodes. It has advantages such as large size and high processing accuracy. However, on the other hand, it has the disadvantage that it is weak against oxidizing atmospheres and cannot undergo a step in an oxidizing atmosphere after growing a metal with a high melting point. or,
It has the disadvantage that the reaction between the high melting point metal and the substrate Si occurs easily and continues without stopping. Therefore, in circuits where the high melting point metal of the gate needs to be directly connected to the Si substrate, a buried contact method is used in ordinary silicon gate MOS;
This is not possible with MOS, and the gate metal and the metal connected to the Si substrate are made using separate metals and are connected later. However, this method has drawbacks such as an increased number of photo-etching steps, a longer process, and a larger occupied area.

本発明は上記の欠点を除去したもので、通常の
シリコンゲートMOSとほぼ同等のプロセスで高
融点金属MOSの埋め込みコンタクトを形成でき
る高融点金属MOSの製造方法である。
The present invention eliminates the above-mentioned drawbacks and is a method for manufacturing a refractory metal MOS in which a buried contact of the refractory metal MOS can be formed in a process substantially equivalent to that of a normal silicon gate MOS.

即ち本発明では、埋め込みコンタクト形成時及
び形成時以降の工程で基板Siと高融点金属との間
で反応が進まないようにし、しかも高融点金属を
成長後は高温での酸化性雰囲気中にさらすことの
ない製造方法を提案し該埋め込みコンタクトの形
成を可能にしている。
That is, in the present invention, the reaction between the substrate Si and the high-melting point metal is prevented during the formation of the buried contact and subsequent steps, and the high-melting point metal is exposed to an oxidizing atmosphere at a high temperature after growth. We have proposed a unique manufacturing method that makes it possible to form such buried contacts.

以下には図面を用いて本発明の詳細を記述す
る。
The details of the present invention will be described below using the drawings.

今一例として第1図に示すMOSのインバータ
ー回路を考える。1はデイプレツシヨン型の負荷
MOSトランジスタであり2はエンハンスメント
型の駆動MOSトランジスタである。負荷MOSト
ランジスタのゲート電極3と負荷MOSトランジ
スタのソース4を結ぶ配線の方法が特に問題とな
る。
As an example, consider the MOS inverter circuit shown in FIG. 1 is a depression type load
MOS transistor 2 is an enhancement type drive MOS transistor. The method of wiring connecting the gate electrode 3 of the load MOS transistor and the source 4 of the load MOS transistor is particularly problematic.

従来は、第1図に示す回路を実現するための高
融点金属ゲートMOS半導体装置の製造方法は、
第2図の通りである。すなわち基板シリコン5上
にシリコン酸化膜6とシリコン窒化膜7を形成
し、写真蝕刻及びそれに続く選択酸化を行い非能
動領域上に厚いフイールド酸化膜8を形成する
(第2図a)。次にシリコン窒化膜7とシリコン酸
化膜6をエツチングし、改めてゲート酸化膜6′
及び高融点金属膜9を形成する(第2図b)。次
に高融点金属膜9及びゲート酸化膜6′を選択エ
ツチングし、イオン注入技術等で拡散層10を形
成する(第2図c)。次にリン珪素ガラス膜11
を形成する。(第2図d)。最後にリン珪素ガラス
膜11を選択エツチングしてから金属配線12を
行ない(第2図e)、第1図に示したインバータ
回路を完成する。第1図に示した3から4への配
線は金属配線12によりコンタクト開口部13と
14から行つている為、コンタクト開口部の占有
面積分だけ全体の回路の占有面積が大きくなる。
Conventionally, the method for manufacturing a high melting point metal gate MOS semiconductor device to realize the circuit shown in FIG.
As shown in Figure 2. That is, a silicon oxide film 6 and a silicon nitride film 7 are formed on a silicon substrate 5, and a thick field oxide film 8 is formed on the non-active region by photolithography and subsequent selective oxidation (FIG. 2a). Next, the silicon nitride film 7 and the silicon oxide film 6 are etched, and the gate oxide film 6' is re-etched.
Then, a high melting point metal film 9 is formed (FIG. 2b). Next, the high melting point metal film 9 and the gate oxide film 6' are selectively etched, and a diffusion layer 10 is formed by ion implantation or the like (FIG. 2c). Next, the phosphor silicon glass film 11
form. (Figure 2d). Finally, the phosphor-silicon glass film 11 is selectively etched and then the metal wiring 12 is formed (FIG. 2e) to complete the inverter circuit shown in FIG. 1. Since the wiring from 3 to 4 shown in FIG. 1 is conducted through the contact openings 13 and 14 by the metal wiring 12, the area occupied by the entire circuit increases by the area occupied by the contact openings.

第3図は本発明の実施例による第1図のインバ
ータ回路を実現するための高融点金属ゲート
MOS半導体装置の製造方法を示す断面図である。
第2図に示した従来法と同様に、Si基板5上にシ
リコン酸化膜6とシリコン窒化膜7を形成し、写
真蝕刻と選択酸化を行い非能動領域上に厚いシリ
コン酸化膜8を形成する(第3図a)。次にシリ
コン窒化膜7とシリコン酸化膜6をエツチング
し、改めてゲート酸化膜6′及びシリコン窒化膜
7′を形成する。(第3図b)。次に写真蝕刻法に
より基板シリコンとコンタクトを形成する部分に
開口部15を設け、該開口部のSi基板上にイオン
注入等で不純物添加層16を設ける(第3図c)。
次にシリコン窒化膜7′をホツトリン酸等でエツ
チングし改めて高融点金属9を全面に形成する
(第3図d)。次に写真蝕刻法によりパターニング
を行い、第3図eに示す形状を得る。次にイオン
注入法等で拡散層10を形成する(第3図f)。
次に従来の方法と同様にリン珪素ガラス膜11を
形成し、選択エツチングを行い(第3図g)、最
後に金属配線を行いインバーター回路を完成する
(第3図h)。
FIG. 3 shows a high melting point metal gate for realizing the inverter circuit of FIG. 1 according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a method of manufacturing a MOS semiconductor device.
Similar to the conventional method shown in FIG. 2, a silicon oxide film 6 and a silicon nitride film 7 are formed on a Si substrate 5, and photolithography and selective oxidation are performed to form a thick silicon oxide film 8 on non-active regions. (Figure 3a). Next, silicon nitride film 7 and silicon oxide film 6 are etched to form a new gate oxide film 6' and silicon nitride film 7'. (Figure 3b). Next, an opening 15 is formed by photolithography at a portion where contact with the silicon substrate is to be formed, and an impurity doped layer 16 is formed by ion implantation or the like on the Si substrate in the opening (FIG. 3c).
Next, the silicon nitride film 7' is etched with phosphoric acid or the like, and a high melting point metal 9 is again formed on the entire surface (FIG. 3d). Next, patterning is performed by photolithography to obtain the shape shown in FIG. 3e. Next, a diffusion layer 10 is formed by ion implantation or the like (FIG. 3f).
Next, a phosphosilicon glass film 11 is formed in the same manner as in the conventional method, selective etching is performed (FIG. 3g), and finally metal wiring is formed to complete the inverter circuit (FIG. 3h).

このような本発明によれば第1図に示した3か
ら4への配線のためのコンタクト開口部13と1
4は不必要となる。それ故従来法に比べて占有面
積の小さなインバーター回路を実現できる。本発
明では第3図c〜eにみられるようにあらかじめ
拡散を行つたSi層16に高融点金属のコンタクト
をひきだしている。かくしてSiと高融点金属との
反応を抑制することが可能となる。そして第4図
にみられるようにSiと高融点金属との反応層はSi
の不純物濃度が低い程大きい。更に第3図f〜h
にみられるように高融点金属成長後の高温にさら
される行程は拡散層形成のためのイオン注入後の
アニール(900℃〜1000℃″5分)であるが、不活
性気体や窒素中で行われるために高融点金属や高
融点金属と基板Siとのコンタクト部には悪影響を
及ぼさない。本発明における不純物添加層10,
16等の形成方法はイオン注入法でも熱拡散法で
もよい。しかし、熱拡散法では熱拡散時に形成さ
れたシリコン酸化膜をエツチングする必要があ
り、その為高融点金属下のゲート酸化膜にピンホ
ールが発生し、耐圧不良となり易い。それ故イオ
ン注入法がより望ましい。
According to the present invention, the contact openings 13 and 1 for wiring from 3 to 4 shown in FIG.
4 becomes unnecessary. Therefore, it is possible to realize an inverter circuit that occupies a smaller area than the conventional method. In the present invention, as shown in FIGS. 3c to 3e, a high melting point metal contact is drawn out in the Si layer 16 which has been previously diffused. In this way, it becomes possible to suppress the reaction between Si and the high melting point metal. As shown in Figure 4, the reaction layer between Si and high melting point metal is Si
The lower the impurity concentration, the greater the impurity concentration. Furthermore, Fig. 3 f to h
As shown in Figure 2, the process that is exposed to high temperatures after the growth of a high-melting point metal is the annealing after ion implantation to form a diffusion layer (900°C to 1000°C for 5 minutes), but it is not possible to do this in an inert gas or nitrogen atmosphere. The impurity doped layer 10 in the present invention does not have an adverse effect on the high melting point metal or the contact area between the high melting point metal and the substrate Si.
16 etc. may be formed by ion implantation or thermal diffusion. However, in the thermal diffusion method, it is necessary to etch the silicon oxide film formed during thermal diffusion, which tends to cause pinholes in the gate oxide film under the high melting point metal, resulting in poor withstand voltage. Therefore, ion implantation is more desirable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインバーター回路図、第2図a乃至第
2図eは第1図のインバーター回路を実現するた
めの従来の製造方法を工程順に示す断面図、第3
図a乃至第3図hは本発明の実施例による製造方
法工程順に示す断面図、第4図は(高融点金属と
基板シリコンとの反応層の厚み)と(基板シリコ
ンの不純物濃度)との関係を示す図である。 尚、図において、1……負荷MOSトランジス
タ、2……駆動MOSトランジスタ、3……負荷
MOSトランジスタのゲート電極、4……負荷
MOSトランジスタのソース、5……基板シリコ
ン、6……シリコン酸化膜、6′……ゲート酸化
膜、7……シリコン窒化膜、7′……ゲート酸化
膜上のシリコン窒化膜、8……フイールド酸化
膜、9……高融点金属膜、10……拡散層、11
……リン珪素ガラス膜、12……金属配線、1
3,14……コンタクト開口部、15……基板Si
とコンタクトを形成する部分の開口部、16……
基板シリコンとコンタクトを形成する部分の不純
物添加層である。
FIG. 1 is an inverter circuit diagram, FIGS. 2a to 2e are cross-sectional views showing the conventional manufacturing method in order of process for realizing the inverter circuit in FIG. 1, and FIG.
Figures a to 3h are cross-sectional views showing the steps of the manufacturing method according to the embodiment of the present invention, and Figure 4 shows the relationship between (the thickness of the reaction layer between the high melting point metal and the substrate silicon) and (the impurity concentration of the substrate silicon). It is a figure showing a relationship. In the figure, 1...Load MOS transistor, 2...Drive MOS transistor, 3...Load
Gate electrode of MOS transistor, 4...Load
Source of MOS transistor, 5...Substrate silicon, 6...Silicon oxide film, 6'...Gate oxide film, 7...Silicon nitride film, 7'...Silicon nitride film on gate oxide film, 8...Field Oxide film, 9... High melting point metal film, 10... Diffusion layer, 11
... Phosphorus silicon glass film, 12 ... Metal wiring, 1
3, 14...Contact opening, 15...Substrate Si
The opening of the part forming the contact with, 16...
This is an impurity-doped layer that forms contact with the silicon substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板の一主面に他の導電型
の第1の不純物添加領域を選択的に形成する工程
と、前記第1の不純物添加領域に対して一方の側
の前記一主面上に前記第1の不純物添加領域の上
面の端部にその底面の端部を接して選択的に設け
られた第1の絶縁膜上に前記第1の不純物添加領
域より延在する高融点金属からなる第1の配線領
域を選択的に形成する工程と、前記第1の不純物
添加領域に対して他方の側の前記一主面に前記第
1の不純物添加領域に近接して選択的に設けられ
た第2の絶縁膜上に高融点金属からなる第2の配
線領域を選択的に形成する工程と、前記第1の配
線領域及び前記第2の配線領域をマスクとして前
記一主面に選択的に他の導電型の不純物を導入す
ることにより前記第1の絶縁膜に対して前記第1
の不純物添加領域とは反対側の前記一主面に第2
の不純物添加領域を前記第2の絶縁膜に対して前
記第1の不純物添加領域と同じ側の前記一主面に
その前記第2の絶縁膜側の端部の上面が前記第2
の絶縁膜の前記第1の不純物添加領域側の底面の
端部と接しその前記第1の不純物添加領域側の端
部が該第1の不純物領域の一部と重なる第3の不
純物添加領域を前記第2の絶縁膜に対して前記第
3の不純物添加領域とは反対側の前記一主面に第
4の不純物添加領域をそれぞれ設ける工程とを有
することを特徴とする半導体装置の製造方法。
1. A step of selectively forming a first impurity doped region of another conductivity type on one main surface of a semiconductor substrate of one conductivity type, and a step of forming the first impurity doped region on one side of the first impurity doped region. a high melting point metal extending from the first impurity doped region on a first insulating film selectively provided on the first impurity doped region with its bottom end in contact with the top end of the first impurity doped region; selectively forming a first wiring region on the other side of the main surface with respect to the first impurity doped region in proximity to the first impurity doped region; selectively forming a second wiring region made of a high-melting point metal on the second insulating film, and selecting the first wiring region and the second wiring region on the one main surface using the first wiring region and the second wiring region as masks; By introducing an impurity of another conductivity type into the first insulating film,
A second main surface on the opposite side to the impurity doped region.
The impurity doped region is placed on the one main surface on the same side as the first impurity doped region with respect to the second insulating film, and the upper surface of the end on the second insulating film side is the second insulating film.
a third impurity doped region that is in contact with an end of the bottom surface of the insulating film on the first impurity doped region side and whose end on the first impurity doped region side overlaps a part of the first impurity region; A method for manufacturing a semiconductor device, comprising the step of providing a fourth impurity doped region on the one main surface of the second insulating film opposite to the third impurity doped region.
JP14668279A 1979-11-13 1979-11-13 Manufacture of semiconductor device Granted JPS5670664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14668279A JPS5670664A (en) 1979-11-13 1979-11-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14668279A JPS5670664A (en) 1979-11-13 1979-11-13 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5670664A JPS5670664A (en) 1981-06-12
JPH0338734B2 true JPH0338734B2 (en) 1991-06-11

Family

ID=15413198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14668279A Granted JPS5670664A (en) 1979-11-13 1979-11-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5670664A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123680A (en) * 1977-04-01 1978-10-28 Nat Semiconductor Corp Mosfet ic and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123680A (en) * 1977-04-01 1978-10-28 Nat Semiconductor Corp Mosfet ic and method of producing same

Also Published As

Publication number Publication date
JPS5670664A (en) 1981-06-12

Similar Documents

Publication Publication Date Title
US4425700A (en) Semiconductor device and method for manufacturing the same
JPH0451071B2 (en)
JPH05206451A (en) Mosfet and its manufacture
JP2615016B2 (en) Method of forming MOS field effect transistor
JP2773221B2 (en) Semiconductor device
JP3077760B2 (en) Solid phase diffusion method
JPS63257231A (en) Manufacture of semiconductor device
JPH05283687A (en) Production of semiconductor element
JP2782781B2 (en) Method for manufacturing semiconductor device
JPS59977B2 (en) Insulated gate integrated circuit
JPH0338734B2 (en)
JPH0127589B2 (en)
JP3088556B2 (en) Semiconductor device manufacturing method
JPS6138858B2 (en)
JPH04348532A (en) Semiconductor device and manufacture thereof
JPS59121978A (en) Manufacture of semiconductor device
JP3009683B2 (en) Method for manufacturing semiconductor nonvolatile memory element
JPS5928993B2 (en) Semiconductor device and its manufacturing method
JPH0475346A (en) Manufacture of semiconductor device
JPH0154867B2 (en)
JPS627708B2 (en)
JPS62298174A (en) Manufacture of semiconductor integrated circuit device
JPH01112770A (en) Manufacture of semiconductor device
JPS6158986B2 (en)
JPS63283063A (en) Formation of gate electrode