JPH0333067Y2 - - Google Patents

Info

Publication number
JPH0333067Y2
JPH0333067Y2 JP1983009827U JP982783U JPH0333067Y2 JP H0333067 Y2 JPH0333067 Y2 JP H0333067Y2 JP 1983009827 U JP1983009827 U JP 1983009827U JP 982783 U JP982783 U JP 982783U JP H0333067 Y2 JPH0333067 Y2 JP H0333067Y2
Authority
JP
Japan
Prior art keywords
layer
island region
conductivity type
single crystal
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983009827U
Other languages
Japanese (ja)
Other versions
JPS59117148U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP982783U priority Critical patent/JPS59117148U/en
Publication of JPS59117148U publication Critical patent/JPS59117148U/en
Application granted granted Critical
Publication of JPH0333067Y2 publication Critical patent/JPH0333067Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案は誘電体分離構造を用いた半導体装置に
係り、特に、高耐圧半導体集積回路素子に好適な
素子構造に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor device using a dielectric isolation structure, and particularly to an element structure suitable for a high voltage semiconductor integrated circuit element.

〔従来技術〕[Prior art]

第1図は単結晶島が誘電体膜を介して支持基体
中に複数個埋設されたいわゆる誘電体分離構造を
用いた従来技術によるダイオードの断面構造の一
例である。同図中、1は絶縁分離膜(誘電体膜)、
2は表面絶縁膜、3は第1導電型の単結晶島領
域、4は単結晶島領域の底面および側面に形成し
た高不純物濃度の第1導電型の層、5は単結晶島
領域の表面から内部に延びるように形成した第2
導電型の層、6は配線を示す。
FIG. 1 is an example of a cross-sectional structure of a diode according to the prior art using a so-called dielectric isolation structure in which a plurality of single crystal islands are embedded in a support base via a dielectric film. In the figure, 1 is an insulating separation film (dielectric film);
2 is a surface insulating film, 3 is a first conductivity type single crystal island region, 4 is a highly impurity-concentrated first conductivity type layer formed on the bottom and side surfaces of the single crystal island region, and 5 is a surface of the single crystal island region. The second part is formed to extend inward from the
The conductivity type layer 6 indicates wiring.

第1図のダイオードの例では、素子の高耐圧化
のために、単結晶島領域の表面の第2導電型の層
5の厚さを厚くしており、また、配線6の下の第
1導電型の単結晶島領域3の表面に発生するチヤ
ンネルの阻止層として、単結晶島領域の底面およ
び側面に高不純物濃度の第1導電型の層4を設け
ている。このため、素子寸法が大きくなる欠点が
ある。
In the example of the diode shown in FIG. 1, the thickness of the second conductivity type layer 5 on the surface of the single crystal island region is increased in order to increase the withstand voltage of the device, and the thickness of the second conductivity type layer 5 on the surface of the single crystal island region is increased. As a blocking layer for channels generated on the surface of the single crystal island region 3 of the conductive type, a layer 4 of the first conductive type with a high impurity concentration is provided on the bottom and side surfaces of the single crystal island region. Therefore, there is a drawback that the element size becomes large.

第2図は誘電体分離構造を用いた従来技術の横
型の第1型トランジスタ(例えばPNPバイポー
ラトランジスタ)の断面構造の一例である。同図
中、10は第2導電型のエミツタ層、11は第2
導電型のコレクタ層である。
FIG. 2 is an example of a cross-sectional structure of a conventional lateral type 1 transistor (for example, a PNP bipolar transistor) using a dielectric isolation structure. In the figure, 10 is a second conductivity type emitter layer, 11 is a second conductivity type emitter layer, and 11 is a second conductivity type emitter layer.
It is a conductive type collector layer.

第2図の横型の第1型トランジスタの例では、
エミツタ層10とコレクタ層11を横方向に配置
しており、高耐圧を得るためエミツタ層10とコ
レクタ層11の距離を大きくせねばならない理由
から、素子寸法が横方向に大きくなる欠点があ
る。また、エミツタ層10とコレクタ層11の間
の距離が長く、その表面再結合電流の制御が困難
なため、トランジスタの電流増巾率が小さく、そ
の制御も困難である。また、カツトオフ周波数も
小さいという欠点をもつ。さらに、半導体部分
3,10,11と表面絶縁膜2の境界面に発生す
る界面電荷の影響により、トランジスタの特性が
不安定である欠点もある。また、コレクタ層11
の配線6下にチヤンネルが発生するため、高耐圧
化のために絶縁層12の膜厚を厚くし、引出し配
線長13を長くする必要があるという欠点があ
る。
In the example of the horizontal type 1 transistor in Fig. 2,
Since the emitter layer 10 and the collector layer 11 are arranged laterally, and the distance between the emitter layer 10 and the collector layer 11 has to be increased in order to obtain a high breakdown voltage, there is a drawback that the element dimensions become larger in the lateral direction. Further, since the distance between the emitter layer 10 and the collector layer 11 is long and it is difficult to control the surface recombination current, the current amplification rate of the transistor is small and its control is also difficult. It also has the disadvantage of having a small cutoff frequency. Furthermore, there is also a drawback that the characteristics of the transistor are unstable due to the influence of interfacial charges generated at the interface between the semiconductor portions 3, 10, 11 and the surface insulating film 2. In addition, the collector layer 11
Since a channel is generated under the wiring 6, there is a drawback that it is necessary to increase the thickness of the insulating layer 12 and increase the length of the lead wiring 13 in order to increase the withstand voltage.

第3図は誘電体分離構造を用いた半導体集積回
路において、第1型トランジスタと第2型トラン
ジスタ(例えばNPNバイポーラトランジスタ)
の両方を縦型トランジスタとして従来例の断面構
造である。図中、16は単結晶島領域表面の第2
導電型の層、17は第2導電型層内の第1導電型
の層、20は単結晶島領域表面の第1導電型の
層、21は第1導電型の層内の第2導電型の層を
示す。3,4,16,17からなる第1型トラン
ジスタにおいて、17はエミツタ層、16はベー
ス層、3はコレクタ層となる島領域、4はチヤン
ネルストツパーとして機能する。3,4,20,
21より成る第2型トランジスタで21はエミツ
タ、20はベース、3はコレクタ、4はチヤンネ
ルストツパーとして機能する高不純物濃度を有す
る第1導電型の層である。
Figure 3 shows a first type transistor and a second type transistor (for example, an NPN bipolar transistor) in a semiconductor integrated circuit using a dielectric isolation structure.
This is a cross-sectional structure of a conventional example in which both are vertical transistors. In the figure, 16 is the second point on the surface of the single crystal island region.
A conductive type layer, 17 a first conductive type layer in the second conductive type layer, 20 a first conductive type layer on the surface of the single crystal island region, and 21 a second conductive type layer in the first conductive type layer. shows the layers of In the first type transistor consisting of 3, 4, 16, and 17, 17 functions as an emitter layer, 16 a base layer, 3 an island region serving as a collector layer, and 4 a channel stopper. 3, 4, 20,
In the second type transistor 21, 21 is an emitter, 20 is a base, 3 is a collector, and 4 is a first conductivity type layer having a high impurity concentration and functioning as a channel stopper.

第3図の例では、第1型、第2型のトランジス
タの両方の電流増巾率、カツトオフ周波数を大き
くでき、制御性も良好となるが、別導伝型の単結
晶島領域3を同一基板に同時に配置する必要があ
り製造工程が複雑になる欠点がある。
In the example shown in FIG. 3, the current amplification rate and cutoff frequency of both the first type and second type transistors can be increased, and the controllability is also good, but single crystal island regions 3 of different conductivity types are It is necessary to arrange them on the substrate at the same time, which has the disadvantage of complicating the manufacturing process.

〔考案の目的〕[Purpose of invention]

本考案の目的は、 (1) 誘電体分離構造をもつ半導体集積回路におい
てその集積度を向上させること、 (2) トランジスタの特性を向上させ半導体集積回
路の性能を向上させること、 (3) (1),(2)を製造工程を複雑化することなしに達
成することにある。
The purposes of this invention are (1) to improve the degree of integration in semiconductor integrated circuits with dielectric isolation structures, (2) to improve the performance of semiconductor integrated circuits by improving the characteristics of transistors, and (3) to improve the performance of semiconductor integrated circuits by improving the characteristics of transistors. The aim is to achieve 1) and (2) without complicating the manufacturing process.

〔考案の概要〕[Summary of the idea]

本考案の要点は、従来第1導電型と第2導電型
の接合として用いられることのなかつた単結晶島
領域の底面および側面に沿つて延びる接合部を設
け、新しい素子構造を可能にし、素子機能を向上
させたことにある。
The key point of the present invention is to provide a junction extending along the bottom and side surfaces of the single crystal island region, which has not been conventionally used as a junction between the first conductivity type and the second conductivity type. This is due to improved functionality.

〔考案の実施例〕[Example of idea]

第4図は本考案による誘電体分離構造のダイオ
ードの断面図の例である。23は単結晶島領域の
底面および側面に形成した第2導電型の層であ
る。
FIG. 4 is an example of a cross-sectional view of a diode having a dielectric isolation structure according to the present invention. 23 is a layer of the second conductivity type formed on the bottom and side surfaces of the single crystal island region.

第4図のダイオードでは、第2導電型の層を単
結晶島領域の底面および側面に形成しているた
め、第1図のダイオードの例より小型化が可能と
なる。また、第1導伝型の層と接続する配線6に
よるチヤンネルの発生が無いため素子の高耐圧化
に有利となる。第1図のダイオードの例にあるチ
ヤンネルストツパーとして機能する層4は不要と
なり、これは素子の小型化につながる。
In the diode shown in FIG. 4, since the second conductivity type layer is formed on the bottom and side surfaces of the single crystal island region, it is possible to make the diode smaller than the example of the diode shown in FIG. Further, since no channel is generated due to the wiring 6 connected to the first conductivity type layer, it is advantageous for increasing the breakdown voltage of the device. The layer 4 functioning as a channel stopper in the diode example of FIG. 1 is no longer required, which leads to a smaller device.

第5図は本考案による誘電体分離構造の第1型
トランジスタの断面構造の一例である。同図中、
27は単結晶島領域の表面から内部に延びる第2
導電型の層、6′は配線を示す。
FIG. 5 is an example of a cross-sectional structure of a first type transistor having a dielectric isolation structure according to the present invention. In the same figure,
27 is a second region extending inward from the surface of the single crystal island region.
The conductive type layer 6' indicates wiring.

第5図のトランジスタにおいて、27はエミツ
タ層、3はベース層、23はコレクタ層として機
能させる場合、コレクタ層23を単結晶島領域の
底面および側面に設けたことにより、第2図の第
1型トランジスタの例に比べて小型化が可能にな
る。コレクタ23の配線6′は第1導電型の単結
晶島領域3の上を通す必要がないため、第2図の
第1型トランジスタの例に示した配線の下のチヤ
ンネルの発生がなく、高耐圧化に有利である。第
2図の横型の第1型トランジスタでは電流増巾率
が10〜20、カツトオフ周波数が100KHz程度であ
つたのに対し、第5図に示した本考案によるタテ
型トランジスタでは電流増巾率を50〜100に、カ
ツトオフ周波数を数MHzに向上させることができ
る。また、同時に、特性の安定性、制御性は、エ
ミツタ層27、直下のベース層厚を側面と比較し
て十分小さくすることにより、容易に得られる。
さらに、単結晶島領域の底面、側面の全面にコレ
クタ層を配置出来るため、小型の島で、低コレク
タ抵抗を実現出来る。
In the transistor of FIG. 5, when 27 functions as an emitter layer, 3 functions as a base layer, and 23 functions as a collector layer, by providing the collector layer 23 on the bottom and side surfaces of the single crystal island region, The size can be reduced compared to the example of a type transistor. Since the wiring 6' of the collector 23 does not need to pass over the first conductivity type single crystal island region 3, there is no channel under the wiring as shown in the example of the first type transistor in FIG. It is advantageous for pressure resistance. In the horizontal type 1 transistor shown in Fig. 2, the current amplification rate was 10 to 20 and the cutoff frequency was about 100 KHz, whereas in the vertical type transistor according to the present invention shown in Fig. 50 to 100, and the cutoff frequency can be increased to several MHz. At the same time, stability and controllability of characteristics can be easily obtained by making the thickness of the emitter layer 27 and the base layer directly below it sufficiently smaller than that of the side surface.
Furthermore, since the collector layer can be placed all over the bottom and side surfaces of the single crystal island region, a small island can realize low collector resistance.

第6図は本考案による誘電体分離構造のマルチ
エミツタトランジスタの断面構造図の一例であ
る。
FIG. 6 is an example of a cross-sectional structural diagram of a multi-emitter transistor having a dielectric isolation structure according to the present invention.

このマルチエミツタトランジスタ層において、
27をエミツタ層、3をベース層、23をコレク
タ層として機能させた場合、各エミツタ層27と
コレクタ層23の距離を均一に形成することが可
能であり、従来技術で製造するより小型で特性の
均一なマルチエミツタトランジスタを製造するこ
とができる。
In this multi-emitter transistor layer,
When 27 functions as an emitter layer, 3 as a base layer, and 23 as a collector layer, it is possible to form a uniform distance between each emitter layer 27 and the collector layer 23, and it is smaller and has better characteristics than manufacturing with conventional technology. uniform multi-emitter transistors can be manufactured.

第7図は、本考案による誘電体分離構造の特に
高耐圧な第1型トランジスタの断面構造の一例で
ある。同図中、37,38,39,40はフイー
ルドプレートを兼ねる配線を示す。
FIG. 7 is an example of a cross-sectional structure of a particularly high-voltage first type transistor having a dielectric isolation structure according to the present invention. In the figure, 37, 38, 39, and 40 indicate wiring that also serves as a field plate.

第7図のトランジスタにおいて、27はエミツ
タ層、3はベース層、23はコレクタ層として機
能させ、エミツタ層からコレクタ層方向に電圧を
印加し、トランジスタを阻止状態にした場合につ
いて以下述べる。フイールドプレート37および
38は、コレクタ層23からベース層3へ向けて
発生する単結晶島領域の表面の空乏層を横方向に
拡げることにより、素子耐圧を向上させる。フイ
ールドプレート39および40は、単結晶島領域
の表面の空乏層の拡がり過ぎにより、エミツタ・
コレクタ間でパンチスルー現象が発生するのを阻
止することにより素子耐圧を向上させる。
In the transistor shown in FIG. 7, 27 functions as an emitter layer, 3 functions as a base layer, and 23 functions as a collector layer, and a case will be described below in which a voltage is applied from the emitter layer to the collector layer to put the transistor in a blocking state. The field plates 37 and 38 improve the device breakdown voltage by laterally expanding a depletion layer on the surface of the single crystal island region generated from the collector layer 23 toward the base layer 3. Field plates 39 and 40 have emitters due to excessive expansion of the depletion layer on the surface of the single crystal island region.
By preventing the punch-through phenomenon from occurring between the collectors, the device breakdown voltage is improved.

第8図は、誘電体分離構造をもつ半導体集積回
路において、第5図に示した本考案による第1型
トランジスタと同時に別の単結晶島に設けるため
の第2型トランジスタの一例である。同図中、4
4は単結晶島領域の表面の第2導電型の層内の第
1導電型の層を示す。
FIG. 8 is an example of a second type transistor which is provided in a separate single crystal island at the same time as the first type transistor according to the present invention shown in FIG. 5 in a semiconductor integrated circuit having a dielectric isolation structure. In the same figure, 4
4 indicates a layer of the first conductivity type within the layer of the second conductivity type on the surface of the single crystal island region.

第8図のトランジスタの例では、単結晶島領域
の底面および側面の第2導電型の層はフローテイ
ング状態にしてあるが、第1導電型の層44、第
2導電型の層27、第1導電型の層3、第2導電
型の層23が直列接続されており、各層の内部抵
抗の影響でサイリスタ動作を起こし、ラツチアツ
プする場合があるという欠点をもつ。
In the example of the transistor shown in FIG. 8, the second conductivity type layer on the bottom and side surfaces of the single crystal island region is in a floating state, but the first conductivity type layer 44, the second conductivity type layer 27, The layer 3 of the first conductivity type and the layer 23 of the second conductivity type are connected in series, which has the disadvantage that a thyristor operation may occur due to the influence of the internal resistance of each layer, resulting in latch-up.

第9図は、第8図に示した第2型トランジスタ
の欠点を改善した本考案による誘電体分離構造を
もつ第2型トランジスタの断面構造の一例であ
る。同図中、49は単結晶島領域の底面の一部の
第1導電型の層、6″は第1導電型の単結晶島領
域とその側面の第2導電型の層23を短絡する配
線を示す。
FIG. 9 is an example of a cross-sectional structure of a second type transistor having a dielectric isolation structure according to the present invention, which improves the drawbacks of the second type transistor shown in FIG. 8. In the figure, 49 is a layer of the first conductivity type that is part of the bottom surface of the single crystal island region, and 6'' is a wiring that short-circuits the single crystal island region of the first conductivity type and the layer 23 of the second conductivity type on the side surface thereof. shows.

第9図の第2型トランジスタの例は、単結晶島
領域の底面の層44を投影した個所及びその近傍
に第1導電型の層49を設け、この個所には層2
3を形成しないようにし、これにより、第8図の
第2型トランジスタの例における単結晶島領域の
底面および側面の第2導電型の層の領域を小さく
し、サイリスタ動作によるラツチアツプの可能性
を少なくしたものである。これによつて、第1型
トランジスタと同時に別の単結晶島に第2型トラ
ンジスタを設けることが可能となる。
In the example of the second type transistor shown in FIG. 9, a layer 49 of the first conductivity type is provided at a location where the layer 44 on the bottom surface of the single crystal island region is projected and in the vicinity thereof, and a layer 49 of the first conductivity type is provided at this location.
3, thereby reducing the area of the second conductivity type layer on the bottom and side surfaces of the single crystal island region in the example of the second type transistor in FIG. 8, and reducing the possibility of latch-up due to thyristor operation. It has been reduced. This makes it possible to provide a second type transistor on another single crystal island at the same time as a first type transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘電体分離構造を用いた従来のダイオ
ードの断面図、第2図は誘電体分離構造を用いた
従来の横型の第1型トランジスタの断面図、第3
図は第1型トランジスタと第2型トランジスタの
両方をタテ型トランジスタとして従来の断面図、
第4図は本考案の誘電体分離構造のダイオードの
断面図、第5図は本考案による誘電体分離構造の
第1型トランジスタの断面図、第6図は本考案の
誘電体分離構造のマルチエミツタトランジスタの
断面図、第7図は、本考案の誘電体分離構造の第
1型トランジスタの断面図、第8図は第5図の第
1型トランジスタと同時に設けるための第2型ト
ランジスタの断面図、第9図は本考案の誘電体分
離構造の第2型トランジスタの断面図である。 3……第1導電型の単結晶島領域、6……配
線、23……単結晶島領域の底面および側面の第
2導電型の層、27……単結晶島領域の表面の第
2導電型の層。
Fig. 1 is a cross-sectional view of a conventional diode using a dielectric isolation structure, Fig. 2 is a cross-sectional view of a conventional horizontal type 1 transistor using a dielectric isolation structure, and Fig.
The figure shows a conventional cross-sectional view where both the first type transistor and the second type transistor are vertical type transistors.
FIG. 4 is a cross-sectional view of a diode with a dielectric isolation structure of the present invention, FIG. 5 is a cross-sectional view of a first type transistor with a dielectric isolation structure of the present invention, and FIG. 6 is a multi-channel diode with a dielectric isolation structure of the present invention. 7 is a cross-sectional view of the emitter transistor, FIG. 7 is a cross-sectional view of the first type transistor with the dielectric isolation structure of the present invention, and FIG. 8 is a cross-sectional view of the second type transistor to be provided simultaneously with the first type transistor of FIG. 9 is a cross-sectional view of a second type transistor having a dielectric isolation structure according to the present invention. 3... Single crystal island region of first conductivity type, 6... Wiring, 23... Layer of second conductivity type on the bottom and side surfaces of the single crystal island region, 27... Second conductivity on the surface of the single crystal island region Layers of mold.

Claims (1)

【実用新案登録請求の範囲】 第1導電型の単結晶島領域が誘電体膜を介して
支持基体中に複数個埋設された誘電体分離基板の
一対の単結晶島領域に、第1導電型のエミツタ層
を有する第1型バイポーラトランジスタと第2導
電型のエミツタ層を有する第2型バイポーラトラ
ンジスタがそれぞれ形成されるものにおいて、 第1型バイポーラトランジスタが形成される第
1の単結晶島領域は島領域表面から内部に延びる
第2導電型の第1ベース層と、第1ベース層表面
から内部に延びる第1導電型の第1エミツタ層
と、第1エミツタ層を島領域底部に投影した個所
を除き島領域と誘電体膜との間全面に設けられ端
部が島領域表面に露出する第2導電型の周辺層と
を有し、島領域表面において第1エミツタ層に第
1エミツタ電極が、第1ベース層に第1ベース電
極が、島領域と周辺層とに第1コレクタ電極がそ
れぞれ設けられており、 第2型バイポーラトランジスタが形成される第
2の単結晶島領域は島領域表面から内部に延びる
第2導電型の第2エミツタ層と、島領域と誘電体
膜との間全面に設けられ端部が島領域表面に露出
する第2導電型の第2コレクタ層とを有し、島領
域表面において第2エミツタ層に第2エミツタ電
極を、島領域に第2ベース電極を、第2コレクタ
層に第2コレクタ電極がそれぞれ設けられている
ことを特徴とする半導体装置。
[Claims for Utility Model Registration] A plurality of single crystal island regions of a first conductivity type are embedded in a pair of single crystal island regions of a dielectric separation substrate in which a plurality of single crystal island regions of a first conductivity type are embedded in a support base through a dielectric film. In a device in which a first type bipolar transistor having an emitter layer and a second type bipolar transistor having a second conductivity type emitter layer are respectively formed, the first single crystal island region in which the first type bipolar transistor is formed is A first base layer of a second conductivity type extending inward from the surface of the island region, a first emitter layer of the first conductivity type extending inward from the surface of the first base layer, and a portion where the first emitter layer is projected onto the bottom of the island region. a peripheral layer of a second conductivity type that is provided on the entire surface between the island region and the dielectric film except for the second conductivity type and whose end portion is exposed on the surface of the island region, and a first emitter electrode is provided on the first emitter layer on the surface of the island region. , a first base electrode is provided in the first base layer, a first collector electrode is provided in the island region and the peripheral layer, and the second single crystal island region in which the second type bipolar transistor is formed is provided on the island region surface. a second conductivity type second emitter layer extending inward from the second conductivity type, and a second conductivity type second collector layer provided over the entire surface between the island region and the dielectric film and having an end exposed on the surface of the island region. A semiconductor device characterized in that a second emitter electrode is provided on a second emitter layer, a second base electrode is provided on the island region, and a second collector electrode is provided on the second collector layer on the surface of the island region.
JP982783U 1983-01-28 1983-01-28 semiconductor equipment Granted JPS59117148U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP982783U JPS59117148U (en) 1983-01-28 1983-01-28 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP982783U JPS59117148U (en) 1983-01-28 1983-01-28 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS59117148U JPS59117148U (en) 1984-08-07
JPH0333067Y2 true JPH0333067Y2 (en) 1991-07-12

Family

ID=30141274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP982783U Granted JPS59117148U (en) 1983-01-28 1983-01-28 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS59117148U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147583A (en) * 1974-10-22 1976-04-23 Sanyo Kako Kk KOKETSUBOSHIHO
JPS55115340A (en) * 1979-02-26 1980-09-05 Hitachi Ltd Semiconductor device
JPS55133553A (en) * 1979-04-03 1980-10-17 Hitachi Ltd Semiconductor integrated device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159976U (en) * 1978-04-28 1979-11-08

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147583A (en) * 1974-10-22 1976-04-23 Sanyo Kako Kk KOKETSUBOSHIHO
JPS55115340A (en) * 1979-02-26 1980-09-05 Hitachi Ltd Semiconductor device
JPS55133553A (en) * 1979-04-03 1980-10-17 Hitachi Ltd Semiconductor integrated device

Also Published As

Publication number Publication date
JPS59117148U (en) 1984-08-07

Similar Documents

Publication Publication Date Title
US5304821A (en) MOS-gate-turnoff thyristor
US4051506A (en) Complementary semiconductor device
JPH0216017B2 (en)
US4109273A (en) Contact electrode for semiconductor component
JPH0333067Y2 (en)
EP0316988B1 (en) Lateral high-voltage transistor
JP2518929B2 (en) Bipolar semiconductor integrated circuit
JPH04323832A (en) Semiconductor device and manufacture thereof
JPS6031105B2 (en) semiconductor equipment
JPH0115147B2 (en)
JPS6140140B2 (en)
JPH0222545B2 (en)
JPS6167255A (en) Manufacture of semiconductor device
JP2676534B2 (en) Semiconductor device
JP2518880B2 (en) Semiconductor device
JP2604793B2 (en) Semiconductor device
JPH0520909B2 (en)
JPS6352473B2 (en)
JPS61268036A (en) Semiconductor device
JPH07263455A (en) Semiconductor device
JPH0245330B2 (en)
JPH0157506B2 (en)
JPS59127865A (en) Semiconductor device
JPS6126232B2 (en)
JPH0714003B2 (en) Semiconductor device