JPS6167255A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6167255A
JPS6167255A JP59189146A JP18914684A JPS6167255A JP S6167255 A JPS6167255 A JP S6167255A JP 59189146 A JP59189146 A JP 59189146A JP 18914684 A JP18914684 A JP 18914684A JP S6167255 A JPS6167255 A JP S6167255A
Authority
JP
Japan
Prior art keywords
region
type
forming
impurity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59189146A
Other languages
Japanese (ja)
Other versions
JPH0436578B2 (en
Inventor
Tomooki Hara
原 友意
Hisashi Tajima
田島 久之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC Corp
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC IC Microcomputer Systems Co Ltd filed Critical NEC Corp
Priority to JP59189146A priority Critical patent/JPS6167255A/en
Publication of JPS6167255A publication Critical patent/JPS6167255A/en
Publication of JPH0436578B2 publication Critical patent/JPH0436578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/0244I2L structures integrated in combination with analog structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the current amplification factor and operating speed of an integrated injection logic circuit (I<2>L) by forming other conductive type second buried layer of an impurity having larger diffusion coefficient in one conductive type first buried surface of a region for forming the I<2>L. CONSTITUTION:An N<+> type impurity is diffused in a P type substrate 1 to form an N<+> type first buried layer 2, and ions of an impurity having a diffusion coefficient larger than the impurity of the layer 2 are then implanted only in an I<2>L region to form an N type second buried layer 3. Then, an epitaxially layer 4 is grown, P<+> type impurity is diffused from the surface to form an insulator separation region 5, ions are then implanted from the surface of the layer 4 of the I<2>L forming region to form a P type first base region 6. Then, a shallow P<+> type second base region 7b having high density higher than the region 6 is formed from the surface of the layer 4, N<+> type impurity is then diffused to form the emitter collecting region 8a and collector region 8b of the I<2>L and the emitter region 8c and the collector region 8d of a bipolar transistor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法に関し、特に集積注入論
理回路(Integrated Injection 
Logic。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device, and in particular, a method for manufacturing a semiconductor device.
Logic.

以下I2Lという)と通常のバイポーラトランジスタと
金回−基板上に有する半導体装置の製造方法に関する。
The present invention relates to a method of manufacturing a semiconductor device having an ordinary bipolar transistor (hereinafter referred to as I2L) and a gold circuit board.

(従来技術) 第2図は従来のI2L  とバイポーラトランジスタと
共存した集積回路の構造断面図である。第2図において
、A部はI2L  と共存するバイポーラトランジスタ
部でありB部がI2L  を構成している。すなわちl
はP型基板であり、2はN生型の第1埋込層、4はNu
エピタキシャル層、5はP+型の絶縁分離領域、6はP
型筒1ペース領域、7aはP+型インジェクタ領域、7
bはP+型第2ペース領域、7CはP生型ベース領域、
8aはN+型エミッタコンタクト領域、8bはN生型コ
レクタ領域、8CはN中型エミッタ領域、8dは8塁コ
レクタコンタクト領域である。
(Prior Art) FIG. 2 is a structural sectional view of a conventional integrated circuit that coexists with I2L and bipolar transistors. In FIG. 2, part A is a bipolar transistor part coexisting with I2L, and part B constitutes I2L. That is, l
is a P-type substrate, 2 is an N-type first buried layer, and 4 is a Nu-type substrate.
Epitaxial layer, 5 is P+ type isolation region, 6 is P
Mold cylinder 1 pace area, 7a is P+ type injector area, 7
b is the P+ type second pace area, 7C is the P type base area,
8a is an N+ type emitter contact region, 8b is an N raw type collector region, 8C is an N medium emitter region, and 8d is an 8th base collector contact region.

これらの領域のうちP生型インジェクタ領域7aとN型
エピタキシャル層4とP+型第2ペース領域7bはそれ
ぞれPNP トランジスタのエミッタ。
Of these regions, the P-type injector region 7a, the N-type epitaxial layer 4, and the P+ type second space region 7b are emitters of PNP transistors, respectively.

ベース、コレクタとして働らき注入素子としての一極性
型の横型トランジスタを構成し、またNiエビタ中シャ
ル層4とP+型第2ペース領域7bとN生型コレクタ領
域8bはNPN)ランジスタのエミッタ、ベース、コレ
クタとして働らき縦型逆動作トランジスタを柳成し、横
型トランジスタのコレクタと縦型逆動作トランジスタの
ベースが共通になっており、画素子でI2L  t−n
成している。
A unipolar lateral transistor is formed which functions as a base and a collector and serves as an injection element, and the Ni emitter layer 4, the P+ type second space region 7b, and the N-type collector region 8b are NPN) as the emitter and base of the transistor. , a vertical reverse-acting transistor is formed to act as a collector, and the collector of the horizontal transistor and the base of the vertical reverse-acting transistor are common, and I2L t-n in the pixel element.
has been completed.

工 またN十紅ツタ領域8CとP生型ペース領域7cとN型
コレクタコンタクト領域でNPNバイポーラトランジス
タt−構成している。
Furthermore, an NPN bipolar transistor T- is constructed by the N-shaped ivy region 8C, the P-type space region 7c, and the N-type collector contact region.

なお9は表面に形成された酸化膜、10はインジェクタ
電極パターン、11.14はエミッタ電極パターン、1
2.15はベース電極パターン、13.16はコレクタ
電極パターンである。
Note that 9 is an oxide film formed on the surface, 10 is an injector electrode pattern, 11.14 is an emitter electrode pattern, 1
2.15 is a base electrode pattern, and 13.16 is a collector electrode pattern.

I2L  は、製造工程が簡単で集積度が高く、かつ通
常のバイポーラ集積回路と共存できなど数多くの特命ヲ
有している、しかし従来のI21.  には次のような
欠点がおった。
I2L has many special features such as simple manufacturing process, high degree of integration, and ability to coexist with ordinary bipolar integrated circuits. had the following shortcomings:

(1)逆動作NPN)ランジスタの電流増幅率(以下β
upと記す)は通常のNPN)う/ジスタの電流増幅率
(以下hFIと記す)によυ決定され、βup  を高
くするためにはh Fl t−高く設定することにより
通常のNPNトランジスタの耐圧(以下BVOIOと記
す)が低下してしまう。
(1) Current amplification factor of reverse action NPN transistor (hereinafter β
up) is determined by the current amplification factor (hereinafter referred to as hFI) of a normal NPN transistor. (hereinafter referred to as BVOIO) will decrease.

(21通常のNPN)ランジスタのBVagoを確保す
るため((エピタキシャル層濃度を小さくし逆動作NP
Nトランジスタのベース領域直下の笑効エピタキシャル
層厚(以下Wepiと記す)t−大きくとる必慢があり
、この結果ホールの蓄積に依り動作速度が低下してしま
う。
(21 Normal NPN) To ensure the BVago of the transistor ((lower epitaxial layer concentration and reverse operation NP)
The effective epitaxial layer thickness (hereinafter referred to as Wepi) immediately below the base region of the N-transistor must be made large, and as a result, the operation speed decreases due to the accumulation of holes.

以上のような欠点上なくすための対策として第3図の構
成が開発されている。第3図は従来の改良され主I2L
 の断面図である。
As a countermeasure to overcome the above drawbacks, the configuration shown in FIG. 3 has been developed. Figure 3 shows the conventional improved main I2L
FIG.

第3図に示すように、・逆動作NPN )ランジスタの
ベース領域に咬ず低濃度のP−p5不純物を深く拡散し
、第1ペース領域6fr、形成し、次いで、第1ペース
領域に対し充分9度なP+痘不純細物沙<拡散し第2ペ
ース領域7b’l形成する。このように改良されたIL
 は従来の構成のものに比べ次のような利点ヲ宵する。
As shown in FIG. 3, ・Reverse operation NPN) Low concentration P-p5 impurity is deeply diffused into the base region of the transistor to form a first pace region 6fr. 9 degrees P+pox impurities are diffused to form a second pace region 7b'l. IL improved in this way
The system has the following advantages over the conventional configuration.

(1)  通常のN PN l−ランジスタのhFlと
独立に逆動作NPNトランジスタのβupを高く制御で
きる。
(1) βup of a reverse operation NPN transistor can be highly controlled independently of hFl of a normal NPN l-transistor.

(2)We p iを小さくでき、動作速度を向上させ
ることができる。
(2) We can reduce We p i and improve operation speed.

(3)  逆動作NPNトランジスタの底面部金低濃度
ベース領域(第1ペース領域)で形成されているためエ
ミッタ・ベース接地容量が小さくでき、特に低を流にお
ける動作速度を向上することができる。
(3) Since the bottom of the reverse operation NPN transistor is formed of a low gold concentration base region (first paste region), the emitter-base grounding capacitance can be reduced, and the operating speed, especially in low current, can be improved.

以上のように、従来のエコL  に比べ、すぐれた特性
を示すが、さらに高速化を狙う場合には限界が生じた。
As mentioned above, it shows superior characteristics compared to the conventional Eco-L, but there are limits when aiming for even higher speeds.

その理由としてはI2L  において、Wepi tl
−できるだけ薄くし、通常のNPN トランジスタのB
Y、ωを確保するプロセス条件において低濃度かつ深い
接合の逆動作NPN)ランジスタの第1ペース領域を形
成する必要があり、Wepiさ0とすることができない
ためである。すなわち、第1ペース領域を埋込層に到達
させることができないため、逆動作NPN)ランジスタ
の第1ベース領域底面のエミッタ・ベース接合容量によ
るホールの蓄積に依り高速化に限界があった。又βup
制御の上からも第1ベース領域を埋込層に到達させるこ
とが困難であった。
The reason for this is that in I2L, Wepitl
-Make it as thin as possible and use a normal NPN transistor.
This is because it is necessary to form the first space region of a low-concentration, deep-junction, reverse-action NPN) transistor under process conditions that ensure Y and ω, and it is not possible to make Wepi 0. That is, since the first space region cannot reach the buried layer, there is a limit to the speed increase due to the accumulation of holes due to the emitter-base junction capacitance at the bottom of the first base region of the reverse operation NPN transistor. βup again
It is also difficult to make the first base region reach the buried layer from a control point of view.

(発明の目的) 本発明の目的は、上記欠点を除去し、通常のバイポーラ
トランジスタの耐圧全低下させることなく I2Lのβ
up及び動作速度の同上を実現する半導体装置の製造方
法全提供することにある。
(Objective of the Invention) The object of the present invention is to eliminate the above-mentioned drawbacks, and to reduce the β of I2L without reducing the breakdown voltage of ordinary bipolar transistors.
An object of the present invention is to provide a method for manufacturing a semiconductor device that achieves the same improvements in speed and operating speed.

〔発明の構成) 本発明の半導体装置の製造方法は、I2L と通常のバ
イポーラトランジスタを同一半導体基板に形成した半導
体装置の製造方法において、一導電型の半導体基板の各
素子形宏領域に他の導電型の筆1埋込層を形戊する工程
と、I2L  t−形成する領域の前記他の導電型の第
1埋込層表面に前記第1埋込層金形成する不純物の拡散
係数より大きい拡散係数を有する不純物で他の導電型の
第2埋込層を形成する工程と、前記WXl及びW、2埋
込層の形成された半導体基板上に他の導電型のエピタキ
シャル層を形成する工程と、I2Lのインバータトラン
ジスタの少なくとも内部ベース領域を含む領域に一25
′F!i型の第3領域を形成する工程と、前記通常のバ
イポーラトランジスタのベースψ域、I2L のインジ
ェクタ領域及び前記インバータトランジスタの外部ベー
ス領域に前記第3領域に比し高濃度かつ浅い接合の一纏
電型第4領域を同時に形成する工程と、前記インバータ
トランジスタのコレクタ領域及び前記通常のバイポーラ
トランジスタのエミッタ領域を同時に形成する工程とを
含むことを特徴として構成される。
[Structure of the Invention] A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device in which an I2L transistor and a normal bipolar transistor are formed on the same semiconductor substrate. a step of forming a brush 1 buried layer of conductivity type, and a diffusion coefficient of impurity larger than that of the impurity forming the first buried layer gold on the surface of the first buried layer of the other conductivity type in the I2L t-forming region; A step of forming a second buried layer of another conductivity type using an impurity having a diffusion coefficient, and a step of forming an epitaxial layer of another conductivity type on the semiconductor substrate on which the WXl and W2 buried layers are formed. and a region including at least the internal base region of the inverter transistor of I2L.
'F! A step of forming an i-type third region, and forming a junction with a higher concentration and shallower depth than the third region in the base ψ region of the normal bipolar transistor, the injector region of I2L, and the external base region of the inverter transistor. The method is characterized in that it includes a step of simultaneously forming a fourth region of electric type, and a step of simultaneously forming a collector region of the inverter transistor and an emitter region of the normal bipolar transistor.

(実施例) 以下本発明の実施例について図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)〜(c)は本発明の一実施例を説、明する
ために工程順に示した断面図である。
FIGS. 1(a) to 1(c) are cross-sectional views shown in order of steps to explain and explain one embodiment of the present invention.

まず、第1図(a)に示すように、P型基板1にN+型
不純物、例えばアンチモン(S b )f:、拡散しN
+型算1埋込層2を形成し、次いで第1埋込屑ヲ形成し
た不純物より拡散係数の大きい不純物、例“えばリン(
P)eI 2L部にのみイオン注入し、N型第2埋込層
3′t−形成する。次に、エピタキシャル層4を成長さ
せ、該エピタキシャル40表面よりP+型不純物を拡散
し絶縁分離領域5t−形成し、その後、X2L形成領域
のエピタキシャル層40表面よりP型不純物例えばホウ
素CB )t−イオン注入してP型筒1ベース領域6を
形成する。このとき、第1ベース領域はI2L  のイ
ンバータトランジスタの内部ベース領域を少くとも含む
ように形成される。ここで第2埋込層3は第1ベース領
域に接する様に形戊するのが望ましい。
First, as shown in FIG. 1(a), an N+ type impurity, such as antimony (S b )f:, is diffused into a P type substrate 1.
A + type buried layer 2 is formed, and then an impurity having a larger diffusion coefficient than the impurity formed in the first buried waste, for example, phosphorus (
P) Ions are implanted only into the eI 2L portion to form an N-type second buried layer 3't-. Next, an epitaxial layer 4 is grown, and a P+ type impurity is diffused from the surface of the epitaxial layer 40 to form an insulating isolation region 5t-, and then a P-type impurity (for example, boron CB) t- ion is added to the epitaxial layer 40 from the surface of the epitaxial layer 40 in the X2L formation region. The base region 6 of the P-type cylinder 1 is formed by implantation. At this time, the first base region is formed to include at least the internal base region of the I2L inverter transistor. Here, it is desirable that the second buried layer 3 be shaped so as to be in contact with the first base region.

次に、第1図(b)に示すように、エピタキシャル層4
の表面より、第1ペース領域6に比して高濃度かつ浅<
p  m第2ベース領域7bl形成する。
Next, as shown in FIG. 1(b), an epitaxial layer 4 is formed.
from the surface of
pm second base region 7bl is formed.

このときP 型インジェクタ領域7a及び通常のバイポ
ーラトランジスタのP+型ベース領域7Cも同時に形成
する。
At this time, a P type injector region 7a and a P+ type base region 7C of a normal bipolar transistor are also formed at the same time.

次に、第1図(C)に示すように、エピタキシャル層4
の表面よりN+型不純物を拡散し、I2L  のエミッ
タコンタクト領域8a及びコレクタ領域8bと通常のバ
イポーラトランジスタのエミッタ領域8c及びコレクタ
コンタクト領域+3dt−同時に形成する。その後エミ
ッタ、ベース、コレクタ及びインジェクタの所定のコン
タクト開口領域の酸化11W9t−エゾチンクし、各電
極パターン10..11゜12.13,14,15.1
6t−形成する。
Next, as shown in FIG. 1(C), an epitaxial layer 4 is formed.
N+ type impurities are diffused from the surface of the transistor to simultaneously form the emitter contact region 8a and collector region 8b of I2L and the emitter region 8c and collector contact region +3dt- of a normal bipolar transistor. Thereafter, predetermined contact opening areas of the emitter, base, collector, and injector are oxidized with 11W9t-Esotin, and each electrode pattern 10. .. 11゜12.13,14,15.1
6t-form.

以上により本発明の一実施例の半導体装置が完成する。Through the above steps, a semiconductor device according to an embodiment of the present invention is completed.

かかる本発明の実施例によれば、I2L において、第
2埋込層を形成しているため、Wepjが小さくなり、
ホールの蓄積が減少し動作速度が向上する。又、第2埋
込層t−@1ベース領域に接するように形成した場合に
はWepi=0  となυ動作速度がさらに向上し、又
、インバータトランジスタのエミッタ注入効果も上昇す
るからβupもさらに向上する。
According to this embodiment of the present invention, since the second buried layer is formed in I2L, Wepj becomes small,
Hole accumulation is reduced and operation speed is increased. Furthermore, when the second buried layer t-@1 is formed in contact with the base region, Wepi=0, and the υ operation speed is further improved, and the emitter injection effect of the inverter transistor is also increased, so βup is further increased. improves.

なお、従来通りインバータトランジスタのβupト通常
のバイポーラトランジスタのhFlが独立に制御でき、
通常のバイポーラトランジスタの耐圧が確保できること
はいうまでもない。
Note that βup of the inverter transistor and hFl of the normal bipolar transistor can be controlled independently as before.
Needless to say, the withstand voltage of a normal bipolar transistor can be ensured.

なお、本発明は上記実施例に限られることはなく、例え
ば極性を換えても同様実施効果が得られる。
It should be noted that the present invention is not limited to the above embodiments, and the same effect can be obtained even if the polarity is changed, for example.

(発明の効果) 以上説明したとおり、本発明によれば、I2Lのβup
と通常のバイポーラトランジスタのhFIl全独立して
制御でき、通常のバイポーラトランジスタの耐圧を低下
させることな〈従来に比してβ叩及び動作速度の向上が
実現できる。
(Effect of the invention) As explained above, according to the present invention, βup of I2L
It is possible to control the hFIl of a normal bipolar transistor completely independently, and it is possible to realize improvements in β suppression and operating speed compared to the conventional method without reducing the withstand voltage of a normal bipolar transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は本発明の一実施例を説明するた
めに工程類に示した断面図、′第2図は従来のI’Lと
バイポーラトランジスタの共存した集積回路の断面図、
第3Vは改良されたI2L  とバイポーラトランジス
タの共存した従来の集積回路の断面図である。 1・・・・・・P型基板、2・・・・・・N+型第1埋
込層、3・・・・・・N型第2埋込層、4・・・・・・
N型エピタキシャル層、5・・・・・・P 型絶縁分離
領域、6・・・・・・P型第1ベース領域、7a・・・
・・・P+型インジェクタ領域、7b・・・・・・P 
型第2ベース領域、7C・・・・−Pfiペース領域、
13a・・・・・・N+型エミッタコンタクト領域、8
b・・・・・・N+型コレクタ領域、8C・・・・・・
N+型エミッタ領域、8d・・・・・・N型コレクタコ
ンタクト領域、9・・・・・・酸化膜、10・・・・・
・インジェクタ電極ハターン、11.14・・・・・・
エミッタ電極パターン、12.15・・・・・・ベース
電極パターン、13゜16・・・・・・コレクタ電極パ
ターン。 第3図
Figures 1 (a) to (c) are cross-sectional views shown in process steps to explain one embodiment of the present invention, and Figure 2 is a cross-section of a conventional integrated circuit in which I'L and bipolar transistors coexist. figure,
3rd V is a cross-sectional view of a conventional integrated circuit with improved I2L and bipolar transistors. 1...P type substrate, 2...N+ type first buried layer, 3...N type second buried layer, 4...
N-type epitaxial layer, 5...P-type insulation isolation region, 6...P-type first base region, 7a...
...P+ type injector area, 7b...P
Type second base area, 7C...-Pfi pace area,
13a...N+ type emitter contact region, 8
b...N+ type collector region, 8C...
N+ type emitter region, 8d...N type collector contact region, 9...Oxide film, 10...
・Injector electrode pattern, 11.14...
Emitter electrode pattern, 12.15...Base electrode pattern, 13°16...Collector electrode pattern. Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)I^2Lと通常のバイポーラトランジスタを同一
半導体基板に形成した半導体装置の製造方法において、
一導電型の半導体基板の各素子形成領域に他の導電型の
第1埋込層を形成する工程と、I^2Lを形成する領域
の前記他の導電型の第1埋込層表面に前記第1埋込層を
形成する不純物の拡散係数より大きい拡散係数を有する
不純物で他の導電型の第2埋込層を形成する工程と、前
記第1及び第2埋込層の形成された半導体基板上に他の
導電型のエピタキシャル層を形成する工程と、I^2L
のインバータトランジスタの少なくとも内部ベース領域
を含む領域に一導電型の第3領域を形成する工程と、前
記通常のバイポーラトランジスタのベース領域、I^2
Lのインジェクタ領域及び前記インバータトランジスタ
の外部ベース領域に前記第3領域に比し高濃度かつ浅い
接合の一導電型第4領域を同時に形成する工程と、前記
インバータトランジスタのコレクタ領域及び前記通常の
バイポーラトランジスタのエミッタ領域を同時に形成す
る工程とを含むことを特徴とする半導体装置の製造方法
(1) In a method for manufacturing a semiconductor device in which an I^2L and a normal bipolar transistor are formed on the same semiconductor substrate,
forming a first buried layer of another conductivity type in each element formation region of a semiconductor substrate of one conductivity type; forming a second buried layer of a different conductivity type with an impurity having a diffusion coefficient greater than the diffusion coefficient of the impurity forming the first buried layer; and a semiconductor in which the first and second buried layers are formed. A step of forming an epitaxial layer of another conductivity type on the substrate, and I^2L
forming a third region of one conductivity type in a region including at least the internal base region of the inverter transistor;
simultaneously forming a fourth region of one conductivity type with a higher concentration and a shallower junction than the third region in the injector region of the inverter transistor and the external base region of the inverter transistor; 1. A method of manufacturing a semiconductor device, comprising the step of simultaneously forming an emitter region of a transistor.
(2)第1埋込層を形成するための不純物はSbか又は
Asであり、第2埋込層を形成するための不純物はPで
あることを特徴とする特許請求の範囲第(1)項記載の
半導体装置の製造方法。
(2) Claim (1) characterized in that the impurity for forming the first buried layer is Sb or As, and the impurity for forming the second buried layer is P. A method for manufacturing a semiconductor device according to section 1.
JP59189146A 1984-09-10 1984-09-10 Manufacture of semiconductor device Granted JPS6167255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59189146A JPS6167255A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59189146A JPS6167255A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6167255A true JPS6167255A (en) 1986-04-07
JPH0436578B2 JPH0436578B2 (en) 1992-06-16

Family

ID=16236188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59189146A Granted JPS6167255A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6167255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330922A (en) * 1989-09-25 1994-07-19 Texas Instruments Incorporated Semiconductor process for manufacturing semiconductor devices with increased operating voltages
US6593629B2 (en) * 2000-12-28 2003-07-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960004503B1 (en) * 1991-09-26 1996-04-06 삼성전자주식회사 Refrigerator for kimchi

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330922A (en) * 1989-09-25 1994-07-19 Texas Instruments Incorporated Semiconductor process for manufacturing semiconductor devices with increased operating voltages
US5408125A (en) * 1989-09-25 1995-04-18 Texas Instruments Incorporated Semiconductor process for manufacturing semiconductor device with increased operating voltages
US6593629B2 (en) * 2000-12-28 2003-07-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Also Published As

Publication number Publication date
JPH0436578B2 (en) 1992-06-16

Similar Documents

Publication Publication Date Title
US4038680A (en) Semiconductor integrated circuit device
US4980305A (en) Method of manufacturing bipolar transistor
US4933737A (en) Polysilon contacts to IC mesas
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
US4005453A (en) Semiconductor device with isolated circuit elements and method of making
JP3905929B2 (en) Semiconductor device
JPS6167255A (en) Manufacture of semiconductor device
JPS6133261B2 (en)
JPH0258865A (en) Semiconductor device
US4122482A (en) Vertical complementary bipolar transistor device with epitaxial base zones
US5777376A (en) Pnp-type bipolar transistor
JPH10189755A (en) Semiconductor device and its manufacturing method
JP2752655B2 (en) Bipolar integrated circuit device
JPH061814B2 (en) Semiconductor device
KR940009359B1 (en) Bicmos and manufacturing metod thereof
JPS6140140B2 (en)
KR100206579B1 (en) Semiconductor device and manufacture thereof
KR100332115B1 (en) Semiconductor power device and fabricating method thereof
JPS61228664A (en) Semiconductor device
JPS6152575B2 (en)
JPS61244060A (en) Semiconductor device
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH01246873A (en) Semiconductor device
JPS6211511B2 (en)
JPS62189752A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term