JPH03297150A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03297150A
JPH03297150A JP10085690A JP10085690A JPH03297150A JP H03297150 A JPH03297150 A JP H03297150A JP 10085690 A JP10085690 A JP 10085690A JP 10085690 A JP10085690 A JP 10085690A JP H03297150 A JPH03297150 A JP H03297150A
Authority
JP
Japan
Prior art keywords
resist
substrate
insulating film
etching
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10085690A
Other languages
Japanese (ja)
Inventor
Mitsunori Nakatani
光徳 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10085690A priority Critical patent/JPH03297150A/en
Publication of JPH03297150A publication Critical patent/JPH03297150A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the size of a gate electrode by obliquely etching an insulating film with resist as a mask to form a fine insulating film opening pattern, and further etching the resist of lower layer with the film as a mask. CONSTITUTION:An active layer 2, a resist 3, an insulating film 4 and a resist 5 are deposited on a substrate 1. Then, with the opening pattern of the resist 5 as a mask the film 4 is obliquely etched by reactive ion beam etching. Thereafter, the resist 3 is etched, the layer 2 is further etched in a desired thickness. The resists 5a, 5b are removed, and the resists 3a, 3b are etched from the sidewall. Further, gate metal 8 is deposited on the entire substrate 1, and the resists 3a, 3b, the films 4a, 4b, the gate metals 8a, 8b are removed. Thus, the size of a gate electrode can be miniaturized to improve the performance of a semiconductor device and to reduce its cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体基板上に微細なリセス型ゲート電極
を実現する半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device that realizes a fine recessed gate electrode on a semiconductor substrate.

〔従来の技術〕[Conventional technology]

第3図は従来のリセス型ゲート電極を有する半導体装置
の製造方法を示す断面図であり、図において、1は半絶
縁性基板、2は能動層、5はレジスト、7はリセス、8
はゲート電極となる3ゲート金属である。
FIG. 3 is a cross-sectional view showing a conventional method for manufacturing a semiconductor device having a recessed gate electrode. In the figure, 1 is a semi-insulating substrate, 2 is an active layer, 5 is a resist, 7 is a recess, and 8
is a three-gate metal serving as a gate electrode.

次に製造方法について説明する。Next, the manufacturing method will be explained.

半絶縁性基板1上に、エピタキシャル成長もしくは半絶
縁性基板1への不純物イオンの注入及びアニールにより
、能動層2を形成した後、レジストを塗布し、開口寸法
Mの抜きパターンを転写したのが第3図(a)である。
After forming the active layer 2 on the semi-insulating substrate 1 by epitaxial growth or implanting impurity ions into the semi-insulating substrate 1 and annealing, a resist was applied and a punched pattern with an opening size M was transferred. 3(a).

次いで、レジスト5a、5bをマスクに能動層2を所望
厚さになるように工・ソチングすると第3図(b)のよ
うになる。次いで方向性の良い蒸着法などによりゲート
電極となるゲート金属8を半絶縁性基板1の全面に被着
させると第3図(C)のようになる。
Next, using the resists 5a and 5b as masks, the active layer 2 is etched and sown to a desired thickness, resulting in the result as shown in FIG. 3(b). Next, a gate metal 8, which will become a gate electrode, is deposited on the entire surface of the semi-insulating substrate 1 by a vapor deposition method with good directionality, resulting in the result as shown in FIG. 3(C).

次に第3図(d)に示すように、レジスト5a、5bと
共に、ゲート金属8a、8bをアセトンなどに浸してリ
フトオフ法により除去すると、リセス型ゲート電極が形
成される。
Next, as shown in FIG. 3(d), the gate metals 8a and 8b are soaked in acetone or the like and removed by a lift-off method together with the resists 5a and 5b, thereby forming a recessed gate electrode.

一般に、ゲート電極長しは短い程、電界効果がトランジ
スタなどの半導体装置は高速動作を行なう点で有利であ
る。そして、ゲート電極長しは第3図(a)のレジスト
5aと5bの開口寸法Mと等しく、レジスト開口寸法M
の微細加工限界はレジスト5を露光する装置の性能で決
定される。
Generally, the shorter the gate electrode length is, the more advantageous it is in terms of high-speed operation of semiconductor devices such as field effect transistors. The gate electrode length is equal to the opening size M of the resists 5a and 5b in FIG. 3(a), and the resist opening size M
The fine processing limit is determined by the performance of the device that exposes the resist 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のリセス型ゲート電極を有する半導体装置の製造方
法は以上のように構成されているので、半導体装置の性
能向上を実現する際に、この性能はゲー[を棒形成用レ
ジストパターンの露光装置の性能で限定されてしまい、
また、この露光装置は高価であるという問題点があった
The conventional manufacturing method of a semiconductor device having a recessed gate electrode is configured as described above, so when improving the performance of a semiconductor device, this performance is Limited by performance,
Furthermore, this exposure apparatus has the problem of being expensive.

この発明は、上記のような問題点を解消するためになさ
れたもので、露光装置の微細加工限界よりもはるかに微
細なゲート長を有するゲート電極を容易に制御性良く形
成でき、高性能なリセス型ゲート電極を実現できる半導
体装置の製造方法を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to easily form a gate electrode with a finer gate length than the microfabrication limit of exposure equipment with good controllability, and to achieve high performance. The object of the present invention is to obtain a method for manufacturing a semiconductor device that can realize a recessed gate electrode.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、レジストをマ
スクに下層の絶縁膜を基板に斜め方向よりRI B E
 (Reactive Ion Beam Etchi
ng)装置でエツチングし、平行四辺形の断面形状を有
し、かつ、レジストパターン開口寸法より微細なwIA
縁膜縁膜式ロバターン成するとともに、絶縁膜下層のレ
ジストを絶縁膜をマスクにエツチングし、微細ゲート電
極形成用パターンを形成できるようにしたものである。
A method for manufacturing a semiconductor device according to the present invention includes performing RIB E on a lower insulating film from an oblique direction onto a substrate using a resist as a mask.
(Reactive Ion Beam Etchi
ng) etched with a wIA device, which has a parallelogram cross-sectional shape and is finer than the resist pattern opening size.
In addition to forming a thin film-like pattern, the resist underlying the insulating film is etched using the insulating film as a mask, so that a fine pattern for forming a gate electrode can be formed.

〔作用〕[Effect]

この発明における半導体装置の製造方法は、RIBB装
置のイオンビームの直進性及び平行性が良いことを利用
して斜めから、レジスト開ロバターンをマスクに下層の
絶縁膜をエツチングしているので、絶縁膜の断面形状は
平行四辺形になり、半絶縁性基板の上方より観察すれば
、絶縁膜開口寸法は、上層のレジストパターン開口寸法
より微細になる。つまり、レジストパターンの微細加工
限界よりも絶縁膜開口パターンの微細加工限界は大幅に
縮小可能となり、微細加工限界は露光装置の性能によっ
て限定されなくなる。また、前記絶縁膜開口寸法は、レ
ジスト膜厚と絶縁膜厚と、RIBE装置のイオンビーム
の基板への入射角より容易に計算でき、制御性も良い。
In the method for manufacturing a semiconductor device according to the present invention, the underlying insulating film is etched obliquely using the resist opening pattern as a mask, taking advantage of the good straightness and parallelism of the ion beam of the RIBB device. The cross-sectional shape of is a parallelogram, and when observed from above the semi-insulating substrate, the opening size of the insulating film is smaller than the opening size of the upper resist pattern. In other words, the microfabrication limit of the insulating film opening pattern can be reduced significantly more than the microfabrication limit of the resist pattern, and the microfabrication limit is no longer limited by the performance of the exposure apparatus. Further, the insulating film opening size can be easily calculated from the resist film thickness, the insulating film thickness, and the incident angle of the ion beam of the RIBE apparatus onto the substrate, and has good controllability.

前記絶縁膜開口寸法が、半導体装置のゲート電極の寸法
と同じであり、半導体装置の性能向上が実現可能となる
The dimension of the opening in the insulating film is the same as the dimension of the gate electrode of the semiconductor device, and it is possible to improve the performance of the semiconductor device.

〔実施例〕 以下、この発明の一実施例を図について説明する。〔Example〕 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)〜(q)はこの発明の一実施例による半導
体装置の製造方法の主要工程の断面図を示すものである
FIGS. 1(a) to 1(q) are sectional views showing main steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention.

図において、1は半絶縁性基板、2は能動層、3はレジ
スト(第1のレジスト)、4は絶縁膜、5a、5bはレ
ジスト(第2のレジスト)、6はRIBE装置のイオン
ビームの入射方向、7はリセス、8a、8b、8cはゲ
ート電極となるゲート金属、8はゲート電極である。
In the figure, 1 is a semi-insulating substrate, 2 is an active layer, 3 is a resist (first resist), 4 is an insulating film, 5a and 5b are resists (second resist), and 6 is an ion beam of the RIBE device. In the incident direction, 7 is a recess, 8a, 8b, and 8c are gate metals serving as gate electrodes, and 8 is a gate electrode.

次に製造方法について説明する。Next, the manufacturing method will be explained.

まず、第1図(a)に示すように半絶縁性基板1上にエ
ピタキシャル成長させるか、あるいは基板1内にイオン
注入及びアニールすることにより能動層2を形成する。
First, as shown in FIG. 1(a), an active layer 2 is formed by epitaxial growth on a semi-insulating substrate 1 or by ion implantation and annealing into the substrate 1. As shown in FIG.

その後、基板1全面に第1のレジスト3を塗布し、基板
l全面に絶縁膜4を全面に堆積し、さらに基板1全面に
レジスト5を塗布する。
Thereafter, a first resist 3 is applied to the entire surface of the substrate 1, an insulating film 4 is deposited over the entire surface of the substrate 1, and a resist 5 is further applied to the entire surface of the substrate 1.

その後、ゲート電極形成領域近傍上方に開口寸法Mを有
するレジストパターン5a、5bを形成し、これをマス
クとしてRIBE装置により、基板1に入射角θとなる
ように斜め方向からCF。
After that, resist patterns 5a and 5b having an opening size M are formed above the gate electrode formation region, and using these as masks, a CF is applied to the substrate 1 from an oblique direction at an incident angle θ using a RIBE apparatus.

などのガスを用いて絶縁膜4をエツチングする。The insulating film 4 is etched using a gas such as.

ここで、絶縁膜4とレジスト5の総膜厚をdとする。Here, the total film thickness of the insulating film 4 and the resist 5 is assumed to be d.

エツチング後の断面図を第1図(b)に示す。基板1上
方より観察した場合の絶縁膜開口寸法(L“)は次式で
求められる。
A cross-sectional view after etching is shown in FIG. 1(b). The insulating film opening dimension (L") when observed from above the substrate 1 is determined by the following equation.

L’=M−dtanθ 次に、基板1全面を0□ガスを用いてRIE(Reac
tive Ion Etching)などでレジスト3
をエツチングすると第1図(C)のようになる。
L'=M-dtanθ Next, the entire surface of the substrate 1 is subjected to RIE (Reac
Resist 3 using tive ion etching) etc.
When etched, the result is as shown in Figure 1 (C).

次に、能動層2を所望の厚さになるまでエツチングする
と第1図(d)のようになる。この場合、能動層2の主
成分がGaAsであれば、エツチング液としては、例え
ば、酒石酸と水(1:40)の混合液などがよい。
Next, the active layer 2 is etched to a desired thickness, as shown in FIG. 1(d). In this case, if the main component of the active layer 2 is GaAs, the etching solution may be, for example, a mixture of tartaric acid and water (1:40).

次に、アセトンなどに少しの時間だけ浸すことによりレ
ジスト5a、5bを除去し、同時に、レジスト3a、3
bを側壁からエツチングすると第1図(e)のようにな
る。
Next, the resists 5a and 5b are removed by soaking in acetone etc. for a short time, and at the same time, the resists 3a and 3
When b is etched from the side wall, it becomes as shown in FIG. 1(e).

次に、ゲート金属8を基板1全面に、EB(Elect
ron Beam )蒸着法などにより被着すると、第
1図げ)のようになる。
Next, gate metal 8 is applied to the entire surface of substrate 1 using EB (elect).
When deposited by evaporation method (ron beam), it becomes as shown in Fig. 1).

次にアセトンなどに十分浸して、レジスト3a。Next, the resist 3a is formed by thoroughly soaking it in acetone or the like.

3b、絶縁膜4a、4b、ゲート金属8a、8bを同時
にリフトオフ法により除去すると、第1図((至)の構
造が得られる。
3b, insulating films 4a, 4b, and gate metals 8a, 8b are simultaneously removed by a lift-off method to obtain the structure shown in FIG.

以上のように、ゲート電極長さ(L)は、前記の絶縁膜
4開口寸法(Lo)と一致し、制御性良く形成できる上
に、容易に露光装置性能によって決まるレジスト5開口
寸法Mよりゲート長を短縮することができる。
As described above, the gate electrode length (L) coincides with the aperture size (Lo) of the insulating film 4 and can be formed with good controllability. The length can be shortened.

また、第1図(e)に示したように、アセトンなどに浸
すことで、レジスト3の側壁を少し工・ンチングしたの
は、第1図(f)に示したゲート金属8a。
Further, as shown in FIG. 1(e), the gate metal 8a shown in FIG. 1(f) was slightly etched on the side wall of the resist 3 by immersing it in acetone or the like.

8bがゲート電極8cと接触せず、後のリフトオフの工
程が実施しやすいようにするために行なっている。その
ため、リセス8深さが深いなどの理由で、ゲート金属8
の分離が容易な場合は、アセトンなどに浸してレジスト
5の除去するとともにレジスト3の側壁エツチングを行
うことは不必要であり、後の工程を行えば、つまり、ゲ
ート金属8を基板1全面に被着し、リフトオフを行えば
、第1図((イ)と全く同じ断面図が得られる。
This is done in order to prevent the gate electrode 8b from coming into contact with the gate electrode 8c and to facilitate the subsequent lift-off process. Therefore, due to reasons such as the depth of the recess 8 being deep, the gate metal 8
If separation is easy, it is unnecessary to remove the resist 5 by soaking it in acetone or the like and to perform sidewall etching of the resist 3. If the subsequent process is performed, in other words, the gate metal 8 can be spread over the entire surface of the substrate 1. After deposition and lift-off, a cross-sectional view exactly the same as that shown in FIG. 1 ((a)) can be obtained.

なお、上記実施例において、レジスト3は絶縁膜5と成
分の異なる絶縁膜や金属膜などの薄膜でもよく、また、
絶縁膜5は金属膜でもよい。
In the above embodiments, the resist 3 may be a thin film such as an insulating film or a metal film having a different composition from the insulating film 5;
The insulating film 5 may be a metal film.

また、上記実施例の他の応用例として、2段リセス型ゲ
ート電極を有する半導体装置の製造方法を第2図(a)
〜(C)について説明する。
As another application example of the above embodiment, a method for manufacturing a semiconductor device having a two-stage recessed gate electrode is shown in FIG. 2(a).
~(C) will be explained.

図において、9a、9bは上段リセス、10は下段リセ
スであり、1〜8は第1図と同一部分もしくは相当部分
を示す。
In the figure, 9a and 9b are upper recesses, 10 is a lower recess, and 1 to 8 indicate the same or equivalent parts as in FIG. 1.

第1図(e)の後、さらに、リセスエッチングを行い、
上段リセス9a、9b、下段リセス10を形成すると、
第2図(aJのようになる。
After FIG. 1(e), recess etching is further performed,
When the upper recesses 9a, 9b and the lower recess 10 are formed,
Figure 2 (it will look like aJ).

次に、第2図(b)に示すように、ゲート金属8を基板
1全面に被着する。
Next, as shown in FIG. 2(b), a gate metal 8 is deposited on the entire surface of the substrate 1.

次に、ソフトオフ法により、レジスト3、絶縁膜4、ゲ
ート金属8a、8bを除去すると、第2図(C)のよう
になる。
Next, the resist 3, insulating film 4, and gate metals 8a and 8b are removed by the soft-off method, resulting in a structure as shown in FIG. 2(C).

この応用例は、上記実施例と同等の効果を示すが、さら
に、2段リセスゲート電極としたので、より半導体装置
の耐圧を大きくでき、これにより素子の付加電力効率の
向上が期待できる。
This application example exhibits the same effects as the above-mentioned embodiment, but in addition, since a two-stage recessed gate electrode is used, the withstand voltage of the semiconductor device can be further increased, and an improvement in the added power efficiency of the device can be expected.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、レジストをマスクに
下層の絶縁膜を基板に斜め方向よりRIBE装置でエツ
チングし、平行四辺形の断面形状を有し、かつ、レジス
トパターン開口寸法より微細な絶縁膜開口パターンを形
成するとともに、絶縁膜下層のレジストを絶縁膜をマス
クにエツチングし、微細ゲート電極形成用パターンを形
成できるようにしたので、レジスト開口寸法が大きくて
も直進性及び平行性の良いRIBEを行うことにより、
ゲート電極寸法を微細化でき、半導体装置の性能の向上
および、価格の低下の実現できるという効果がある。
As described above, according to the present invention, the underlying insulating film is etched onto the substrate from an oblique direction using a RIBE device using a resist as a mask, and has a parallelogram cross-sectional shape and is finer than the opening size of the resist pattern. In addition to forming the insulating film opening pattern, the resist below the insulating film is etched using the insulating film as a mask, making it possible to form a pattern for forming a fine gate electrode.Even if the resist opening size is large, straightness and parallelism can be maintained. By doing good RIBE,
This has the effect that the dimensions of the gate electrode can be miniaturized, and the performance of the semiconductor device can be improved and the price can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体装置の製造方
法の主要工程を示す断面図、第2図はこの発明の応用例
による半導体装置の製造方法の主要工程を示す断面図、
第3図は従来の半導体装置を示す断面図である。 図において、1は半絶縁性基板、2は能動層、3は第1
のレジスト、4は絶縁膜、5a、5bは第2のレジスト
、6はRIBE装置のイオンビームの入射方向、7はリ
セス、8はゲート金属(ゲート電極)、9a、9bは上
段リセス、1oは下段リセスである。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing the main steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a sectional view showing the main steps of a method for manufacturing a semiconductor device according to an applied example of the invention,
FIG. 3 is a sectional view showing a conventional semiconductor device. In the figure, 1 is a semi-insulating substrate, 2 is an active layer, and 3 is a first layer.
4 is an insulating film, 5a and 5b are second resists, 6 is an incident direction of the ion beam of the RIBE device, 7 is a recess, 8 is a gate metal (gate electrode), 9a and 9b are upper recesses, 1o is a It is a lower recess. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)半絶縁性基板上に能動層を形成する工程と、前記
基板上に第1のレジストを塗布する工程と、前記第1の
レジスト上に絶縁膜を形成する工程と、 前記絶縁膜上に第2のレジストを塗布する工程と、 前記第2のレジストにゲート電極形成用開口パターンを
転写する工程と、 前記基板に対して斜め方向より反応性イオンビームエッ
チングにより第2のレジストをマスクに前記絶縁膜をエ
ッチングする工程と、 前記絶縁膜をマスクとし、前記基板に垂直な方向へ異方
的にエッチングする工程と、 前記第2のレジストをマスクに開口部分の前記能動層を
エッチングし、能動層に溝を形成する工程と、 導電膜を前記基板に被着する工程と、 前記第2のレジスト及び前記第2レジスト上の前記絶縁
膜と前記導電膜を除去すると共に、前記溝に前記導電膜
を残す工程とを含むことを特徴とする半導体装置の製造
方法。
(1) forming an active layer on a semi-insulating substrate; applying a first resist on the substrate; forming an insulating film on the first resist; and on the insulating film. a step of applying a second resist to the substrate; a step of transferring an opening pattern for forming a gate electrode to the second resist; and a step of applying the second resist as a mask by reactive ion beam etching from an oblique direction with respect to the substrate. etching the insulating film; using the insulating film as a mask, etching anisotropically in a direction perpendicular to the substrate; etching the active layer in the opening using the second resist as a mask; forming a groove in the active layer; depositing a conductive film on the substrate; removing the second resist and the insulating film and the conductive film on the second resist; A method for manufacturing a semiconductor device, comprising the step of leaving a conductive film.
(2)請求項1記載の半導体装置の製造方法において、 前記の第2のレジストをマスクに開口部分の前記能動層
をエッチングして能動層に溝を形成する工程と、前記の
導電膜を前記基板に被着する工程との間に、 前記第2のレジスト開口部側壁をエッチングすると同時
に前記第1のレジストを除去する工程を含むことを特徴
とする半導体装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, further comprising: etching the active layer in the opening portion using the second resist as a mask to form a groove in the active layer; A method for manufacturing a semiconductor device, comprising the step of etching a side wall of an opening of the second resist and removing the first resist at the same time between the step of adhering the resist to a substrate.
(3)請求項2記載の半導体装置の製造方法において、 前記の第2のレジスト開口部側壁をエッチングすると同
時に前記第1のレジストを除去する工程と、前記導電膜
を前記基板に被着する工程との間に、 残存している前記第1のレジストをマスクとして能動層
をエッチングし、能動層に2段リセス開孔部を形成する
工程を含むことを特徴とする半導体装置の製造方法。
(3) The method of manufacturing a semiconductor device according to claim 2, comprising: etching the second resist opening sidewall and removing the first resist at the same time; and depositing the conductive film on the substrate. A method for manufacturing a semiconductor device, comprising: etching the active layer using the remaining first resist as a mask to form a two-stage recess opening in the active layer.
JP10085690A 1990-04-16 1990-04-16 Manufacture of semiconductor device Pending JPH03297150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10085690A JPH03297150A (en) 1990-04-16 1990-04-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10085690A JPH03297150A (en) 1990-04-16 1990-04-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03297150A true JPH03297150A (en) 1991-12-27

Family

ID=14284953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10085690A Pending JPH03297150A (en) 1990-04-16 1990-04-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03297150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618857A (en) * 1993-06-24 1997-04-08 Loctite Corporation Impregnation sealant composition of superior high temperature resistance, and method of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618857A (en) * 1993-06-24 1997-04-08 Loctite Corporation Impregnation sealant composition of superior high temperature resistance, and method of making same

Similar Documents

Publication Publication Date Title
JPS6032364A (en) Manufacture of semiconductor device
US5126288A (en) Fine processing method using oblique metal deposition
US5652179A (en) Method of fabricating sub-micron gate electrode by angle and direct evaporation
JPH03297150A (en) Manufacture of semiconductor device
JPS618952A (en) Forming method of wiring
JPS5935479A (en) Manufacture of semiconductor device
KR100732744B1 (en) Method for manufacturing transistor of semiconductor device
JPS5921193B2 (en) Method for manufacturing field effect transistors
JPS60120574A (en) Manufacture of field effect transistor
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
JPH03201529A (en) Manufacture of semiconductor device
JP2893776B2 (en) Method for manufacturing semiconductor device
JPH0410629A (en) Manufacture of semiconductor device
JPH03259528A (en) Manufacture of semiconductor device
JPH03289142A (en) Manufacture of compound semiconductor device
JPS59114826A (en) Manufacture of semiconductor device
JPH03286538A (en) Manufacture of semiconductor device
JPS6196735A (en) Conductor pattern forming process
JPS60145612A (en) Manufacture of semiconductor device
JPH01183857A (en) Formation of electrode for semiconductor device
JPH0217649A (en) Method of forming fine pattern
JPH01145870A (en) Manufacture of semiconductor device
JPH0499335A (en) Manufacture of field effect transistor
JPS61280673A (en) Manufacture of compound semiconductor device
JPH0684951A (en) Manufacture of semiconductor device