JPH03286540A - Velocity-modulation type field-effect transistor - Google Patents

Velocity-modulation type field-effect transistor

Info

Publication number
JPH03286540A
JPH03286540A JP8870990A JP8870990A JPH03286540A JP H03286540 A JPH03286540 A JP H03286540A JP 8870990 A JP8870990 A JP 8870990A JP 8870990 A JP8870990 A JP 8870990A JP H03286540 A JPH03286540 A JP H03286540A
Authority
JP
Japan
Prior art keywords
layer
type
quantum well
thick
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8870990A
Other languages
Japanese (ja)
Other versions
JP2646795B2 (en
Inventor
Yuji Ando
裕二 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2088709A priority Critical patent/JP2646795B2/en
Publication of JPH03286540A publication Critical patent/JPH03286540A/en
Application granted granted Critical
Publication of JP2646795B2 publication Critical patent/JP2646795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable carrier transportation characteristics to be improved drastically by forming a channel layer which form first and second quantum wells which differ in saturation velocity and low electric field mobility of a carrier sandwiching a potential barrier layer with such a thickness that the carrier can transmit owing to tunnel effect. CONSTITUTION:1mum thick I-type (non-doped) Al0.48In0.52As buffer layer 2, 150Angstrom thick I-type InP quantum well channel layer 3, 50Angstrom thick I-type Al0.45In0.52As potential barrier layer 4, 100Angstrom thick I-type In0.53Ga0.47As quantum well channel layer 5, a 500Angstrom thick N-type Al0.48In0.52As electron supply layer 6 with an impurity concentration of 2X10<18>cm<-3> and 200Angstrom thick N-type In0.53Ga0.47As cap layer 7 are allowed to grow continuously on an InP substrate 1 by a molecular beam epitaxial growth method, etc. A gate electrode 8 forming a Schottky junction is formed at the center of a recessed part and a source electrode 9 and a drain electrode 10 which are in ohmic contact are formed at both sides.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はへテロ接合を用いた電界効果トランジスタ(F
ET)に関し、特にそのキャリア輸送特性が向上したF
ET構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a field effect transistor (FET) using a heterojunction.
ET), especially F with improved carrier transport properties.
It concerns the ET structure.

〔従来の技術〕[Conventional technology]

エネルギーバンドギャップを異にする2層の半導体間の
へテロ接合界面に生成する2次元電子ガス層をチャネル
とするFETは、HEMT(HighElectron
 Mobility Transistor )と呼ば
れている。
An FET whose channel is a two-dimensional electron gas layer generated at the heterojunction interface between two semiconductor layers with different energy band gaps is called HEMT (High Electron
Mobility Transistor).

これはキャリアの散乱が多く移動度の低い電子供給層と
チャネル層とを分離しているため、極めて高いキャリア
移動度が得られる。
This is because the electron supply layer, which has a high carrier scattering and low mobility, is separated from the channel layer, so extremely high carrier mobility can be obtained.

実際の動作条件ではソース−ドレイン間に例えば2vの
電圧をかけるためチャネルと平行方向に高電界が発生す
る。
Under actual operating conditions, a voltage of, for example, 2V is applied between the source and drain, so a high electric field is generated in a direction parallel to the channel.

特にゲート長0225μmのサブミクロン素子では、電
界強度が平均で80kVに達する。
In particular, in a submicron element with a gate length of 0225 μm, the electric field strength reaches 80 kV on average.

加速による運動量空間における移動が起り、低エネルギ
ーでは高いドリフト速度(電子移動度)の第1の谷を走
行していた伝導帯電子が、高エネルギーでは低い電子移
動度の第2のく上の)谷へ遷移(Intervalle
y transfer)するため実効電子速度は著しく
低下し、HEMT本来の高い低電界移動度を充分に生か
すことができなかった。
Movement in momentum space occurs due to acceleration, and the conduction band electrons, which were traveling in the first valley with high drift velocity (electron mobility) at low energies, move to the second valley with low electron mobility at high energies). Intervalle
y transfer), the effective electron velocity decreased significantly, and the inherent high low-field mobility of HEMT could not be fully utilized.

置針と杉山は公開特許公報、昭64−14971で、こ
のような電界効果に伴なうキャリア輸送特性の劣化を緩
和する方法を提案している。
Okichina and Sugiyama proposed a method for alleviating the deterioration of carrier transport characteristics caused by such an electric field effect in Japanese Patent Publication No. 14971/1983.

従来技術としてそのFET構造について、第5図を参照
して説明する。
As a prior art, the FET structure will be explained with reference to FIG.

半絶縁性GaAs基板1a、2次元電子ガス(2DEG
)が形成されるI型(ノンドープ)GaAsチャネル層
2a、■型A、CGaAsポテンシャルバリア層3a、
I型GaAsチャネル層(量子井戸層)4a、■型A、
RGaAsスペーサ層5a、N型AfflGaAs電子
供給層6a、N型GaAs表面詰晶(キャップ〉層7a
から構成されている。
Semi-insulating GaAs substrate 1a, two-dimensional electron gas (2DEG)
), a type I (non-doped) GaAs channel layer 2a, a type A CGaAs potential barrier layer 3a,
Type I GaAs channel layer (quantum well layer) 4a, type A,
RGaAs spacer layer 5a, N-type AfflGaAs electron supply layer 6a, N-type GaAs surface packed crystal (cap) layer 7a
It consists of

さらに表面結晶層7aとショットキ接合をなすゲート電
極8と、オーミックコンタクトをなすソース電極9とド
レイン電極10とが形成されている。
Furthermore, a gate electrode 8 forming a Schottky junction with the surface crystal layer 7a, and a source electrode 9 and a drain electrode 10 forming ohmic contacts are formed.

第6図にこの素子のゲート下のバンドダイアダラムを示
す。
FIG. 6 shows a band diaphragm under the gate of this device.

チャネル電界が低い領域では、2DEGは■型G a 
A sチャネル層2aのみに生成されている。
In the region where the channel electric field is low, the 2DEG is a ■-type Ga
It is generated only in the A s channel layer 2a.

さらに電子が加速されると、I型GaAsチャネル層4
aに実空間遷移(Rea I 5pace trans
fer)して、高電界時の薄層チャネルにおける電子濃
度を分散させ、チャネル電界の増加とそれに伴なう速度
飽和を緩和している。
When the electrons are further accelerated, the I-type GaAs channel layer 4
Real space transition to a (Rea I 5pace trans
fer) to disperse the electron concentration in the thin layer channel at high electric fields, thereby alleviating the increase in channel electric field and the accompanying velocity saturation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術においては高電界における電子の実空間遷移を
利用して、チャネル中の電子濃度の増加を抑制し電界集
中を緩和している。
In the conventional technology, the real space transition of electrons in a high electric field is used to suppress an increase in electron concentration in a channel and alleviate electric field concentration.

しかしながらこの原理に基づいて電子速度の飽和を抑制
するためには、電界強度を数k V / c m以下に
低減する必要がある。
However, in order to suppress the saturation of the electron velocity based on this principle, it is necessary to reduce the electric field strength to several kV/cm or less.

ゲート長が0.25μmの素子ではこれはドレイン電圧
的o、ivに相当し、FETのそのような低電圧動作は
ノイズマージンなどの問題から実用的ではない。このよ
うな素子の特徴を生かすためには実用には程遠い低温、
低電圧動作が要求される。
In a device with a gate length of 0.25 μm, this corresponds to o and iv in terms of drain voltage, and such low voltage operation of the FET is not practical due to problems such as noise margin. In order to take advantage of the characteristics of such devices, low temperatures, which are far from practical, must be used.
Low voltage operation is required.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の速度変調型電界効果トランジスタは、キャリア
がトンネル効果によって透過できる厚さのポテンシャル
バリア層を挟んで、キャリアの飽和速度と低電界移動度
を異にする第1、第2の量子井戸をなすチャネル層が形
成されているものである。
The velocity modulated field effect transistor of the present invention has first and second quantum wells with different carrier saturation velocities and low field mobilities, sandwiching a potential barrier layer thick enough to allow carriers to pass through by tunneling. A channel layer of eggplant is formed.

〔作用〕[Effect]

第4図に主な化合物半導体中の電子ドリフト速度の電界
強度依存性を示す。
Figure 4 shows the electric field strength dependence of electron drift velocity in major compound semiconductors.

飽和速度を向上するにはチャネルとしてInPを用いれ
ば良いが、InPは低電界移動度が低い 低電界移動度の高いI n o、 +53G a o4
7A sは、飽和速度が低い。
InP can be used as a channel to improve the saturation speed, but InP has low low electric field mobility and high low electric field mobility.
7A s has a low saturation rate.

従来技術と同様に2つのチャネルをもつ実空間遷移型F
ETの構造において、低電界下で電子が走行する第1の
チャネル層として低電界移動度の高いI nGaAsを
用い、高電界下で電子が走行する第2のチャネル層とし
て飽和速度の高いInPを用いれば、実効的にI nG
aAsの低電界移動度とInPの飽和速度とを両立する
ことが可能になる。
Real space transition type F with two channels like the conventional technology
In the ET structure, InGaAs with high low electric field mobility is used as the first channel layer in which electrons travel under a low electric field, and InP with high saturation speed is used as the second channel layer in which electrons travel under a high electric field. If used, effectively InG
It becomes possible to achieve both the low electric field mobility of aAs and the saturation speed of InP.

〔実施例〕〔Example〕

本発明の一実施例について、第1図を参照して説明する
An embodiment of the present invention will be described with reference to FIG.

InP基板1の上に分子線エピタキシャル成長性などに
より、厚さ1μmのI型(ノンドープ)AJ7o、as
I no、52Asバッファ層2、厚さ150人の■型
InP量子井戸チャネル層3、厚さ50人の■型A 4
 o、 4g I n 0.52A Sポテンシャルバ
リア層4、厚さ100人の工型■n。3.Gao47A
S量子井戸チャ量子井戸チャネル製52X1018cm
−’、厚さ500人のN型A 1 (1,4g I n
 092AS電子供給層6、厚さ200人のN型In(
、,51Ga (1,47A Sキャップ層7が連続成
長されている。
I-type (non-doped) AJ7o, as
I no, 52As buffer layer 2, 150mm thick type InP quantum well channel layer 3, 50mm thick type A 4
o, 4g I n 0.52A S potential barrier layer 4, thickness 100 people mold ■n. 3. Gao47A
S quantum well cha quantum well channel made 52X1018cm
-', thickness 500 people N type A 1 (1,4g I n
092AS electron supply layer 6, thickness 200 N-type In (
,,51Ga (1,47A) S cap layer 7 is continuously grown.

リセス部の中央にショットキ接合をなすゲート電極8が
形成され、その両側にオーミック接触をなすソース電極
9とドレイン電極10とが形成されている。
A gate electrode 8 forming a Schottky junction is formed in the center of the recessed portion, and a source electrode 9 and a drain electrode 10 forming ohmic contact are formed on both sides thereof.

このFETの熱平衡状態におけるバンドダイアグラムを
第2図に示す。
A band diagram of this FET in a thermal equilibrium state is shown in FIG.

E、、E2は■型InPチャネル層3、I型In G 
a A sチャネル層5の各々の電子基底準位である。
E, , E2 are ■-type InP channel layer 3, I-type InG
a As is each electronic ground level of the channel layer 5.

I n O,53G a 6.47A SとInPとの
間には約230meVの伝導帯不連続が存在するので、
InGaAs量子井戸層5の伝導帯の底はInP量子井
戸層3の底より約230meVだけ深くなっている。
Since there is a conduction band discontinuity of about 230 meV between I n O,53G a 6.47A S and InP,
The bottom of the conduction band of the InGaAs quantum well layer 5 is deeper than the bottom of the InP quantum well layer 3 by about 230 meV.

第3図(a)はゲート下ソース端の、第3図(b)はゲ
ート下ドレイン端の動作状態を説明するポテンシャルバ
ンド図である。
FIG. 3(a) is a potential band diagram illustrating the operating state of the source end under the gate, and FIG. 3(b) is a potential band diagram illustrating the operating state of the drain end under the gate.

ソース−トレイン間電圧(Vd、〉および(ゲート−ソ
ース間電圧(V、、)を印加するため、チャネル中の擬
フエルミレベルとゲートのフェルミレベルとの間には電
位差V、、(X)が生じる。
Since the source-train voltage (Vd, 〉 and gate-source voltage (V, , ) are applied, a potential difference V, , (X) occurs between the pseudo Fermi level in the channel and the Fermi level of the gate. .

Vgc(X)はX=Oのとき、第3図(a)に示すよう
にV、c(0)=V、、、X=L、のとき、第3図(b
)に示すようにV、。(L、)=V、、−V0ミV、d
となる。
When X=O, Vgc(X) is V as shown in Figure 3(a), and when X=L, it is V as shown in Figure 3(b).
) as shown in V,. (L,)=V,, -V0miV,d
becomes.

V、、=Vc (定数)の時にサブバンドE、とE2が
交差するとして、ゲート下のソース近くではチャネルと
ソースとはほぼ等電位であり、V gcξV gsとな
る。
Assuming that subbands E and E2 intersect when V, , = Vc (constant), the channel and source are approximately at the same potential near the source under the gate, and V gcξV gs.

Vo>Veでは第3図(a)に示すように、E2はEl
より低エネルギーなので、はとんどすべての電子はI型
InGaAsチャネル層5の中を走行する。
When Vo>Ve, E2 becomes El as shown in Figure 3(a).
Since the energy is lower, almost all the electrons travel in the I-type InGaAs channel layer 5.

ゲート下のドレイン近くではドレイン−ソース間電圧v
d、の分だけy gcは小さくなり、V□CξV□=V
 g 11  V dBとなる。
Near the drain under the gate, the drain-source voltage v
d, y gc becomes smaller, and V□CξV□=V
g 11 V dB.

したがってV□くV。では第3図(b)に示すように、
Elの方がE2よりも低エネルギーになり、■型InP
チャネル層3の占有確率が■型■nGaAsチャネル層
5の占有確率を上回るようになる。
Therefore, V□×V. Then, as shown in Figure 3(b),
El has lower energy than E2, and is type InP
The occupancy probability of the channel layer 3 becomes higher than the occupancy probability of the ■type ■nGaAs channel layer 5.

V□くVc<Vg、なるバイアス条件では、ゲート下の
ソース近くでは多数の電子が■型I nGaAsチャネ
ル層5を走行するが、ドレイン近傍では逆に多数の電子
がI型InPチャネル層3を走行するようになる。
Under bias conditions such as V□ and Vc<Vg, many electrons travel through the ■-type InGaAs channel layer 5 near the source under the gate, but conversely, many electrons travel through the I-type InP channel layer 3 near the drain. Starts running.

こうしてI nGaAsの高い低電界移動度とInPの
高い飽和速度とを両立することができるようになった。
In this way, it has become possible to achieve both the high low electric field mobility of InGaAs and the high saturation speed of InP.

本実施例においてはGao47I no、53A s 
/ InP系用いたが、他の化合物半導体の組合せでも
同様の効果を得ることができる。
In this example, Gao47I no, 53A s
/ Although InP-based semiconductors were used, similar effects can be obtained by combining other compound semiconductors.

〔発明の効果〕〔Effect of the invention〕

トンネルバリアを挟んで隣接配置された一対の量子井戸
層をチャネルとし、電界効果によってキャリアが一方の
量子井戸層から他方の量子井戸層へ遷移し得る電界効果
トランジスタにおいて、−方の量子井戸層をキャリアの
低電界移動度の高い材料で楕威し、他方の量子井戸層を
キャリアの飽和移動度の高い材料で構成することによっ
て、電界効果トランジスタのキャリア輸送特性を大幅に
改善することができた。
In a field effect transistor in which a pair of quantum well layers arranged adjacent to each other with a tunnel barrier in between are used as channels, and carriers can be transferred from one quantum well layer to the other quantum well layer by a field effect, the negative quantum well layer is By constructing the quantum well layer with a material with high low-field carrier mobility and configuring the other quantum well layer with a material with high carrier saturation mobility, we were able to significantly improve the carrier transport characteristics of field-effect transistors. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の一実施例の熱平衡におけるポテンシャルバンド図、
第3図(a)は本発明の一実施例のゲート下ソース端の
動作を示すポテンシャルバンド図、第3図(b)は本発
明の一実施例のゲート下ドレイン端の動作を示すポテン
シャルバンド図、第4図は電子ドリフト速度の電界強度
依存性を示すグラフ、第5図は従来技術による高性能F
ETの断面図、第6図は従来技術による高性能FETの
ポテンシャルバンド図である。 1・・・InP基板、1a・・・半絶縁性GaAs基板
、2−I型A、&InAsInAsInAsInAsパ
ラフッ11.ネル層、3・・・■型InPチャネル層、
3a・・・I型AJGaAsバリア層、4・・・I型A
J I nAsバリア層、4 a −・−I型GaAs
チャネル層、5・・・1型I nGaAsチャネル層、
5a・ I型AJGaAsスペーサ層、6 ・N型AJ
InAs電子供給層、6 a−・N型AfIGaAs電
子供給層、7・・・N型InGaAsキャップ層、7a
・・・N型GaAs表面結晶層、8・・・ゲート電極、
9・・・ソース電極、10・・・ドレイン電極、11.
11a・・・2次元電子ガスチャネル、12・・・イオ
ン化したドナー 13・・・伝導帯下端、14・・・フ
ェルミレベル、14a・・・電子密度分布、15・・・
擬フエルミレベル、16・・・量子化準位。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a potential band diagram at thermal equilibrium of an embodiment of the present invention.
FIG. 3(a) is a potential band diagram showing the operation of the source end under the gate in one embodiment of the present invention, and FIG. 3(b) is a potential band diagram showing the operation of the drain end under the gate in one embodiment of the present invention. Figure 4 is a graph showing the dependence of electron drift velocity on electric field strength, and Figure 5 is a graph showing the dependence of electron drift velocity on electric field strength.
A cross-sectional view of the ET, FIG. 6, is a potential band diagram of a high performance FET according to the prior art. 1... InP substrate, 1a... Semi-insulating GaAs substrate, 2-I type A, &InAsInAsInAsInAs parafluid 11. channel layer, 3... type InP channel layer,
3a...I type AJGaAs barrier layer, 4...I type A
JInAs barrier layer, 4a--I type GaAs
Channel layer, 5...1 type InGaAs channel layer,
5a・I type AJGaAs spacer layer, 6・N type AJ
InAs electron supply layer, 6a--N-type AfIGaAs electron supply layer, 7...N-type InGaAs cap layer, 7a
...N-type GaAs surface crystal layer, 8...gate electrode,
9... Source electrode, 10... Drain electrode, 11.
11a... Two-dimensional electron gas channel, 12... Ionized donor 13... Lower end of conduction band, 14... Fermi level, 14a... Electron density distribution, 15...
Pseudo-Fermi level, 16...quantization level.

Claims (1)

【特許請求の範囲】 1、キャリアがトンネル効果によつて透過できる厚さの
ポテンシャルバリア層を挟んでチャネル層となる第1、
第2の量子井戸層が形成され、前記チャネル層に平行に
電界を印加して電荷を制御する電界効果トランジスタに
おいて、前記チャネル層を走行するキャリアの分布がチ
ャネル電界の増大とともに前記第1の量子井戸層から前
記第2の量子井戸層へ遷移することができ、前記第2の
量子井戸層におけるキャリアの飽和速度が前記第1の量
子井戸層におけるキャリアの飽和速度よりも大きいこと
を特長とする速度変調型電界効果トランジスタ。 2、第1の量子井戸層におけるキャリアの低電界移動度
が、第2の量子井戸層におけるキャリアの低電界移動度
よりも大きい請求項1記載の速度変調型電界効果トラン
ジスタ。 3、第1の量子井戸層がI_xGa_1_−_xAs(
0≦x≦1)であり、第2の量子井戸層がInPである
請求項2記載の速度変調型電界効果トランジスタ。
[Claims] 1. A first layer that serves as a channel layer with a potential barrier layer having a thickness that allows carriers to pass through by tunneling effect;
In a field effect transistor in which a second quantum well layer is formed and a charge is controlled by applying an electric field parallel to the channel layer, the distribution of carriers traveling in the channel layer changes as the channel electric field increases. A transition can be made from the well layer to the second quantum well layer, and the saturation velocity of carriers in the second quantum well layer is higher than the saturation velocity of carriers in the first quantum well layer. Velocity modulated field effect transistor. 2. The velocity modulated field effect transistor according to claim 1, wherein the low electric field mobility of carriers in the first quantum well layer is larger than the low electric field mobility of carriers in the second quantum well layer. 3. The first quantum well layer is I_xGa_1_-_xAs(
3. The velocity modulation field effect transistor according to claim 2, wherein 0≦x≦1) and the second quantum well layer is InP.
JP2088709A 1990-04-03 1990-04-03 Speed modulation type field effect transistor Expired - Fee Related JP2646795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088709A JP2646795B2 (en) 1990-04-03 1990-04-03 Speed modulation type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088709A JP2646795B2 (en) 1990-04-03 1990-04-03 Speed modulation type field effect transistor

Publications (2)

Publication Number Publication Date
JPH03286540A true JPH03286540A (en) 1991-12-17
JP2646795B2 JP2646795B2 (en) 1997-08-27

Family

ID=13950423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088709A Expired - Fee Related JP2646795B2 (en) 1990-04-03 1990-04-03 Speed modulation type field effect transistor

Country Status (1)

Country Link
JP (1) JP2646795B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120518A (en) * 1992-10-08 1994-04-28 Japan Radio Co Ltd Semiconductor element for high-efficiency amplification
US5449928A (en) * 1992-10-27 1995-09-12 Nippondenso Co., Ltd. Compound semiconductor substrate having a hetero-junction and a field-effect transistor using the same
US5477066A (en) * 1992-01-09 1995-12-19 Mitsubishi Denki Kabushiki Kaisha Heterojunction bipolar transistor
US5869856A (en) * 1995-12-25 1999-02-09 Nec Corporation Field effect transistor
US6570194B2 (en) * 2000-02-28 2003-05-27 Nec Corporation Compound semiconductor field effect transistor with improved ohmic contact layer structure and method of forming the same
JPWO2007026616A1 (en) * 2005-08-31 2009-03-26 独立行政法人科学技術振興機構 Negative resistance field effect element and high frequency oscillation element
JP2016219726A (en) * 2015-05-26 2016-12-22 日本電信電話株式会社 Field effect transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541773B2 (en) 2011-05-02 2013-09-24 Intel Corporation Vertical tunneling negative differential resistance devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245681A (en) * 1986-04-17 1987-10-26 Nec Corp Negative differential resistance field-effect tran-sistor
JPH03224243A (en) * 1989-12-26 1991-10-03 Sanyo Electric Co Ltd Velocity modulation transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245681A (en) * 1986-04-17 1987-10-26 Nec Corp Negative differential resistance field-effect tran-sistor
JPH03224243A (en) * 1989-12-26 1991-10-03 Sanyo Electric Co Ltd Velocity modulation transistor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477066A (en) * 1992-01-09 1995-12-19 Mitsubishi Denki Kabushiki Kaisha Heterojunction bipolar transistor
US5508535A (en) * 1992-01-09 1996-04-16 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor devices
JPH06120518A (en) * 1992-10-08 1994-04-28 Japan Radio Co Ltd Semiconductor element for high-efficiency amplification
US5449928A (en) * 1992-10-27 1995-09-12 Nippondenso Co., Ltd. Compound semiconductor substrate having a hetero-junction and a field-effect transistor using the same
US5869856A (en) * 1995-12-25 1999-02-09 Nec Corporation Field effect transistor
US6570194B2 (en) * 2000-02-28 2003-05-27 Nec Corporation Compound semiconductor field effect transistor with improved ohmic contact layer structure and method of forming the same
JPWO2007026616A1 (en) * 2005-08-31 2009-03-26 独立行政法人科学技術振興機構 Negative resistance field effect element and high frequency oscillation element
JP2016219726A (en) * 2015-05-26 2016-12-22 日本電信電話株式会社 Field effect transistor

Also Published As

Publication number Publication date
JP2646795B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US4236166A (en) Vertical field effect transistor
US4727403A (en) Double heterojunction semiconductor device with injector
JP3194941B2 (en) Semiconductor device
JPS6327065A (en) Hetero-junction double-channel semiconductor device, field effect transistor to which the device is applied and apparatus with negative conductance to which the semiconductor is applied
US5023674A (en) Field effect transistor
JPS60223171A (en) Field-effect transistor
EP0051271B1 (en) Heterojunction semiconductor device
JPH03286540A (en) Velocity-modulation type field-effect transistor
JP3046098B2 (en) Heterojunction semiconductor device
JP2722885B2 (en) Field effect transistor
JPH05211178A (en) Thin-film type field-effect transistor provided with adjusted energy band
JPH01187878A (en) Two-dimensional hetero-junction element
JPS5953714B2 (en) semiconductor equipment
JPS59184573A (en) Field effect transistor
JPH0354466B2 (en)
JP2796113B2 (en) Semiconductor device
JP2811753B2 (en) Speed modulation type field effect transistor
JPH06105717B2 (en) Field effect semiconductor device
JPH0311108B2 (en)
JPH025438A (en) Insulated-gate field-effect transistor
JPS61230379A (en) Semiconductor device
JPH06124965A (en) Field effect transistor
JPS63144580A (en) Field-effect transistor
Ooike et al. MOVPE selectively grown GaAs nano-wires with self-aligned W side gate
GB2262385A (en) Velocity modulation transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees