JPH06120518A - Semiconductor element for high-efficiency amplification - Google Patents

Semiconductor element for high-efficiency amplification

Info

Publication number
JPH06120518A
JPH06120518A JP27020292A JP27020292A JPH06120518A JP H06120518 A JPH06120518 A JP H06120518A JP 27020292 A JP27020292 A JP 27020292A JP 27020292 A JP27020292 A JP 27020292A JP H06120518 A JPH06120518 A JP H06120518A
Authority
JP
Japan
Prior art keywords
layer
doped
gaas layer
electron affinity
doped gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27020292A
Other languages
Japanese (ja)
Other versions
JP2764507B2 (en
Inventor
Akira Nagayama
昭 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP4270202A priority Critical patent/JP2764507B2/en
Publication of JPH06120518A publication Critical patent/JPH06120518A/en
Application granted granted Critical
Publication of JP2764507B2 publication Critical patent/JP2764507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide a semiconductor amplififying element, which has a heterojunction and is increased a carrier concentration in its junction interface to make possible a high-efficiency operation. CONSTITUTION:A non-doped GaAs layer 7 is epitaxially grown on a substrate a non-doped AlGaAs layer 6 is grown, then, a carrier layer consisting of three layers of a non-doped GaAs layer 2, an Si-doped GaAs layer 1 and a non-doped GaAs layer 2 and a carrier layer consisting of three layers of a non-doped GaAs layer 2, an Si-doped GaAs layer 1 and a non-doped GaAs layer 2 are provided holding a non-doped AlGaAs layer 3 between them to form into a multilayer and an Si-doped GaAs layer 5 is grown on the uppermost part of a laminated material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヘテロ接合を有し、接
合界面のキャリア濃度を高めて、高効率動作を可能とし
た半導体増幅素子の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a semiconductor amplifier device having a heterojunction and increasing the carrier concentration at the junction interface to enable high efficiency operation.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
半導体増幅素子を高効率増幅動作させる場合には、F級
動作が有効であった。このF級動作での効率を決定する
半導体増幅素子パラメータとしては、例えば、第1に半
導体増幅素子のオン抵抗,第2に高周波Gm,第3にド
レインコンダクタンス等がある。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
The class F operation was effective when the semiconductor amplifying element was operated with high efficiency. The semiconductor amplification element parameters that determine the efficiency in this class F operation include, for example, first the ON resistance of the semiconductor amplification element, the second high frequency Gm, and the third drain conductance.

【0003】第1の半導体増幅素子のオン抵抗において
は、チャンネル幅を大きく設定することで、その低減が
可能となる。しかし、チャンネル幅を増大させると、ゲ
ート・ソース間容量及びゲート・ドレイン間帰還容量が
増大し、後述する利得の低下を招くと言う制限もあっ
た。
The ON resistance of the first semiconductor amplifying element can be reduced by setting the channel width large. However, there is also a limitation that increasing the channel width increases the gate-source capacitance and the gate-drain feedback capacitance, resulting in a decrease in gain described later.

【0004】図3(A),(B)に、GaAs MES
FETを用いた場合の実測データを示すが、チャンネ
ル幅を増加させても、オン抵抗は2/3程度に低減する
のが限界であることが分かる。
In FIGS. 3A and 3B, GaAs MES is shown.
Although the actual measurement data when using the FET is shown, it can be seen that the limit is that the ON resistance is reduced to about 2/3 even if the channel width is increased.

【0005】これは、高い周波数では、ゲート・ソース
間容量の寄与が無視できず、入力インダクタンスが短絡
点に近づき、入力整合を実現するのが難しくなることに
よる。
This is because at high frequencies, the contribution of the gate-source capacitance cannot be ignored, the input inductance approaches the short-circuit point, and it becomes difficult to achieve input matching.

【0006】オン抵抗を低減する他の方法としては、チ
ャンネル内のキャリア濃度を上げる方法がある。しかし
キャリア濃度を上げるとオン抵抗が下がるものの、ドレ
イン耐圧の低下を招くという欠点がある。
Another method of reducing the on-resistance is to increase the carrier concentration in the channel. However, although increasing the carrier concentration lowers the on-resistance, it has the drawback of lowering the drain breakdown voltage.

【0007】図4は、チャンネル内のキャリア濃度が深
さ方向で一様と仮定した時のGaAsMES FET設
計チャートである。なお、横軸にキャリア濃度、縦軸に
チャンネル厚を示した。図から明らかな様に、Vpを与
えた時、Ids/Wg,Gm/Wgを改良するには、キ
ャリア濃度を上げる必要があるが、ドレイン・ゲート間
耐圧が低下すると言う欠点があり、Ids/Wg,Gm
/Wgに上限値があることが理解できる。
FIG. 4 is a GaAs MES FET design chart assuming that the carrier concentration in the channel is uniform in the depth direction. The horizontal axis represents carrier concentration and the vertical axis represents channel thickness. As is clear from the figure, when Vp is applied, it is necessary to increase the carrier concentration in order to improve Ids / Wg and Gm / Wg, but there is a disadvantage that the breakdown voltage between the drain and the gate is lowered. Wg, Gm
It can be understood that / Wg has an upper limit value.

【0008】第2の高周波Gmの向上については、図4
のチャートからチャンネル長の短縮若しくはキャリア濃
度の増大が有効な方法であることが理解できるが、上記
第1の半導体増幅素子のオン抵抗の場合と同様な欠点も
ある。
For the improvement of the second high frequency Gm, see FIG.
Although it can be understood from the chart of (1) that shortening the channel length or increasing the carrier concentration is an effective method, it has the same drawbacks as in the case of the ON resistance of the first semiconductor amplifying element.

【0009】第3のドレインコンダクタンスの改善に就
いては、素子設計の効果よりもプロセスに依るところが
大きい。ピンチオフ電圧近傍でのドレインコンダクタン
ス劣化の要因の一つにキャリアのチャンネル外沁み出し
がある。一般には、バッファ層へのキャリア漏れを防ぐ
為、P層バッファやAlGaAsヘテロバッファ層の導
入が図られているが、寄生容量の増加を招く欠点があ
る。
The improvement of the third drain conductance depends more on the process than on the effect of device design. One of the causes of the deterioration of drain conductance near the pinch-off voltage is the carrier leaking out of the channel. Generally, a P layer buffer or an AlGaAs heterobuffer layer is introduced to prevent carrier leakage into the buffer layer, but there is a drawback that the parasitic capacitance increases.

【0010】一方、ヘテロ接合を利用した2次元電子ガ
スデバイスでは、優れたGm特性が得られると言う特徴
を有しているが、例えば電子親和力の小さいAlGaA
s層に高濃度ドープする場合、深いトラップ準位を形成
し易く、シートキャリア濃度が飽和してしまい、ドレイ
ン・ゲート間耐圧が低いという欠点があった。
On the other hand, a two-dimensional electron gas device utilizing a heterojunction has a characteristic that excellent Gm characteristics can be obtained. For example, AlGaA having a small electron affinity.
When the s layer is heavily doped, a deep trap level is easily formed, the sheet carrier concentration is saturated, and the drain-gate breakdown voltage is low.

【0011】[0011]

【課題を解決するための手段】本発明によれば、電力用
電界効果型トランジスタのチャンネルを構成する高効率
増幅用半導体素子において、所定の電子親和力を有する
高ドープ半導体層と、該高ドープ半導体層を挟持し、前
記高ドープ半導体層と実質的に同一な電子親和力を有す
るノンドープ半導体体層とをそれぞれ有する一対のキャ
リア供給層と、前記電子親和力よりも小さい電子親和力
を有し、前記一対のキャリア供給層で挟持されて、量子
井戸を形成するノンドープ半導体層とを有し、前記量子
井戸を多層に形成して、チャンネル幅を増やすことなく
所定の電流密度を得ることを特徴とする高効率増幅用半
導体素子得られる。
According to the present invention, in a high-efficiency amplifying semiconductor device forming a channel of a power field effect transistor, a highly-doped semiconductor layer having a predetermined electron affinity and the highly-doped semiconductor are provided. A pair of carrier supply layers sandwiching the layers, each having a non-doped semiconductor body layer having substantially the same electron affinity as the highly doped semiconductor layer, and an electron affinity smaller than the electron affinity, and the pair of A high efficiency characterized by having a non-doped semiconductor layer sandwiched between carrier supply layers and forming a quantum well, wherein the quantum well is formed in multiple layers to obtain a predetermined current density without increasing the channel width. A semiconductor device for amplification can be obtained.

【0012】すなわち、前記課題を解決する本発明に係
る高効率増幅用半導体素子の構成は、電力用電界効果型
トランジスタのチャンネルを構成する際に、電子親和力
の大きい高ドープ半導体層を同じ電子親和力の大きいノ
ンドープ半導体体層で挟み、キャリア供給層を形成し
て、この1対のキャリア供給層で電子親和力の小さいノ
ンドープ半導体層を上下に挟んで量子井戸を形成し、上
記の量子井戸を多層に形成し、チャンネル幅を増やす事
無く所定の電流密度を得ることを特徴とする。
That is, the structure of the semiconductor device for high efficiency amplification according to the present invention which solves the above-mentioned problems is such that when a channel of a power field effect transistor is formed, a highly doped semiconductor layer having a large electron affinity is used with the same electron affinity. Of non-doped semiconductor layers having a large electron mobility to form a carrier supply layer, and a pair of carrier supply layers sandwiching a non-doped semiconductor layer having a small electron affinity above and below to form a quantum well. It is characterized in that it is formed to obtain a predetermined current density without increasing the channel width.

【0013】換言すれば、本発明では電子親和力の大き
い例えばGaAsの薄い高ドープGaAs層の上下にノ
ンドープの電子親和力の大きい例えばGaAs層を挟
み、このキャリア供給層でノンドープの電子親和力の小
さい例えばAlGaAs層を挟み、これを周期的に積み
上げて多層にチャンネル層を形成する。これに依りドレ
イン・ゲート間耐圧を維持しながら実効電力密度を上げ
てオン抵抗の低減・Gmの向上・ドレインコンダクタン
ス改善を図るようにしたものである。
In other words, according to the present invention, a non-doped GaAs layer having a high electron affinity, for example, a GaAs layer having a high electron affinity, such as a thin GaAs layer having a high electron affinity, is sandwiched above and below the carrier supply layer, for example, an AlGaAs having a low non-doped electron affinity. The layers are sandwiched and these are periodically stacked to form a channel layer in multiple layers. As a result, the effective power density is increased while maintaining the drain-gate breakdown voltage to reduce the on-resistance, improve Gm, and improve the drain conductance.

【0014】[0014]

【実施例】以下に本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】まず、図1(A)に示した構成断面を基に
説明する。
First, a description will be given based on the structural cross section shown in FIG.

【0016】電子親和力の大きい高ドープGaAs層1
により、電子親和力の小さいノンドープAlGaAs層
3を上下に挟み、且つ、キャリアの蓄積を高める為に、
ノンドープGaAs層2をGaAs層1とAlGaAs
層3との間にそれぞれ挿入して、ヘテロ接合を形成し、
図1(B)に示したバンドダイアグラムが得られる。ス
レッショルド電圧VthとIdsの関係は、 Vth=ψm-{q ・ Nd ・(d-d0)2 /2ε}- ΔEc (1) Ids=( μ・Wg・ε/2Lg・d)・(Vgs-Vth) 2 (2) で与えられる。
Highly doped GaAs layer 1 having a high electron affinity
In order to sandwich the non-doped AlGaAs layer 3 having a small electron affinity above and below and to enhance the accumulation of carriers,
The non-doped GaAs layer 2 and the GaAs layer 1 and the AlGaAs
Each inserted between layer 3 to form a heterojunction,
The band diagram shown in FIG. 1 (B) is obtained. The relationship between the threshold voltage Vth and Ids is Vth = ψm- {q ・ Nd ・ (d-d0) 2 / 2ε} -ΔEc (1) Ids = (μ ・ Wg ・ ε / 2Lg ・ d) ・ (Vgs-Vth ) 2 (2) is given.

【0017】ここでΔEcは、電子親和力の小さい例え
ばAlGaAs層3と電子親和力の大きい例えばGaA
s層1とのコンダクションバンドギャップである。ψm
はAlGaAs層4と金属とのショットキィ障壁、εは
GaAs層3の誘電率、Ndは同じくGaAs層1中の
ドナー濃度、μは電子移動度である。
Here, ΔEc is, for example, AlGaAs layer 3 having a small electron affinity and GaA having a large electron affinity, for example.
It is a conduction band gap with the s layer 1. ψm
Is the Schottky barrier between the AlGaAs layer 4 and the metal, ε is the dielectric constant of the GaAs layer 3, Nd is the donor concentration in the GaAs layer 1, and μ is the electron mobility.

【0018】VthはGaAs MES FETと比較し
て、ψm,ΔEcが異なり、所定の値に設定するには、
Ndを調製する必要がある。ここで、GaAs層1の厚
さdを5nm程度に小さく出来る事が重要である。即ち、
dが小さい分Ndを大きく採れ、Idsの増加分と相まっ
て、オン抵抗の著しい低減が実現出来る事となる。
Vth is different from GaAs MES FET in ψm and ΔEc.
Nd needs to be prepared. Here, it is important that the thickness d of the GaAs layer 1 can be reduced to about 5 nm. That is,
Since d is small, Nd can be large, and in combination with the increase in Ids, the on-resistance can be remarkably reduced.

【0019】次に、電子親和力の大きい例えばAlGa
As層3の上下に、上記ドープGaAs/ノンドープG
aAs層1周期分を各々設置すれば、キャリア蓄積層は
4層得られ、この多層チャンネル化に依り単位ゲート幅
当たりの電力密度を高める事が可能となる。即ち多層化
にした場合でも、スレッショルド電圧は変化せずにIds
を増加させる事が可能となる。更には、ゲート幅を増加
させる事無く出力電力を増やす事が出来る。
Next, for example, AlGa, which has a high electron affinity,
Above and below the As layer 3, the above-mentioned doped GaAs / non-doped G
If one period of each aAs layer is provided, four carrier storage layers can be obtained, and it is possible to increase the power density per unit gate width by forming this multi-layer channel. That is, even when the number of layers is increased, the threshold voltage does not change and Ids
It is possible to increase. Furthermore, the output power can be increased without increasing the gate width.

【0020】層数は与えられたスレッショルド電圧とI
dsとから決定される。
The number of layers is given threshold voltage and I
Determined from ds and.

【0021】さらに、上述の図1(A),(B)に示し
た本発明に係る高効率増幅用半導体素子に係わるエピ厚
は、エピ成長条件での偏差に依り変動を受ける。
Further, the epi thickness related to the semiconductor device for high efficiency amplification according to the present invention shown in FIGS. 1 (A) and 1 (B) described above is changed due to the deviation under the epi growth conditions.

【0022】図1(A)に示した様に、キャップ層とし
て電子親和力の大きいノンドープGaAs層7を500
nm半絶縁性GaAs基板8上にエピ成長させる。次に、
ラティスマッチングを取る為ノンドープAlGaAs層
6を200nm成長させる。
As shown in FIG. 1A, a non-doped GaAs layer 7 having a large electron affinity is formed as a cap layer 500.
nm is epitaxially grown on the semi-insulating GaAs substrate 8. next,
A non-doped AlGaAs layer 6 is grown to 200 nm for lattice matching.

【0023】次にノンドープGaAs層2を5nm,Si
を6×1017cm-3ドープしたGaAs層1を2nm、更に
其の上部にノンドープGaAs層2を5nmエピ成長させ
る。
Next, the non-doped GaAs layer 2 is formed to a thickness of 5 nm and Si.
6 × 10 17 cm -3 doped GaAs layer 1 having a thickness of 2 nm, and a non-doped GaAs layer 2 having a thickness of 5 nm epitaxially grown thereon.

【0024】このGaAs層3層をキャリア供給層と名
付けると10nm程度の薄いノンドープAlGaAs層3
を挟んで上記キャリア供給層を設置する。
The GaAs layer 3 is called a carrier supply layer, and a thin non-doped AlGaAs layer 3 having a thickness of about 10 nm is used.
The carrier supply layer is installed with the carrier sandwiched therebetween.

【0025】これを多層構成して、その上部の50nm厚
ノンドープAlGaAs層4に35nm厚ノンドープGa
As層9を成長させ、最上部にSiドープGaAs層5
を20nm成長させる。キャリア供給層の層数はIdsの要
求値で決定される。
A multi-layered structure is formed, and a 50 nm-thick non-doped AlGaAs layer 4 is formed on the top of the multi-layered film.
The As layer 9 is grown, and the Si-doped GaAs layer 5 is formed on the top.
Is grown to 20 nm. The number of carrier supply layers is determined by the required value of Ids.

【0026】[0026]

【発明の効果】以上説明した様に本発明によれば以下の
効果を奏する。
As described above, the present invention has the following effects.

【0027】まず、キャリア濃度を上げる事無くキャリ
ア供給層の層数でIdsを増加する事からゲート・ドレイ
ン耐圧の劣化が極めて少なくなる。
First, since Ids is increased by the number of carrier supply layers without increasing the carrier concentration, deterioration of the gate / drain breakdown voltage is extremely reduced.

【0028】次に、チャンネル幅を増加させる事無くI
dsの向上が図れてゲート・ソース容量の増加を防ぐ事が
できる。
Next, I is increased without increasing the channel width.
It is possible to improve ds and prevent an increase in gate-source capacitance.

【0029】さらに、AlGaAs層にドープする事を
せずGaAs/AlGaAs量子井戸構造に依りGaA
sにドープしてヘテロ構造を実現した。この結果高濃度
のドーピングが可能となり素子の高性能化が可能とな
る。
Further, without doping the AlGaAs layer, the GaAs / AlGaAs quantum well structure allows GaA
Heterostructure was realized by doping s. As a result, high-concentration doping is possible and the device can be improved in performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】高効率増幅用半導体素子の一例を示す概略図で
あり、図中(A)は構成断面図を、(B)はそのバンド
ダイアグラムを各々示す。
FIG. 1 is a schematic view showing an example of a high-efficiency amplification semiconductor element, in which (A) is a sectional view of the configuration and (B) is a band diagram thereof.

【図2】本発明のダブルヘテロを用いた場合のIdsの
実測値を示すグラフである。
FIG. 2 is a graph showing measured values of Ids when the double hetero of the present invention is used.

【図3】GaAs MES FETを用いた場合のId
sの実測値を示すグラフである。
[FIG. 3] Id when a GaAs MES FET is used
It is a graph which shows the measured value of s.

【図4】GaAs MES FETの設計チャート図で
ある。
FIG. 4 is a design chart diagram of a GaAs MES FET.

【符号の説明】[Explanation of symbols]

1 ドープGaAs層 2 ノンドープGaAs層 3 ノンドープAlGaAs層 4 ノンドープAlGaAs層 5 SiドープGaAs層 6 ノンドープAlGaAs層 7 ノンドープGaAs層 8 SiGaAs基板 9 ノンドープGaAs層 1 non-doped GaAs layer 2 non-doped GaAs layer 3 non-doped AlGaAs layer 4 non-doped AlGaAs layer 5 Si-doped GaAs layer 6 non-doped AlGaAs layer 7 non-doped GaAs layer 8 SiGaAs substrate 9 non-doped GaAs layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力用電界効果型トランジスタのチャン
ネルを構成する高効率増幅用半導体素子において、 所定の電子親和力を有する高ドープ半導体層と、該高ド
ープ半導体層を挟持し、前記高ドープ半導体層と実質的
に同一な電子親和力を有するノンドープ半導体体層とを
それぞれ有する一対のキャリア供給層と、 前記電子親和力よりも小さい電子親和力を有し、前記一
対のキャリア供給層で挟持されて、量子井戸を形成する
ノンドープ半導体層とを有し、 前記量子井戸を多層に形成して、チャンネル幅を増やす
ことなく所定の電流密度を得ることを特徴とする高効率
増幅用半導体素子。
1. A high-efficiency amplifying semiconductor element constituting a channel of a power field effect transistor, wherein a highly-doped semiconductor layer having a predetermined electron affinity and the highly-doped semiconductor layer are sandwiched between the highly-doped semiconductor layer and the highly-doped semiconductor layer. And a pair of carrier supply layers each having a non-doped semiconductor layer having substantially the same electron affinity, and an electron affinity smaller than the electron affinity, sandwiched between the pair of carrier supply layers, and a quantum well And a non-doped semiconductor layer for forming the quantum well, wherein the quantum well is formed in multiple layers to obtain a predetermined current density without increasing the channel width.
JP4270202A 1992-10-08 1992-10-08 Power field effect transistor Expired - Fee Related JP2764507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270202A JP2764507B2 (en) 1992-10-08 1992-10-08 Power field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270202A JP2764507B2 (en) 1992-10-08 1992-10-08 Power field effect transistor

Publications (2)

Publication Number Publication Date
JPH06120518A true JPH06120518A (en) 1994-04-28
JP2764507B2 JP2764507B2 (en) 1998-06-11

Family

ID=17482955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270202A Expired - Fee Related JP2764507B2 (en) 1992-10-08 1992-10-08 Power field effect transistor

Country Status (1)

Country Link
JP (1) JP2764507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115581A1 (en) * 2013-01-25 2014-07-31 セイコーインスツル株式会社 Non-volatile semiconductor memory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286540A (en) * 1990-04-03 1991-12-17 Nec Corp Velocity-modulation type field-effect transistor
JPH04245645A (en) * 1991-01-31 1992-09-02 Sumitomo Electric Ind Ltd Field effect transistor
JPH04245648A (en) * 1991-01-31 1992-09-02 Sumitomo Electric Ind Ltd Field effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286540A (en) * 1990-04-03 1991-12-17 Nec Corp Velocity-modulation type field-effect transistor
JPH04245645A (en) * 1991-01-31 1992-09-02 Sumitomo Electric Ind Ltd Field effect transistor
JPH04245648A (en) * 1991-01-31 1992-09-02 Sumitomo Electric Ind Ltd Field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115581A1 (en) * 2013-01-25 2014-07-31 セイコーインスツル株式会社 Non-volatile semiconductor memory

Also Published As

Publication number Publication date
JP2764507B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
KR102174546B1 (en) Semiconductor devices and methods of designing semiconductor devices
JPH07335867A (en) Field-effect transistor
CN111213244A (en) High electron mobility transistor having a semiconductor layer with a thickness that varies along the transistor width
Greenberg et al. Nonlinear source and drain resistance in recessed-gate heterostructure field-effect transistors
US6605831B1 (en) Field-effect semiconductor device
JP3259106B2 (en) High electron mobility field effect semiconductor device
Kumar et al. An analysis for AlGaN/GaN modulation doped field effect transistor using accurate velocity-field dependence for high power microwave frequency applications
EP2416353A1 (en) Semiconductor device
Lee et al. AlInGaN/GaN double-channel FinFET with high on-current and negligible current collapse
JP2758803B2 (en) Field effect transistor
JP2764507B2 (en) Power field effect transistor
JPH09321061A (en) Field effect transistor and manufacture thereof
EP0660420B1 (en) A linear field effect transistor
JP2689877B2 (en) Heterojunction FET manufacturing method
JP5505697B2 (en) Semiconductor device and manufacturing method thereof
JPH06163599A (en) Compound semiconductor heterojunction field-effect transistor
KR970004485B1 (en) Hetero-junction field effect transistor
JP2001127281A (en) Semiconductor device
JP2894801B2 (en) Semiconductor transistor and method of manufacturing the same
JPH04326734A (en) Field-effect transistor
KR950006493B1 (en) High-low dopping algoas/gaas hemt device
JP2023134363A (en) Semiconductor field-effect transistor, power amplifier including the same, and method of manufacturing the same
JP3275072B2 (en) Semiconductor element
JP2541280B2 (en) Semiconductor device
JP2701567B2 (en) Field effect transistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980304

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees