JPH03278403A - Voltage-dependent non-linear resistor - Google Patents

Voltage-dependent non-linear resistor

Info

Publication number
JPH03278403A
JPH03278403A JP2076777A JP7677790A JPH03278403A JP H03278403 A JPH03278403 A JP H03278403A JP 2076777 A JP2076777 A JP 2076777A JP 7677790 A JP7677790 A JP 7677790A JP H03278403 A JPH03278403 A JP H03278403A
Authority
JP
Japan
Prior art keywords
voltage
oxides
mol
total amount
varistor voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2076777A
Other languages
Japanese (ja)
Other versions
JP2585121B2 (en
Inventor
Fumio Ishida
文男 石田
Yutaka Irisawa
入沢 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2076777A priority Critical patent/JP2585121B2/en
Publication of JPH03278403A publication Critical patent/JPH03278403A/en
Application granted granted Critical
Publication of JP2585121B2 publication Critical patent/JP2585121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain high varistor voltage by incorporating 5.00 to 26.00mol% of CaTiO3, 0.05 to 0.50mol%, of total amount of a specific oxide 0.05 to 0.50mol% of total amount of different specific oxides and 0.50 to 1.00mol% of SiO2. CONSTITUTION:5.00 to 26.00mol% of CaTiO2, 0.05 to 0.50mol% of total amount of one kind or more of oxides selected from the group of oxides of La, Ta, 0.05 to 0.50mol% of total amount of one kind or more of oxides selected from the groups of oxides of respective elements of Cu, Mo, Fe, Mn, 0.50 to 1.00% of SiO2 are respectively added to a main component SrTiO2 mixed and made into grains for being molded by using a metal mold. This ring-shaped mold is fired in a mixed gas atmosphere of nitrogen gas and hydrogen gas and this sintered body is subjected to several heat treatments at 950 to 1000 deg.C for three hours. In this way, a large non-linear coefficient and high varistor voltage can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、チタン酸ストロンチウム (SrTiO3)を主成分とする電圧依存非直線抵抗体
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a voltage-dependent nonlinear resistor containing strontium titanate (SrTiO3) as a main component.

し従来の技術] 電圧依存非直線抵抗体、いわゆるバリスタは、非直線的
な電圧−電流特性を有することから、各種電気機器や電
子機器における異常高電圧(サージ)の吸収、雑音の除
去、火花消去等のために使用されてきた。
[Prior art] Voltage-dependent nonlinear resistors, so-called varistors, have nonlinear voltage-current characteristics, so they are useful for absorbing abnormal high voltages (surges), removing noise, and sparks in various electrical and electronic devices. It has been used for purposes such as erasure.

この電圧依存非直線抵抗体の電圧−電流特性は、近似的
に次式のように表わすことができる。
The voltage-current characteristic of this voltage-dependent nonlinear resistor can be approximately expressed as shown below.

1=  (V/C) ここで、■は電流、■は電圧、Cは電圧依存非直線抵抗
体固有の定数、αは非直線係数である。
1=(V/C) Here, ■ is a current, ■ is a voltage, C is a constant specific to a voltage-dependent nonlinear resistor, and α is a nonlinear coefficient.

電圧依存非直線抵抗体の一般特性はαの大きさで表わす
ことができ、α値が大きいほど電圧非直線特性がよいこ
とになる。また、Cは電圧依存非直線抵抗体の材料や製
法等により定まる定数であるが、通常は電流Iが1 m
 Aのときの電圧E、の値が用いられる。
The general characteristics of a voltage-dependent nonlinear resistor can be expressed by the magnitude of α, and the larger the α value, the better the voltage nonlinear characteristics. In addition, C is a constant determined by the material and manufacturing method of the voltage-dependent nonlinear resistor, but usually when the current I is 1 m
The value of voltage E when A is used.

従来、この種の電圧依存非直線抵抗体としては、チタン
酸ストロンチウム(SrTiO,)を主成分とする組成
物からなるものが知られており、非直線係数aの値が3
.5〜8.0と比較的大きいことが特徴であった。
Conventionally, as this type of voltage-dependent nonlinear resistor, one made of a composition containing strontium titanate (SrTiO,) as a main component is known, and the value of the nonlinear coefficient a is 3.
.. It was characterized by a relatively large value of 5 to 8.0.

このようなチタン酸ストロンチウムを主成分とする電圧
依存非直線抵抗体の製造方法の一例を示すと、まず5r
TiOxを主成分とするチタン酸金属酸化物粉末の混合
物に、酢酸ビニル系バインダーを添加、混合してこれを
原料粉末とする。この原料粉末を高圧にて所定形体に成
型した後、還元的雰囲気下又は酸化的雰囲気下で熱処理
工程を数回繰返す。通常は8回ないし10回以上繰返し
て焼結体を得る。この焼結体に電極を配して電圧依存非
直線抵抗体とするものである。
An example of a method for manufacturing a voltage-dependent nonlinear resistor containing strontium titanate as a main component is as follows.
A vinyl acetate-based binder is added and mixed to a mixture of titanate metal oxide powder containing TiOx as a main component, and this is used as a raw material powder. After this raw material powder is molded into a predetermined shape under high pressure, a heat treatment step is repeated several times under a reducing atmosphere or an oxidizing atmosphere. Usually, the process is repeated 8 to 10 times or more to obtain a sintered body. Electrodes are arranged on this sintered body to form a voltage-dependent nonlinear resistor.

[発明が解決しようとする課題] しかし、従来のチタン酸ストロンチウムを主成分とした
電圧依存非直線抵抗体は、バリスタ電圧が比較的低いも
のが主であった。
[Problems to be Solved by the Invention] However, conventional voltage-dependent nonlinear resistors containing strontium titanate as a main component mainly have relatively low varistor voltages.

ここでバリスタ電圧とは、印加電圧を増加させていった
ときに電流が急激に流れ始める電圧、すなわち抵抗が急
激に減少し始める電圧を意味し、通常は電流■が]、 
Om Aのときの電圧E l(+として把握される。こ
のバリスタ電圧の値より大きな電圧が印加されると、急
激に電圧依存非直線抵抗体の抵抗が減少し、電圧依存非
直線抵抗体はバイパスとして機能するようになり、サー
ジの吸収や雑音の除去等が行えるものである。従って、
用途によってバリスタ電圧E +aの異なる電圧依存非
直線抵抗体が求められる。
Here, the varistor voltage means the voltage at which current begins to flow rapidly when the applied voltage increases, that is, the voltage at which resistance begins to rapidly decrease.
The voltage E l (+) when Om A is applied. When a voltage larger than the value of this varistor voltage is applied, the resistance of the voltage-dependent non-linear resistor decreases rapidly, and the voltage-dependent non-linear resistor becomes It functions as a bypass, absorbing surges and removing noise.Therefore,
Depending on the application, voltage-dependent nonlinear resistors with different varistor voltages E+a are required.

しかし、従来のチタン酸ストロンチウムを主成分とした
電圧依存非直線抵抗体は、大きな非直線係数αを有する
ものの、バリスタ電圧E 10は2〜60v程度のもの
が主であり、あまり高くはなかった。高バリスタ電圧E
、。特性を得るためには、熱処理工程すなわち焼成を何
度も繰返せばよいが、焼成コストがかさむことから実用
的ではなかった。
However, although the conventional voltage-dependent nonlinear resistor mainly composed of strontium titanate has a large nonlinear coefficient α, the varistor voltage E10 is mainly around 2 to 60 V, which is not very high. . High varistor voltage E
,. In order to obtain these properties, the heat treatment step, that is, firing, can be repeated many times, but this has not been practical due to the high cost of firing.

また、このようにして得られる電圧依存非直線抵抗体の
非直線係数αは3〜5と比較的小さ(、電子機器や部品
の異常なサージやノイズからの保護、あるいは回路電圧
の安定化という用途に用いるには、非直線係数aの値が
十分でない。
In addition, the nonlinear coefficient α of the voltage-dependent nonlinear resistor obtained in this way is relatively small at 3 to 5. The value of the nonlinear coefficient a is not sufficient for this purpose.

本発明は上記のような問題点に鑑みてなされたものであ
り、大きな非直線係数aを有するとともにバリスタ電圧
E、。が十分に高いチタン酸ストロンチウム系の電圧依
存非直線抵抗体を提供することを目的とする。
The present invention has been made in view of the above problems, and has a large nonlinear coefficient a and a varistor voltage E. An object of the present invention is to provide a strontium titanate-based voltage-dependent nonlinear resistor with sufficiently high resistance.

[課題を解決するための手段] 本発明は、前記目的を達成すべく、チタン酸ストロンチ
ウム(SrTiOa)を主成分とする電圧依存比直線抵
抗体において、チタン酸カルシウム(CaT i Os
 )を5−00〜26.00モル%、ニオブ(Nb)、
ランタン(La)及びタンタル(Ta)の各元素の酸化
物からなるグループから選択した1種又は2種以上の酸
化物の総量を0.05〜0.50モル%、銅(Cu) 
、モリブデン(Mo)、鉄(Fe)及びマンガン(Mn
)の各元素の酸化物からなるグループから選択した1種
又は2種以上の酸化物のatを0.05〜0.50モル
%、二酸化ケイ素(Sin、)を0.50〜1.00モ
/1.%それぞれ添加したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a voltage-dependent ratio linear resistor containing strontium titanate (SrTiOa) as a main component.
) 5-00 to 26.00 mol%, niobium (Nb),
The total amount of one or more oxides selected from the group consisting of oxides of each element of lanthanum (La) and tantalum (Ta) is 0.05 to 0.50 mol%, copper (Cu)
, molybdenum (Mo), iron (Fe) and manganese (Mn
) of 0.05 to 0.50 mol % of one or more oxides selected from the group consisting of oxides of each element, and 0.50 to 1.00 mol % of silicon dioxide (Sin). /1. % respectively.

Ca T j、 0 、の添加量を1.5.0O−26
,00モル%の範囲内とした理由は、添加量が15.0
0モル%以下の場合、所望の高バリスタ電圧EIOを得
るために焼成を多数行わなければならず、また非直線係
数a値も低下し、さらにバリスタ電圧E 10の温度変
化率△E toも太き(なるという問題があるからであ
る。一方、添加量が26.00モル%以上の場合、a値
が低下するとともにバリスタ電圧E、。
The amount of Ca T j,0 added was 1.5.0O-26
,00 mol% is within the range of 15.0 mol%.
If it is less than 0 mol%, many firings must be performed to obtain the desired high varistor voltage EIO, the nonlinear coefficient a value also decreases, and the temperature change rate ΔE to of the varistor voltage E10 also increases. On the other hand, if the amount added is 26.00 mol% or more, the a value decreases and the varistor voltage E.

の温度変化率△E 10も大きくなるという問題がある
There is a problem that the temperature change rate ΔE10 also increases.

また、Nb、La、Taの各元素の酸化物がら選択した
1種又は2種以上の酸化物の添加量の総量を0.05〜
0.50モル%の範囲内としたこと、Cu、MOlFe
、Mnの各元素の酸化物から選択した1種又は2種以上
の酸化物の添加量の総量を0.05〜0.50モル%の
範囲内としたこと、及びSingの添加量を0.50〜
1.00モル%の範囲内としたことの理由は、いずれも
各範囲を外れる量の添加量では、非直線係数α値が低下
してしまうとともに、バリスタ電圧E IQの温度変化
率ΔE1゜が大きくなってしまうという問題があるため
である。
In addition, the total amount of one or more oxides selected from the oxides of each element of Nb, La, and Ta is 0.05~
Within the range of 0.50 mol%, Cu, MOLFe
, Mn, the total amount of one or more oxides selected from the oxides of each element was within the range of 0.05 to 0.50 mol %, and the amount of Sing was 0.05 to 0.50 mol %. 50~
The reason for setting it within the range of 1.00 mol% is that if the amount added is outside the respective ranges, the nonlinear coefficient α value will decrease, and the temperature change rate ΔE1° of the varistor voltage E IQ will decrease. This is because there is a problem in that it becomes large.

なお、バリスタ電圧E1゜の温度変化率△E IQの値
は、バリスタ電圧が高い場合には0.1以下が望ましい
が、従来の電圧依存非直線抵抗体の温度変化率ΔE l
(lの値は0.2〜0.3程度であった。しかし、上記
組成からなる本発明の電圧依存非直線抵抗体の温度変化
率ΔE toは十分低く、安定したバリスタ電圧E、。
Note that the value of the temperature change rate ΔE IQ of the varistor voltage E1° is preferably 0.1 or less when the varistor voltage is high, but the temperature change rate ΔE l of a conventional voltage-dependent nonlinear resistor is
(The value of l was about 0.2 to 0.3. However, the temperature change rate ΔE to of the voltage-dependent nonlinear resistor of the present invention having the above composition is sufficiently low, and the varistor voltage E is stable.

が得られるものである。is obtained.

このように、上記本発明による組成からなる電圧依存非
直線抵抗体は、熱処理工程が大幅に短縮され、高い非直
線係数αが得られるとともに、バリスタ電圧E、。の温
度変化率△E、。も小さい安定した特性を得ることがで
きる。
As described above, the voltage dependent nonlinear resistor having the composition according to the present invention can significantly shorten the heat treatment process, obtain a high nonlinear coefficient α, and have a high varistor voltage E. The temperature change rate △E,. It is also possible to obtain small and stable characteristics.

[実施例] 次に、本発明の実施例について、組成比の異なる電圧依
存非直線抵抗体の試料を作製し、その特性を評価しなが
ら説明する。
[Example] Next, an example of the present invention will be described while producing samples of voltage-dependent nonlinear resistors having different composition ratios and evaluating their characteristics.

(試料の作製) まず、5rTiOa及びCaTi0−の各チタン酸金属
酸化物粉末と、Nb、La、Taの各元素の酸化物のう
ち少なくとも1種類の粉末と、Cu、Mo%Fe、Mn
の各元素の酸化物のうち少なくとも1種類の粉末と、C
u、Mo、Fe、Mnの各元素の酸化物粉末のうち少な
くとも1種類の粉末を、試料1から試料56までの56
種類それぞれ所定の組成比となるように秤量し、これら
を湿式ボールミルにより15時間混合した。
(Preparation of Samples) First, each titanate metal oxide powder of 5rTiOa and CaTi0-, powder of at least one type of oxide of each element of Nb, La, Ta, Cu, Mo%Fe, Mn
a powder of at least one kind of oxide of each element;
At least one type of oxide powder of each element of u, Mo, Fe, and Mn was added to 56 powders from sample 1 to sample 56.
Each type was weighed so as to have a predetermined composition ratio, and mixed in a wet ball mill for 15 hours.

上記のようにして得られた各混合物を大気中で温度15
0℃で乾燥した後、酢酸ビニル系バインダーを添加して
混合、造粒して原料粉末とした。
Each mixture obtained as described above was heated in the atmosphere at a temperature of 15%.
After drying at 0° C., a vinyl acetate binder was added, mixed, and granulated to obtain a raw material powder.

さらに上記各原料粉末を、金型を用いて所定形状に成型
した。具体的には、乾式プレスにより、]、、500K
g/cm2の圧力で外径12.25mm%内径7.75
mm、厚さ1.04mm、成形体密度3.30g/cm
″のリング状成形体に成型した。
Furthermore, each of the above raw material powders was molded into a predetermined shape using a mold. Specifically, by dry pressing, ],,500K
Outer diameter 12.25mm% Inner diameter 7.75 at g/cm2 pressure
mm, thickness 1.04mm, compact density 3.30g/cm
It was molded into a ring-shaped molded body.

続いて、これらのリング状成形体を、窒素ガス96容積
%と水素ガス4容積%とからなる混合ガス雰囲気中で温
度141O℃で6時間焼成しくこれを「第1熱処理」と
いう。)、焼結体を得た。
Subsequently, these ring-shaped molded bodies were fired at a temperature of 1410° C. for 6 hours in a mixed gas atmosphere consisting of 96% by volume of nitrogen gas and 4% by volume of hydrogen gas, and this was called "first heat treatment." ), a sintered body was obtained.

さらに、これらの焼結体を、950ないし1ooo℃で
3時間の熱処理(これを「第2熱処理」、という。〕を
2ないし数回施し、バリスタ電圧が70〜100Vの範
囲内となるように調整した。
Furthermore, these sintered bodies were subjected to heat treatment at 950 to 100°C for 3 hours (this is referred to as "second heat treatment") two to several times, so that the varistor voltage was within the range of 70 to 100V. It was adjusted.

このようにして得られた電圧依存非直線抵抗体の各試料
の上下両面に銀電極材を塗布後、温度180℃で10分
間乾燥し、さらに温度780℃で10分間焼付けて銀電
極を形成した。
After applying silver electrode material to the upper and lower surfaces of each sample of the voltage-dependent nonlinear resistor thus obtained, it was dried at a temperature of 180°C for 10 minutes, and then baked at a temperature of 780°C for 10 minutes to form a silver electrode. .

(試料の特性評価) 次に、各試料の特性評価を行うために、バリスタ電圧E
 10、非直線抵抗係数a、バリスタ電圧E 10の温
度変化率△E toを測定した。
(Characteristics evaluation of samples) Next, in order to evaluate the characteristics of each sample, the varistor voltage E
10, non-linear resistance coefficient a, varistor voltage E, and temperature change rate ΔE to of 10 were measured.

なお、非直線係数αと、バリスタ電圧E1゜の変化率の
測定は、定電流電源装置で行った。
Note that the nonlinear coefficient α and the rate of change of the varistor voltage E1° were measured using a constant current power supply device.

また、非直線係数αは、次式により求めた。In addition, the nonlinear coefficient α was determined using the following equation.

ここでElは電流1が1mAのときの電圧■の値である
Here, El is the value of voltage ■ when current 1 is 1 mA.

さらに、バリスタ電圧E IQの温度変化率△E1゜は
、温度変化1℃当たりのバリスタ電圧E、。値の変化率
(%/”C)であり、次式により求めた。
Furthermore, the temperature change rate ΔE1° of the varistor voltage E IQ is the varistor voltage E per 1°C of temperature change. It is the rate of change in value (%/''C) and was determined by the following formula.

b to(at  25℃l  X  f50−251
ここでE、。(at 25℃)は25℃におけるバリス
タ電圧E toであり、E to(at 50℃)は5
0℃におけるバリスタ電圧である。
b to(at 25℃l X f50-251
E here. (at 25°C) is the varistor voltage E to at 25°C, and E to (at 50°C) is 5
This is the varistor voltage at 0°C.

第1表(1)ないし第1表(11)は、組成比の異なる
試料1ないし56について、組成比、試料作製時におけ
る第2熱処理の回数、バリスタ電圧E to、非直線係
数α及びバリスタ電圧の温度変化率△E 10を示した
ものである。なお各表は、所定成分の添加量の変化に注
目し、添加量を変えた所定成分ごとに(1)ないしく1
1)に分けて示している。従って、他の成分の添加量は
一定とし、残余はS r T i Oxとなっている。
Table 1 (1) to Table 1 (11) show the composition ratio, number of second heat treatments during sample preparation, varistor voltage E to, nonlinear coefficient α, and varistor voltage for samples 1 to 56 with different composition ratios. The figure shows the temperature change rate ΔE10. In addition, each table focuses on changes in the added amount of a given ingredient, and shows (1) or 1 for each given ingredient whose added amount has been changed.
1). Therefore, the amounts of other components added are constant, and the remainder is S r T i Ox.

まず第1表(1)から分かるように、 CaT i O3のみの添加量を変化させ、その他の添
加剤の添加量を一定とし、残りをSrTiO3としたと
きには、CaTi0.の添加量が15.00モル%より
少ない場合には、所定のバリスタ電圧値を得るための熱
処理回数が5ないし8回と多く、非直線係数αも比較的
小さ(、バリスタ電圧の温度変化率△E、。の絶対値も
大きい。
First, as can be seen from Table 1 (1), when only the amount of CaT i O3 added is changed, the amounts of other additives are constant, and the rest is SrTiO3, CaTi0. When the amount of addition is less than 15.00 mol%, the number of heat treatments to obtain a predetermined varistor voltage value is as large as 5 to 8 times, and the nonlinear coefficient α is also relatively small (temperature change rate of varistor voltage The absolute value of ΔE, . is also large.

また、Ca T i O3の添加量が26.00モル%
より大きい場合には、やはり非直線係数aは比較的小さ
(、バリスタ電圧の温度変化率△E t。
In addition, the amount of Ca Ti O3 added was 26.00 mol%
If larger, the nonlinear coefficient a is still relatively small (the rate of temperature change of the varistor voltage ΔE t).

の絶対値も大きい。The absolute value of is also large.

以上から、CaTiOsの添加量は15.00〜26.
00モル%の範囲が適当である。
From the above, the amount of CaTiOs added is 15.00 to 26.00.
A range of 0.00 mol% is suitable.

次に、第1表(2)ないし第1表(4)から分かるよう
に、N b z Os  L & 20 m及びTa1
lsのうちの1種類を添加する場合の添加量は、いずれ
も0.05〜0.50モル%の範囲が適当である。Nb
20s 、La2O3及び丁a z 03の添加量が上
記の範囲外であると、非直線係数aが低く、バリスタ電
圧の温度変化率△E toの絶対値も大きくなるからで
ある。
Next, as can be seen from Table 1 (2) to Table 1 (4), N b z Os L & 20 m and Ta1
When one type of ls is added, the appropriate amount is in the range of 0.05 to 0.50 mol%. Nb
This is because if the addition amounts of 20s, La2O3, and Dz03 are outside the above range, the nonlinear coefficient a will be low and the absolute value of the temperature change rate ΔE to of the varistor voltage will also be large.

次に、第1表(5)ないし第1表(8)から分かるよう
に、Cu O、F e 20 a 、 M n 02、
M o O3のうちの1種印を添加する場合の添加量に
ついても、いずれも0.05〜0.50モル%の範囲が
適当である。Cub、Fez Os、M n 02 、
M o Ozの添加量が上記の範囲外であると、やはり
非直線係数aが低く、バリスタ電圧の温度変化率△E1
゜の絶対値も太き(なるからである。
Next, as can be seen from Table 1 (5) to Table 1 (8), CuO, Fe20a, Mn02,
The addition amount in the case of adding type 1 of MoO3 is also suitably in the range of 0.05 to 0.50 mol%. Cub, Fez Os, M n 02,
If the amount of M o Oz added is outside the above range, the nonlinear coefficient a will still be low, and the temperature change rate of varistor voltage △E1
The absolute value of ° is also thick.

次に、第1表(9)から分かるように、3 i 02の
添加量は、0.50〜1.00モル%の範囲が適当であ
る。この範囲外であると、やはり非直線係数αが低く、
バリスタ電圧の温度変化率△E、。の絶対値も大きくな
るからである。
Next, as can be seen from Table 1 (9), the appropriate amount of 3i02 to be added is in the range of 0.50 to 1.00 mol%. Outside this range, the nonlinear coefficient α is still low;
Temperature change rate △E of varistor voltage. This is because the absolute value of will also increase.

さらに、第1表(10)及び第1表(11)から、Nb
z Os 、Lag Os及びTa20xのうちの2種
又は全種を添加する場合、及びCu、 01Fe20s
 、Mn0z 、MoO3のうちの2種又は全種を添加
する場合でも、相互に影響を及ぼすことなく大きな非直
線係数aが得られ、バリスタ電圧の温度変化率△E1゜
も十分低いものであることが分かる。
Furthermore, from Table 1 (10) and Table 1 (11), Nb
When adding two or all of zOs, LagOs and Ta20x, and Cu, 01Fe20s
, Mn0z, and MoO3, even if two or all of them are added, a large nonlinear coefficient a can be obtained without affecting each other, and the temperature change rate △E1° of the varistor voltage is also sufficiently low. I understand.

以上のように、各添加剤の添加量が上述の所定の範囲内
であれば、製作時に必要な熱処理の回数も2ないし3回
と少なくて済み、バリスタ電圧も8以上を確保しつつ非
直線係数も高く、バリスタ電圧の温度変化率も十分低い
電圧依存非直線抵抗体として使用することができるもの
である。
As described above, if the amount of each additive is within the specified range mentioned above, the number of heat treatments required during manufacturing can be as few as 2 or 3 times, and the varistor voltage can be maintained at 8 or higher while maintaining non-linear It has a high coefficient and a sufficiently low temperature change rate of varistor voltage, so it can be used as a voltage-dependent nonlinear resistor.

[発明の効果コ このように本発明により、非直線係数が大きく、かつバ
リスタ電圧も高いチタン酸ストロンチウム系電圧依存非
直線抵抗体を提供することができた。
[Effects of the Invention] As described above, according to the present invention, it was possible to provide a strontium titanate-based voltage-dependent nonlinear resistor having a large nonlinear coefficient and a high varistor voltage.

Claims (1)

【特許請求の範囲】[Claims] チタン酸ストロンチウム(SrTiO_3)を主成分と
する電圧依存比直線抵抗体において、チタン酸カルシウ
ム(CaTiO_3)を5.00〜26.00モル%、
ニオブ(Nb)、ランタン(La)及びタンタル(Ta
)の各元素の酸化物からなるグループから選択した1種
又は2種以上の酸化物の総量を0.05〜0.50モル
%、銅(Cu)、モリブデン(Mo)、鉄(Fe)及び
マンガン(Mn)の各元素の酸化物からなるグループか
ら選択した1種又は2種以上の酸化物の総量を0.05
〜0.50モル%、二酸化ケイ素(SiO_2)を0.
50〜1.00モル%それぞれ含有することを特徴とす
る電圧依存非直線抵抗体。
In a voltage-dependent specific linear resistor mainly composed of strontium titanate (SrTiO_3), calcium titanate (CaTiO_3) is contained in an amount of 5.00 to 26.00 mol%,
Niobium (Nb), lanthanum (La) and tantalum (Ta)
), the total amount of one or more oxides selected from the group consisting of oxides of each element is 0.05 to 0.50 mol%, copper (Cu), molybdenum (Mo), iron (Fe) and The total amount of one or more oxides selected from the group consisting of oxides of each element of manganese (Mn) is 0.05
~0.50 mol%, silicon dioxide (SiO_2) 0.
A voltage-dependent nonlinear resistor characterized by containing 50 to 1.00 mol% of each.
JP2076777A 1990-03-28 1990-03-28 Method of manufacturing voltage-dependent nonlinear resistor Expired - Fee Related JP2585121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076777A JP2585121B2 (en) 1990-03-28 1990-03-28 Method of manufacturing voltage-dependent nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076777A JP2585121B2 (en) 1990-03-28 1990-03-28 Method of manufacturing voltage-dependent nonlinear resistor

Publications (2)

Publication Number Publication Date
JPH03278403A true JPH03278403A (en) 1991-12-10
JP2585121B2 JP2585121B2 (en) 1997-02-26

Family

ID=13615025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076777A Expired - Fee Related JP2585121B2 (en) 1990-03-28 1990-03-28 Method of manufacturing voltage-dependent nonlinear resistor

Country Status (1)

Country Link
JP (1) JP2585121B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226120A (en) * 1988-03-07 1989-09-08 Matsushita Electric Ind Co Ltd Voltage-dependent non-linear resistor ceramic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226120A (en) * 1988-03-07 1989-09-08 Matsushita Electric Ind Co Ltd Voltage-dependent non-linear resistor ceramic composition

Also Published As

Publication number Publication date
JP2585121B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US4519942A (en) Semiconductive ceramic compositions with a nonlinear volt-ampere characteristic, and process for preparing coherent bodies of such compositions
EP0080611B1 (en) Semiconductive ceramic materials with a voltage-dependent nonlinear resistance, and process for preparation
JPS5935402A (en) Semiconductor porcelain substance having voltage dependent nonlinear resistance property
JPS5823722B2 (en) Manufacturing method of voltage nonlinear resistor porcelain
JPH03278403A (en) Voltage-dependent non-linear resistor
JPS61193419A (en) Reduction/reoxidation type semiconductor capacitor ceramic composition
JPS6257241B2 (en)
JPS63312616A (en) Semiconductor porcelain composition
JPS606535B2 (en) porcelain composition
JPS6320362B2 (en)
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JPS6257244B2 (en)
JPH01289206A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP2944697B2 (en) Voltage non-linear resistor ceramic composition
JP2638599B2 (en) Voltage non-linear resistor ceramic composition
JPH02146702A (en) Voltage-dependent nonlinear resistor
JP2573466B2 (en) Voltage non-linear resistor ceramic composition
JPS60170903A (en) Porcelain composition having voltage dependent nonlinear resistance characteristic
JPS61271802A (en) Voltage non-linear resistor ceramic composition
JPH0142606B2 (en)
JPH04144961A (en) Porcelain composition and production thereof
JPH08319157A (en) Barium titanate ceramic and its production
JPH01289205A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPH0450164A (en) Porcelain composition for resistor nonlinear to electric voltage
JPH03278402A (en) Voltage non-linear ceramic composite and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees