JPH01226120A - Voltage-dependent non-linear resistor ceramic composition - Google Patents

Voltage-dependent non-linear resistor ceramic composition

Info

Publication number
JPH01226120A
JPH01226120A JP63052879A JP5287988A JPH01226120A JP H01226120 A JPH01226120 A JP H01226120A JP 63052879 A JP63052879 A JP 63052879A JP 5287988 A JP5287988 A JP 5287988A JP H01226120 A JPH01226120 A JP H01226120A
Authority
JP
Japan
Prior art keywords
voltage
ceramic composition
mol
resistor ceramic
linear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052879A
Other languages
Japanese (ja)
Inventor
Keiichi Noi
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63052879A priority Critical patent/JPH01226120A/en
Publication of JPH01226120A publication Critical patent/JPH01226120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To increase dielectric constant, voltage non-linearity index, surge withstand amount, etc., by incorporating a third element Co3N2 in a voltage- dependent non-linear resistor ceramic composition consisting of the main element of a first element SrTiO3 and metal oxide of a second element. CONSTITUTION:A third element Co3N2 of 0.001-5.000mol% is contained within a voltage-dependent non-linear resistor ceramic composition consisting of the main element of a first element of 90.000-99.998mol% and the metal oxide of a second element of 0.001-5.000mol%. The first element consists of at least one type out of SrTiO3, CaXSr1-XTiO3(0.001<=X<=0.5), BaySr1-YTiO3(0.001<=Y<=0.5), MgzSr1-ZTiO3(0.001<=Z<=0.5). The second constituent consists of at least one type out of Nb2O5, Ta2O5, WO3, Dy2O3, La2O3, CeO2, Sm2O3, Pr6O11, and Nd2O3. It allows the dielectric constant, voltage non-linear index, surge withstand amount, etc., to be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気機器、電子機器で発生する異常高電圧、ノ
イズ、静電気から半導体及び回路を保護するためのコン
デンサ特性とバリスタ特性を有する電圧依存性非直線抵
抗体磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a voltage-independent non-voltage device having capacitor characteristics and varistor characteristics for protecting semiconductors and circuits from abnormal high voltages, noise, and static electricity generated in electrical equipment and electronic equipment. The present invention relates to a linear resistor ceramic composition.

従来の技術 従来、各種電気機器、電子機器における異常高電圧の吸
収、ノイズの除去、火花消去、静電気対策のために電圧
依存性非直線抵抗特性を有するSiCバリスタや、Zn
O系バリスタなどが使用されていた。このようなバリス
タの電圧−電流特性は近似的に次式のように表すことが
できる。
Conventional technology Conventionally, SiC varistors and Zn varistors, which have voltage-dependent nonlinear resistance characteristics, have been used to absorb abnormally high voltages, remove noise, eliminate sparks, and counter static electricity in various electrical and electronic devices.
O-type varistors were used. The voltage-current characteristics of such a varistor can be approximately expressed as in the following equation.

I=(V/C)(! ここで、工は電流、Vは電圧、Cはバリスタ固有の定数
、αは電圧非直線指数である。
I=(V/C)(! Here, engineering is the current, V is the voltage, C is a constant specific to the varistor, and α is the voltage nonlinearity index.

SiCバリスタのαは2〜7程度、ZnO系バリスタで
はαが50にもおよぶものがある。このようをバリスタ
は比較的高い電圧の吸収には優れた性能を有しているが
、誘電率が低く、固有の静電容量が小さいため、バリス
タ電圧以下の比較的低い電圧の吸収に対してはほとんど
効果を示さず、また誘電損失tan%% 5〜10 %
と大きい。
The α of SiC varistors is about 2 to 7, and the α of some ZnO-based varistors is as high as 50. Varistors have excellent performance in absorbing relatively high voltages, but due to their low dielectric constant and small inherent capacitance, they cannot absorb relatively low voltages below the varistor voltage. shows almost no effect, and dielectric loss tan%%% 5 to 10%
It's big.

一方、これらの低電圧のノイズなどの除去には見かけの
誘電率が5X10’ 程度で、tanδが1チ前後の半
導体コンデンサが利用されている。しかし、このような
半導体コンデンサは、サージなどによりある限度以上の
電圧または電流が印加されると、破壊したりしてコンデ
ンサとしての機能を果たさなくなったりする。
On the other hand, semiconductor capacitors with an apparent dielectric constant of about 5.times.10' and a tan .delta. of about 1 inch are used to remove these low voltage noises. However, if a voltage or current exceeding a certain limit is applied to such a semiconductor capacitor due to a surge or the like, it may break down and no longer function as a capacitor.

そこで、最近になって5rTi03を主成分とし、バリ
スタ特性とコンデンサ特性の両方の機能を有するものが
開発され、マイクロコンピュータなどの電子機器におけ
るIC,LSIなどの半導体素子の保護に使用されてい
る。
Therefore, recently, a material containing 5rTi03 as a main component and having both varistor and capacitor properties has been developed and is used to protect semiconductor elements such as ICs and LSIs in electronic devices such as microcomputers.

発明が解決しようとする課題 上記の5rTi05を主成分とするバリスタはZnO系
バリスタに比べ誘電率が約10倍と大きいが、電圧非直
線指数(α)やサージ耐量が小さく、粒内抵抗が高いた
め、高周波のノイズなどを十分に吸収できないといった
欠点を有していた。
Problems to be Solved by the Invention Although the above-mentioned 5rTi05-based varistor has a dielectric constant about 10 times higher than that of the ZnO-based varistor, the voltage nonlinearity index (α) and surge resistance are small, and the intragranular resistance is high. Therefore, it had the disadvantage of not being able to sufficiently absorb high-frequency noise.

そこで本発明では、誘電率が犬きく、αが大きいと共に
、サージ耐量が大きく、粒内抵抗が低い電圧依存性非直
線抵抗体磁器組成物を提供することを目的とするもので
ある。
Therefore, an object of the present invention is to provide a voltage-dependent nonlinear resistor ceramic composition that has a high dielectric constant, a large α, a large surge resistance, and a low intragranular resistance.

課題を解決するための手段 上記の課題を解決するために本発明では、5rTiO5
,y2O3,Oaz Srj −zT103 (0.0
01−xTiO3(0.001≦x≦O,E5)。
Means for Solving the Problems In order to solve the above problems, the present invention uses 5rTiO5
,y2O3,Oaz Srj -zT103 (0.0
01-xTiO3 (0.001≦x≦O, E5).

BaySr j −yTlos (0.001≦y≦0
.5) 。
BaySr j −yTlos (0.001≦y≦0
.. 5).

MgzSrl −zTi05 (0.001≦z≦0.
5)(以下第一成分と呼ぶ)のうち少なくとも1種類以
上を80.000〜99.997mol%、Nb2O5
,WO3,Dy2O3,Y2O3,Ta205゜WO5
r ”!205  +Y2O3+ ”205  + C
eO2+8m2O3+Pr60H、Na2O5(以下第
二成分と呼ぶ)のうち少なくとも1種類以上を0.00
1〜5. OOOmol%、Go3N2  (以下第三
成分と呼ぶ)を0.001〜5,WO3,Dy2O3,
Y2O3,OOOmol%含有してなるか、または上記
第一成分を80.000〜99.997no1%、第二
成分を0、001〜5. OOomol% 、第三成分
をO,OCN〜5. ooo mol%、さらにAd2
03.5b20.。
MgzSrl -zTi05 (0.001≦z≦0.
5) At least one type (hereinafter referred to as the first component) of 80.000 to 99.997 mol%, Nb2O5
, WO3, Dy2O3, Y2O3, Ta205゜WO5
r ”!205 +Y2O3+ ”205 + C
eO2+8m2O3+Pr60H, at least one of Na2O5 (hereinafter referred to as the second component) at 0.00%
1-5. OOOmol%, Go3N2 (hereinafter referred to as the third component) from 0.001 to 5, WO3, Dy2O3,
Y2O3, OOOmol%, or the first component is 80.000 to 99.997no1% and the second component is 0.001 to 5.0%. OOomol%, the third component is O, OCN~5. ooo mol%, plus Ad2
03.5b20. .

BaO、BeO、PbO、B2O3、CeO2、Gr2
03゜Fe2O3、CdO、K2O、CaO、Co2O
3,CuO。
BaO, BeO, PbO, B2O3, CeO2, Gr2
03゜Fe2O3, CdO, K2O, CaO, Co2O
3.CuO.

Cu2O、Li2O、MgO、MnO2、MoO2、N
a2O。
Cu2O, Li2O, MgO, MnO2, MoO2, N
a2O.

NiO、Rh2O3、5e02  、 Ag2O、5i
02. SiC。
NiO, Rh2O3, 5e02, Ag2O, 5i
02. SiC.

SrO、Td20 、 Th02 、 TiO2、V2
O5,WO3,Dy2O3,Y2O3,Bi2O3゜W
O,、ZnO、ZrO2、5n02  (以下第四成分
と呼ぶ)のうち少なくとも1種類以上を0.001〜1
0.000 mol%含有してなる電圧依存性非直線抵
抗体磁器組成物を得ることにより問題を解決しようとす
るものである。
SrO, Td20, Th02, TiO2, V2
O5, WO3, Dy2O3, Y2O3, Bi2O3゜W
At least one of O, ZnO, ZrO2, and 5n02 (hereinafter referred to as the fourth component) is 0.001 to 1
The purpose is to solve this problem by obtaining a voltage-dependent nonlinear resistor ceramic composition containing 0.000 mol%.

作用 上記発明において、第一成分は主成分であり、第二成分
は主に半導体化を促進する金属酸化物である。また、第
三成分は誘電率及び粒内抵抗の改善に寄与するものであ
り、第四成分は誘電率、α。
Function In the above invention, the first component is the main component, and the second component is mainly a metal oxide that promotes semiconductor formation. Further, the third component contributes to improving the dielectric constant and intragranular resistance, and the fourth component is the dielectric constant, α.

サージ耐量の改善に寄与するものである。特に、第三成
分は素子全体に均一に分散し、添加時点では窒化物であ
るが、環元焼成後に空気中で熱処理することにより酸化
物に変わり電子を放出する。
This contributes to improving surge resistance. In particular, the third component is uniformly dispersed throughout the device, and is a nitride at the time of addition, but when heated in air after firing the ring element, it changes to an oxide and emits electrons.

すなわち、粒界部分では拡散してきた多量の酸素により
酸化物が形成され、放出された電子は酸素イオンに捕獲
され粒界は絶縁化される。一方、粒子内部は酸素の拡散
が起こりにくいため大部分のCo 3N 2カ窒化物の
ままで存在し、仮に粒子内部まで酸素が拡散してきても
窒化物の原子価が変わることによって電子を放出するた
め、酸化による高抵抗化を抑制する作用をする。このた
め粒子内部を低抵抗にすることができる。
That is, oxides are formed at the grain boundaries due to the large amount of oxygen that has diffused, and the emitted electrons are captured by oxygen ions, making the grain boundaries insulating. On the other hand, inside the particle, oxygen diffusion is difficult to occur, so most of the Co 3N 2 nitride remains, and even if oxygen diffuses into the particle, the valence of the nitride changes and electrons are emitted. Therefore, it acts to suppress the increase in resistance due to oxidation. Therefore, the internal resistance of the particles can be made low.

実施例 以下に本発明を実施例を挙げて具体的に説明する。Example The present invention will be specifically described below with reference to Examples.

まず、SrCO3、CaCO3、BaCO3、ygco
、  。
First, SrCO3, CaCO3, BaCO3, ygco
, .

Ti02を下記の第1表に示す組成比になるように秤量
し、ボールミルなどで40時間混合し、乾燥した後、1
000°Cで15時間仮焼する。こうして得られた仮焼
物にFe2Nと添加物を下記の第1表に示す組成比にな
るように秤量し、ボールミルなどで24時間混合し、乾
燥した後、ポリビニルアルコールなどの有機バインダー
を10wt%添加して造粒した後、1(t/Cm)のプ
レス圧力で10φX1(II)の円板状に成形する。次
いで、空気中で1050’C,1時間仮焼脱バインダー
を行った後、N2 :H2=9 : 1の混合ガス中で
1400°C16時間焼成する。さらに、空気中で10
80°C914時間焼成し、このようにして得られた第
1図。
Ti02 was weighed to have the composition ratio shown in Table 1 below, mixed in a ball mill etc. for 40 hours, dried, and then
Calcinate at 000°C for 15 hours. Fe2N and additives were weighed to the thus obtained calcined product so as to have the composition ratio shown in Table 1 below, mixed in a ball mill etc. for 24 hours, dried, and then 10wt% of an organic binder such as polyvinyl alcohol was added. After granulation, it is molded into a disk shape of 10φ×1 (II) with a press pressure of 1 (t/Cm). Next, the binder is removed by calcination at 1050°C in air for 1 hour, and then fired at 1400°C for 16 hours in a mixed gas of N2:H2=9:1. Additionally, 10 in the air
Fig. 1 was obtained by firing at 80°C for 914 hours.

第2図に示す焼結体1の側平面に外周を残すようにして
Agなどの導電性ペーストをスクリーン印刷などにより
塗布し、600°C,5分間焼成し、電極2,3を形成
する。次に、図示してはいないが半田などによりリード
線を取付け、エポキシなどの樹脂を塗装する。このよう
にして得られた素子の特性を下記の第2表に示す。なお
、第2表において、誘電率はIKHzでの静電容量から
計算したものであり、粒内抵抗ESRは共振周波数での
インピーダンスにより評価し、αは α”” ’ / ”g (”+ o mh / Vlz
l )(ただし、”ImA + v+OmAは1mA、
1omAの電流を流した時に素子の両端にかかる電圧で
ある。)で評価した。また、サージ耐量はパルス性の電
流を印加した後のWinムの変化が±10%以内である
時の最大のパルス性電流値により評価している。
A conductive paste such as Ag is applied by screen printing or the like so as to leave the outer periphery on the side plane of the sintered body 1 shown in FIG. 2, and is fired at 600° C. for 5 minutes to form electrodes 2 and 3. Next, although not shown, lead wires are attached using solder or the like, and a resin such as epoxy is applied. The characteristics of the device thus obtained are shown in Table 2 below. In Table 2, the dielectric constant is calculated from the capacitance at IKHz, the intragranular resistance ESR is evaluated by the impedance at the resonant frequency, and α is α'''' / ''g (''+ o mh/Vlz
l) (However, “ImA + v+OmA is 1mA,
This is the voltage applied to both ends of the element when a current of 1 ohmA is applied. ) was evaluated. Further, the surge resistance is evaluated based on the maximum pulse current value when the change in Win after applying the pulse current is within ±10%.

(以下余白) く第1表〉 *印は比較例を示す *印は比較例を示す また、第一成分の5rTi03 、 CazSr、 −
zTi05(o、oo1−xTiO3(0.001≦x
≦0 、6 ) 、  BaySr +  yT103
(0.001≦y≦0.5)、  MgzSrl −z
TiO3(o、ool ≦z≦0.5)のx+’! +
 zの範囲を規定したのは、0.001未満では効果を
示さず、0.5を越えると粒成長及び半導体化が抑制さ
れ特−性が劣化するためである。さらに、第二成分は0
、001 mol係未満では効果を示さず、s、oo。
(The following is a margin) Table 1〉 *mark indicates a comparative example * mark indicates a comparative example In addition, the first component 5rTi03, CazSr, -
zTi05(o, oo1-xTiO3(0.001≦x
≦0, 6), BaySr + yT103
(0.001≦y≦0.5), MgzSrl −z
x+' of TiO3 (o, ool ≦z≦0.5)! +
The reason for specifying the range of z is that if it is less than 0.001, no effect will be shown, and if it exceeds 0.5, grain growth and semiconducting will be suppressed and the characteristics will deteriorate. Furthermore, the second component is 0
,001 mol, no effect is shown, s,oo.

mol%を越えると粒界に偏析して粒界の高抵抗化を抑
制し、粒界に第二相を形成するため特性が劣化すること
になる。そして、第三成分は0.001mol%未満で
は効果を示さず、5 、000 mol%を越えると粒
界に第二相を形成するため特性が劣化することになる。
If it exceeds mol%, it will segregate at the grain boundaries, suppress the increase in resistance of the grain boundaries, and form a second phase at the grain boundaries, resulting in deterioration of properties. If the third component is less than 0.001 mol%, it will not be effective, and if it exceeds 5,000 mol%, a second phase will be formed at the grain boundaries, resulting in deterioration of the properties.

また、第四成分は0.001 mol%未満では効果を
示さず、5.000 mol%を越えると粒界に第二相
を形成し粒成長が抑制され、粒界の抵抗は高くなるが粒
界の幅が厚くなるため、静電容量が小さくなると共にバ
リスタ電圧が高くなり、サージに対して弱くなることに
なる。
Furthermore, if the fourth component is less than 0.001 mol%, it has no effect, and if it exceeds 5.000 mol%, it forms a second phase at the grain boundaries, suppressing grain growth, and increases the resistance of the grain boundaries, but As the width of the field becomes thicker, the capacitance becomes smaller and the varistor voltage becomes higher, making it more vulnerable to surges.

なお、本実施例では一部の添加物の組み合わせについて
のみ示したが、1清求の範囲内であればその他の添加物
の組み合わせについても同様の効果があることを確認し
た。
In this example, only some combinations of additives were shown, but it was confirmed that other combinations of additives had similar effects as long as they were within the required range.

発明の効果 以上に示したように本発明によれば、誘電率ε。Effect of the invention As shown above, according to the present invention, the dielectric constant ε.

電圧非直線指数αが大きく、粒内抵抗が小さいため、高
周波のノイズを吸収すると共に、サージ電流が印加され
た後の発熱が少ないため、素子の劣化が小さく、サージ
耐量が大きくなるという効果が得られる。
Because the voltage nonlinearity index α is large and the intragranular resistance is small, it absorbs high-frequency noise and generates little heat after a surge current is applied, resulting in less element deterioration and higher surge resistance. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子を示す平面図、第2図は本発
明による素子を示す断面図である。 1・・・・・・焼結体、2,3・・・・・・電極。
FIG. 1 is a plan view showing an element according to the invention, and FIG. 2 is a sectional view showing an element according to the invention. 1... Sintered body, 2, 3... Electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)SrTiO_36,Ca_xSr_1_−_xT
iO_3(0.001≦x≦0.5),Ba_ySr_
1_−_yTiO_3(0.001≦y≦0.5),M
g_zSr_1_−_zTiO_3(0.001≦z≦
0.5)のうち少なくとも1種類以上を90.000〜
99.998mol%,Nb_2O_5,Ta_2O_
5,WO_3,Dy_2O_5,y_2O_3,La_
2O_3,CeO_2,Sm_2O_3,Pr_6O_
1_1,Nd_2O_3,のうち少なくとも1種類以上
を0.001〜5.000mol%、Co_3N_2を
0.001〜5.000mol%含有してなる電圧依存
性非直線抵抗体磁器組成物。
(1) SrTiO_36, Ca_xSr_1_-_xT
iO_3(0.001≦x≦0.5), Ba_ySr_
1_-_yTiO_3 (0.001≦y≦0.5), M
g_zSr_1_−_zTiO_3(0.001≦z≦
0.5) at least one type from 90,000~
99.998mol%, Nb_2O_5, Ta_2O_
5, WO_3, Dy_2O_5, y_2O_3, La_
2O_3, CeO_2, Sm_2O_3, Pr_6O_
1_1, Nd_2O_3, and 0.001 to 5.000 mol% of Co_3N_2.
(2)SrTiO_3,Ca_xSr_1_−_xTi
O_3(0.001≦x≦0.5),Ba_ySr_1
_−_yTiO_3(0.001≦y≦0.5),Mg
_zSr_1_−_zTiO_3(0.001≦z≦0
.5)のうち少なくとも1種類以上を80.000〜9
9.997mol%、Nb_2O_5,Ta_2O_5
,WO_3,Dy_2O_3,Y_2O_3,La_2
O_3,CeO_2,Sm_2O_3,Pr_6O_1
_1,Nd_2O_3のうち少なくとも1種類以上を0
.001〜5.000mol%、Co_3N_2を0.
001〜5.000mol%、Al_2O_3,Sb_
2O_3,BaO,BeO,PbO,B_2O_3,C
eO_2,Cr_2O_3,Fe_2O_3,CdO,
K_2O,CaO,Ce_2O_3,CuO,Cu_2
O,Li_2O,MgO,MnO_2,MoO_3,N
a_2O,NiO,Rh_2O_3,SeO_2,Ag
_2O,SiO_2,SiC,SrO,Tl_2O,T
hO_2,TiO_2,V_2O_5,Bi_2O_3
,WO_3,ZnO,ZrO_2,SnO_2のうち少
なくとも1種類以上を0.001〜10.000mol
%含有してなる電圧依存性非直線抵抗体磁器組成物。
(2) SrTiO_3, Ca_xSr_1_-_xTi
O_3 (0.001≦x≦0.5), Ba_ySr_1
____yTiO_3 (0.001≦y≦0.5), Mg
_zSr_1_−_zTiO_3 (0.001≦z≦0
.. 80.000-9 for at least one of the following
9.997 mol%, Nb_2O_5, Ta_2O_5
, WO_3, Dy_2O_3, Y_2O_3, La_2
O_3, CeO_2, Sm_2O_3, Pr_6O_1
At least one of _1, Nd_2O_3 is 0
.. 001-5.000 mol%, Co_3N_2 0.
001-5.000 mol%, Al_2O_3, Sb_
2O_3, BaO, BeO, PbO, B_2O_3, C
eO_2, Cr_2O_3, Fe_2O_3, CdO,
K_2O, CaO, Ce_2O_3, CuO, Cu_2
O, Li_2O, MgO, MnO_2, MoO_3, N
a_2O, NiO, Rh_2O_3, SeO_2, Ag
_2O, SiO_2, SiC, SrO, Tl_2O, T
hO_2, TiO_2, V_2O_5, Bi_2O_3
, WO_3, ZnO, ZrO_2, SnO_2 in an amount of 0.001 to 10.000 mol.
A voltage-dependent nonlinear resistor ceramic composition containing %.
JP63052879A 1988-03-07 1988-03-07 Voltage-dependent non-linear resistor ceramic composition Pending JPH01226120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052879A JPH01226120A (en) 1988-03-07 1988-03-07 Voltage-dependent non-linear resistor ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052879A JPH01226120A (en) 1988-03-07 1988-03-07 Voltage-dependent non-linear resistor ceramic composition

Publications (1)

Publication Number Publication Date
JPH01226120A true JPH01226120A (en) 1989-09-08

Family

ID=12927168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052879A Pending JPH01226120A (en) 1988-03-07 1988-03-07 Voltage-dependent non-linear resistor ceramic composition

Country Status (1)

Country Link
JP (1) JPH01226120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278403A (en) * 1990-03-28 1991-12-10 Taiyo Yuden Co Ltd Voltage-dependent non-linear resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278403A (en) * 1990-03-28 1991-12-10 Taiyo Yuden Co Ltd Voltage-dependent non-linear resistor

Similar Documents

Publication Publication Date Title
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH03109261A (en) Production of porcelain composition for nonlinear resistor having voltage dependency and varistor
JPH01226120A (en) Voltage-dependent non-linear resistor ceramic composition
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2822612B2 (en) Varistor manufacturing method
JP2808777B2 (en) Varistor manufacturing method
JPH038760A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPH01226115A (en) Voltage-dependent non-linearity resistor ceramic composition
JP2808778B2 (en) Varistor manufacturing method
JPH01175702A (en) Voltage-dependent non-linear resistor having porcelain composition
JPS63215001A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH01226110A (en) Voltage-dependent non-linearity resistor ceramic composition
JP2548277B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPH01226112A (en) Voltage-depending non-linearity resistor ceramic composition
JP2548279B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPH01226114A (en) Voltage-dependent non-linear resistor ceramic composition
JPH038766A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPS63215017A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH01226119A (en) Voltage-dependent non-linear resistor ceramic composition
JPS63215018A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63296310A (en) Voltage dependency nonlinear resistor porcelain composition
JPS63215019A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215006A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215005A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215014A (en) Voltage-dependent nonlinear resistor porcelain compound