JP2822612B2 - Varistor manufacturing method - Google Patents

Varistor manufacturing method

Info

Publication number
JP2822612B2
JP2822612B2 JP2151976A JP15197690A JP2822612B2 JP 2822612 B2 JP2822612 B2 JP 2822612B2 JP 2151976 A JP2151976 A JP 2151976A JP 15197690 A JP15197690 A JP 15197690A JP 2822612 B2 JP2822612 B2 JP 2822612B2
Authority
JP
Japan
Prior art keywords
component
varistor
mol
tio
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2151976A
Other languages
Japanese (ja)
Other versions
JPH0443603A (en
Inventor
慶一 野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2151976A priority Critical patent/JP2822612B2/en
Publication of JPH0443603A publication Critical patent/JPH0443603A/en
Application granted granted Critical
Publication of JP2822612B2 publication Critical patent/JP2822612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気機器、電子機器で発生する異常高電圧、
ノイズ、静電気などから機器の半導体及び回路を保護す
るためのコンデンサ特性とバリスタ特性を有するバリス
タの製造方法に関するものである。
The present invention relates to an electric device, an abnormal high voltage generated in an electronic device,
The present invention relates to a method for manufacturing a varistor having capacitor characteristics and varistor characteristics for protecting semiconductors and circuits of equipment from noise, static electricity, and the like.

従来の技術 従来、各種の電気機器、電子機器における異常高電圧
の吸収、ノイズの除去、火花消去、静電気対策のために
電圧依存性非直線抵抗特性を有するSiCバリスタや、ZnO
系バリスタなどが使用されている。このようなバリスタ
の電圧−電流特性は近似的に次式のように表すことがで
きる。
Conventional technology Conventionally, SiC varistors with voltage-dependent non-linear resistance characteristics, such as absorption of abnormal high voltage, noise elimination, spark extinction, and static electricity countermeasures in various electric and electronic devices, and ZnO
System varistors are used. The voltage-current characteristics of such a varistor can be approximately expressed by the following equation.

I=(V/C)α ここで、Iは電流、Vは電圧、Cはバリスタ固有の定
数、αは電圧−電流非直線指数である。
I = (V / C) α where I is current, V is voltage, C is a varistor-specific constant, and α is voltage-current nonlinear exponent.

SiCバリスタのαは2〜7程度、ZnO系バリスタではα
が50にもおよぶものがある。このようなバリスタは比較
的高い電圧の吸収には優れた性能を有しているが、誘電
率が低く、固有の静電容量が小さいため、バリスタ電圧
以下の比較的低い電圧の吸収にはほとんど効果を示さ
ず、また誘電損失tanδが5〜10%と大きい。
Α of the SiC varistor is about 2 to 7, and α of the ZnO varistor.
There are as many as 50. Such varistors have excellent performance in absorbing relatively high voltages, but because of their low dielectric constant and small inherent capacitance, they are almost insensitive to absorbing relatively low voltages below the varistor voltage. No effect is exhibited, and the dielectric loss tan δ is as large as 5 to 10%.

一方、これらの低電圧ノイズなどの除去には見かけの
誘電率が5×104程度で、tanδが1%前後の半導体コン
デンサが利用されている。しかし、このような半導体コ
ンデンサはサージなどによりある限度以上の電圧または
電流が印加されると、静電容量が減少したり破壊したり
して、コンデンサとしての機能を果たさなくなったりす
る。
On the other hand, a semiconductor capacitor having an apparent dielectric constant of about 5 × 10 4 and a tan δ of about 1% is used for removing these low-voltage noises and the like. However, when a voltage or current exceeding a certain limit is applied to such a semiconductor capacitor due to a surge or the like, the capacitance is reduced or destroyed, and the function as a capacitor is not fulfilled.

そこで最近になってSrTiO3を主成分とし、バリスタ特
性とコンデンサ特性の両方の機能を有するものが開発さ
れ、コンピュータなどの電子機器におけるIC,LSIなどの
半導体素子の保護に利用されている。
In recent years, a device having SrTiO 3 as a main component and having both functions of a varistor characteristic and a capacitor characteristic has been developed, and is used for protecting semiconductor elements such as ICs and LSIs in electronic devices such as computers.

発明が解決しようとする課題 上記のSrTiO3を主成分とするバリスタとコンデンサの
両方の機能を有する素子は、ZnO系バリスタに比べ誘電
率が約10倍と大きいが、αやサージ耐量が小さく、バリ
スタ電圧を低くすると特性が劣化しやすいといった欠点
を有していた。
Problems to be Solved by the Invention An element having both functions of a varistor and a capacitor mainly composed of SrTiO 3 as described above has a dielectric constant of about 10 times as large as that of a ZnO-based varistor, but has a small α and a surge withstand capacity, If the varistor voltage is reduced, the characteristics are liable to deteriorate.

そこで本発明では、誘電率が大きく、バリスタ電圧が
低く、αが大きいと共にサージ耐量が大きいバリスタの
製造方法を提供することを目的とするものである。
Therefore, an object of the present invention is to provide a method of manufacturing a varistor having a large dielectric constant, a low varistor voltage, a large α and a large surge withstand capability.

課題を解決するための手段 そしてこの目的を達成するために本発明のバリスタの
製造方法は、第1成分Sr1-xMgxTiO3(0.001≦x≦0.30
0)を90.000〜99.998mol%、第2成分Nb2O3,Ta2O5,WO3,
Dy2O3,Y2O3,La2O3,CeO2,Sm2O3,Pr6O11,Nd2O3のうち少な
くとも1種類以上を0.001〜5.000mol%、第3成分Al
2O3,Sb2O3,BaO,BeO,PbO,B2O3,Cr2O3,Fe2O3,CdO,K2O,Ca
O,Co2O3,CuO,Cu2O,Li2O,LiF,MgO,MnO2,MoO3,Na2O,NaF,N
iO,Rh2O3,SeO2,Ag2O,SiO2,SiC,SrO,Tl2O3,ThO2,TiO2,V2
O5,Bi2O3,ZnO,ZrO2,SnO2のうち少なくとも1種類以上を
0.001〜5.000mol%含有したもの100重量部に、MgTiO36
0.000〜32.500mol%,SiO240.000〜67.5mol%からなる混
合物を1200℃以上で焼成して得た第4成分を0.001〜10.
000重量部混合して1100℃以上で焼成するものである。
Means for Solving the Problems And in order to achieve this object, a method for manufacturing a varistor according to the present invention comprises a first component Sr 1-x Mg x TiO 3 (0.001 ≦ x ≦ 0.30
0) from 90.000 to 99.998 mol%, the second component Nb 2 O 3 , Ta 2 O 5 , WO 3 ,
Dy 2 O 3, Y 2 O 3, La 2 O 3, CeO 2, Sm 2 O 3, Pr 6 O 11, 0.001~5.000mol% of at least one or more of Nd 2 O 3, the third component Al
2 O 3 , Sb 2 O 3 , BaO, BeO, PbO, B 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , CdO, K 2 O, Ca
O, Co 2 O 3 , CuO, Cu 2 O, Li 2 O, LiF, MgO, MnO 2 , MoO 3 , Na 2 O, NaF, N
iO, Rh 2 O 3 , SeO 2 , Ag 2 O, SiO 2 , SiC, SrO, Tl 2 O 3 , ThO 2 , TiO 2 , V 2
O 5 , Bi 2 O 3 , ZnO, ZrO 2 , SnO 2
To 100 parts by weight of one containing 0.001~5.000mol%, MgTiO 3 6
The fourth component obtained by calcining a mixture consisting of 0.000 to 32.500 mol% and 40.000 to 67.5 mol% of SiO 2 at 1200 ° C. or more is 0.001 to 10.
000 parts by weight are mixed and fired at 1100 ° C. or higher.

作用 上記構成において、第1成分は主たる成分であり、Sr
TiO3のSrの一部をMgで置換することにより、粒界に高抵
抗層が形成されサージに対して強くできる。
Action In the above configuration, the first component is a main component, and Sr
By substituting a part of Sr of TiO 3 with Mg, a high-resistance layer is formed at the grain boundary, and it can be made strong against surge.

また、第2成分は主に第1成分の半導体化を促進する
金属酸化物である。さらに、第3成分は誘電率、α、サ
ージ耐量の改善に寄与するものであり、第4成分はバリ
スタ電圧の低下、誘電率の改善に有効なものである。特
に、第4成分は融点が1230〜1250℃と比較的低いため、
融点前後の温度である1100℃以上で焼成すると液相とな
り、その他の成分の反応を促進すると共に粒子の成長を
促進する。そのため粒界部分に第3成分が偏析し、粒界
が高抵抗化されやすくなり、バリスタ機能およびコンデ
ンサ機能が改善される。また、粒成長が促進されるため
バリスタ電圧が低くなり、粒子径の均一性が向上し、サ
ージ電流が均一に流れるため特性の安定性が良くなり、
特にサージ耐量が改善される。
The second component is a metal oxide that mainly promotes the conversion of the first component into a semiconductor. Further, the third component contributes to the improvement of the dielectric constant, α, and the surge withstand capability, and the fourth component is effective for lowering the varistor voltage and improving the dielectric constant. In particular, since the fourth component has a relatively low melting point of 1230 to 1250 ° C,
When calcined at 1100 ° C. or higher, which is a temperature around the melting point, a liquid phase is formed, which promotes the reaction of other components and the growth of particles. Therefore, the third component is segregated in the grain boundary portion, and the resistance of the grain boundary is easily increased, so that the varistor function and the capacitor function are improved. In addition, the varistor voltage is reduced because the grain growth is promoted, the uniformity of the particle diameter is improved, and the stability of the characteristics is improved because the surge current flows uniformly,
In particular, the surge resistance is improved.

従って上記目的を達成することができるのである。 Therefore, the above object can be achieved.

実施例 以下に実施例を挙げて本発明を具体的に説明する。Examples Hereinafter, the present invention will be described specifically with reference to examples.

まず、MgTiO3,SiO2を下記の第1表に示すように組成
比を種々変えて秤量し、ボールミルなどで24Hr混合す
る。次に、乾燥した後、下記の第1表に示すように温度
を種々変えて焼成し、再びボールミルなどで24Hr粉砕し
た後、乾燥し第4成分とする。次いで、第1成分、第2
成分、第3成分、第4成分を下記の第1表に示した組成
比になるように秤量し、ボールミルなどで24Hr混合した
後、乾燥し、ポリビニルアルコールなどの有機バインダ
ーを10wt%添加して造粒した後、1(t/cm2)のプレス
圧力で10φ×1t(mm)の円板状に成形し、1100℃で12Hr
焼成し脱バインダーする。次に、第1表に示したように
温度と時間を種々変えて焼成(第1焼成)し、その後還
元性雰囲気、例えば、N2:H2=9:1のガス中で温度と時間
を種々変えて焼成(第2焼成)する。さらにその後、酸
化性雰囲気中で温度と時間を種々変えて焼成(第3焼
成)する。
First, MgTiO 3 and SiO 2 are weighed at various composition ratios as shown in Table 1 below and mixed for 24 hours by a ball mill or the like. Next, after being dried, it is fired at various temperatures as shown in Table 1 below, again ground for 24 hours by a ball mill or the like, and then dried to obtain a fourth component. Then, the first component, the second
The components, the third component, and the fourth component are weighed so as to have the composition ratios shown in Table 1 below, mixed for 24 hours using a ball mill or the like, dried, and added with an organic binder such as polyvinyl alcohol at 10 wt%. After granulation, it is formed into a 10φ × 1 t (mm) disk at a press pressure of 1 (t / cm 2 ), and 12 hours at 1100 ° C.
Baking and debinding. Next, as shown in Table 1, firing is performed at various temperatures and times (first firing), and then the temperature and time are reduced in a reducing atmosphere, for example, a gas of N 2 : H 2 = 9: 1. The firing (second firing) is performed with various changes. After that, firing (third firing) is performed in an oxidizing atmosphere with various changes in temperature and time.

上記のようにして得られた第1図および第2図に示す
焼結体1の両平面に外周を残すようにしてAgなどの導電
性ペーストをスクリーン印刷などにより塗布し、630℃,
3minで焼成し、電極2,3を形成する。次に、半田などに
よりリード線(図示せず)を取付け、エポキシなどの樹
脂(図示せず)を塗装する。このようにして得られた素
子の特性を下記の第2表に示す。
A conductive paste such as Ag is applied by screen printing or the like so as to leave an outer periphery on both planes of the sintered body 1 shown in FIGS. 1 and 2 obtained as described above.
Baking is performed for 3 minutes to form electrodes 2 and 3. Next, a lead wire (not shown) is attached with solder or the like, and a resin (not shown) such as epoxy is applied. The characteristics of the device thus obtained are shown in Table 2 below.

なお、第2表において、誘電率は1KHzでの静電容量か
ら計算したものであり、αは α=1/log(V10mA/V1mA) (ただし、V1mA,V10mAは1mA,10mAの電流を流した時に素
子の両端にかかる電圧である。)で評価した。また、サ
ージ耐量はパルス性の電流を印加した後のV1mAの変化率
が±10%以内である時の最大のパルス性電流値により評
価している。
In Table 2, the permittivity is calculated from the capacitance at 1 KHz, and α is α = 1 / log (V 10 mA / V 1 mA ) (where V 1 mA and V 10 mA are 1 mA and 10 mA, respectively). This is the voltage applied to both ends of the device when a current is applied.) The surge withstand capability is evaluated based on the maximum pulse current value when the change rate of V1mA after applying the pulse current is within ± 10%.

本発明において、第1成分のSr1-xMgxTiO3のxの範囲
を規定したのは、xが0.001よりも小さいと効果を示さ
ず、0.300を超えると格子欠陥が発生しにくくなるため
半導体化が促進されず、粒界にMgが単一相として析出す
るため組織が不均一になり、V1mAが高くなりすぎて特性
が劣化するためである。さらに、第2成分は0.001mol%
未満では効果を示さず、5.000mol%を超えると粒界に偏
析して粒界の高抵抗化を抑制し、粒界に第2相を形成す
ることから特性が劣化するものである。また、第3成分
は0.001mol%未満では効果を示さず、5.000mol%を超え
ると粒界に偏析して第2相を形成することから特性が劣
化するものである。そして、第4成分はMgTiO3とSiO2
2成分系の相図のなかで最も融点の低い領域の物質であ
り、その範囲外では融点が高くなるものである。また、
第4成分の添加量は、0.001重量部未満では効果を示さ
ず、10.000重量部を超えると粒界の抵抗は高くなるが粒
界の幅が厚くなるため、静電容量が小さくなると共にV
1mAが高くなり、サージに対して弱くなるものである。
さらに、第4成分の焼成温度を規定したのは、低融点の
第4成分が合成される温度が1200℃であるためである。
そして、第1焼成の温度を規定したのは、第4成分の融
点が1230〜1250℃であるため、1100℃以上の温度で焼成
すると第4成分が液相に近い状態になって焼結が促進さ
れるためであり、1100℃未満では第4成分の液相焼結効
果がないためである。また、第2焼成の温度を規定した
のは、1200℃未満では第1焼成後の焼結体が十分に還元
されず、バリスタ特性、コンデンサ特性が共に劣化する
ためである。さらに、第3焼成の温度を規定したのは、
900℃未満では粒界の高抵抗化が十分に進まないため、V
1mAが低くなりすぎバリスタ特性が劣化するためであ
り、1300℃を超えると静電容量が小さくなりすぎコンデ
ンサ特性が劣化するためである。さらに、第1焼成の雰
囲気は酸化性雰囲気でも還元性雰囲気でも同様の効果が
あることを確認した。
In the present invention, the reason for defining the range of x of the first component Sr 1-x Mg x TiO 3 is that no effect is exhibited when x is smaller than 0.001, and lattice defects are less likely to occur when x exceeds 0.300. This is because the formation of a semiconductor is not promoted, and Mg precipitates as a single phase at the grain boundary, resulting in a non-uniform structure and an excessively high V1mA , resulting in deterioration of characteristics. Furthermore, the second component is 0.001 mol%
If the amount is less than 5.000 mol%, segregation at the grain boundaries suppresses the increase in the resistance of the grain boundaries, and the second phase is formed at the grain boundaries, thus deteriorating the properties. If the content of the third component is less than 0.001 mol%, no effect is exhibited, and if it exceeds 5.000 mol%, the second phase is formed by segregation at the grain boundary, so that the properties are deteriorated. The fourth component is a substance in the region having the lowest melting point in the phase diagram of the binary system of MgTiO 3 and SiO 2 , and has a higher melting point outside the range. Also,
If the addition amount of the fourth component is less than 0.001 part by weight, no effect is exhibited, and if it exceeds 10.000 parts by weight, the resistance of the grain boundary increases, but the width of the grain boundary increases, so that the capacitance decreases and V
1mA is high and it is weak against surge.
Further, the sintering temperature of the fourth component is specified because the temperature at which the low-melting fourth component is synthesized is 1200 ° C.
The temperature of the first firing is specified because the melting point of the fourth component is 1230 to 1250 ° C, so that when firing at a temperature of 1100 ° C or higher, the fourth component is in a state close to a liquid phase and sintering is performed. If the temperature is lower than 1100 ° C., there is no liquid phase sintering effect of the fourth component. The reason why the temperature of the second firing is specified is that if the temperature is lower than 1200 ° C., the sintered body after the first firing is not sufficiently reduced, and both the varistor characteristics and the capacitor characteristics are deteriorated. Further, the reason for defining the temperature of the third firing is as follows.
If the temperature is lower than 900 ° C, the resistance of the grain boundaries cannot be sufficiently increased, so that V
This is because 1 mA is too low and the varistor characteristics are deteriorated. If the temperature exceeds 1300 ° C., the capacitance is too small and the capacitor characteristics are deteriorated. Further, it was confirmed that the same effect was obtained regardless of whether the atmosphere for the first firing was an oxidizing atmosphere or a reducing atmosphere.

また、本実施例では添加物の組み合わせについては、
第1成分としてSr1-xMgxTiO3(0.001≦x≦0.300)、第
2成分としてNb2O5,Ta2O5,WO3,Dy2O3,Y2O3,La2O3,Ce
O2、第3成分としてAl2O3,PbO,Cr2O3,CdO,K2O,Co2O3,Cu
O,Cu2O,MnO2,MoO3,NiO,Ag2O,SiC,Tl2O3,ZnO,ZrO2、第4
成分としてMgTiO3,SiO2についてのみ示したが、その他
に第2成分としてSm2O3,Pr6O11,Nd2O3、第3成分として
Sb2O3,BaO,BeO,B2O3,Fe2O3,CaO,Li2O,LiF,MgO,Na2O,Na
F,Rh2O3,SeO2,SiO2,SrO,ThO2,TiO2,V2O5,Bi2O3,SnO2
用いた組成の組み合わせでも同様の効果が得られること
を確認した。また、第2成分および第3成分について
は、それぞれ2種類以上を所定の範囲で組み合わせて用
いても差支えないことを併せて確認した。
In this example, the combination of additives is as follows.
Sr 1-x Mg x TiO 3 (0.001 ≦ x ≦ 0.300) as the first component, Nb 2 O 5 , Ta 2 O 5 , WO 3 , Dy 2 O 3 , Y 2 O 3 , La 2 O as the second component 3 , Ce
O 2 , Al 2 O 3 , PbO, Cr 2 O 3 , CdO, K 2 O, Co 2 O 3 , Cu as the third component
O, Cu 2 O, MnO 2 , MoO 3 , NiO, Ag 2 O, SiC, Tl 2 O 3 , ZnO, ZrO 2 , 4th
Although only MgTiO 3 and SiO 2 are shown as components, Sm 2 O 3 , Pr 6 O 11 , Nd 2 O 3 as a second component, and a third component as a second component
Sb 2 O 3 , BaO, BeO, B 2 O 3 , Fe 2 O 3 , CaO, Li 2 O, LiF, MgO, Na 2 O, Na
It has been confirmed that the same effect can be obtained with the combination of compositions using F, Rh 2 O 3 , SeO 2 , SiO 2 , SrO, ThO 2 , TiO 2 , V 2 O 5 , Bi 2 O 3 , SnO 2 . It was also confirmed that two or more types of the second component and the third component may be used in combination within a predetermined range.

なお、第1成分、第2成分、第3成分、第4成分を第
1焼成するだけでも第4成分が液相となり、その他の成
分の反応を促進すると共に粒子の成長を促進するため、
粒界部分に第3成分が偏析しやすくなり、粒界が高抵抗
化され易くなり、バリスタ機能およびコンデンサ機能が
改善されるという効果がある。
The first component, the second component, the third component, and the fourth component are simply subjected to the first baking, so that the fourth component becomes a liquid phase, which promotes the reaction of other components and the growth of particles.
There is an effect that the third component is easily segregated in the grain boundary portion, the grain boundary is easily increased in resistance, and the varistor function and the capacitor function are improved.

発明の効果 以上本発明によれば、バリスタ電圧が低く、誘電率ε
およびαが大きく、安定な電気特性を有し、特にサージ
耐量が大きなバリスタを得ることができる。
According to the present invention, the varistor voltage is low and the dielectric constant ε
A varistor having large and α and having stable electric characteristics, and particularly having a large surge withstand capability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による素子を示す上面図、第2図は本発
明による素子を示す断面図である。 1……焼結体、2,3……電極。
FIG. 1 is a top view showing the device according to the present invention, and FIG. 2 is a cross-sectional view showing the device according to the present invention. 1 ... Sintered body, 2,3 ... Electrode.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1成分Sr1-xMgxTiO3(0.001≦x≦0.30
0)を90.000〜99.998mol%、第2成分Nb2O3,Ta2O5,WO3,
Dy2O3,Y2O3,La2O3,CeO2,Sm2O3,Pr6O11,Nd2O3のうち少な
くとも1種類以上を0.001〜5.000mol%、第3成分Al
2O3,Sb2O3,BaO,BeO,PbO,B2O3,Cr2O3,Fe2O3,CdO,K2O,Ca
O,Co2O3,CuO,Cu2O,Li2O,LiF,MgO,MnO2,MoO3,Na2O,NaF,N
iO,Rh2O3,SeO2,Ag2O,SiO2,SiC,SrO,Tl2O3,ThO2,TiO2,V2
O5,Bi2O3,ZnO,ZrO2,SnO2のうち少なくとも1種類以上を
0.001〜5.000mol%含有したもの100重量部に、MgTiO36
0.000〜32.500mol%,SiO240.000〜67.5mol%からなる混
合物を1200℃以上で焼成して得た第4成分を0.001〜10.
000重量部混合して1100℃以上で焼成するバリスタの製
造方法。
A first component Sr 1-x Mg x TiO 3 (0.001 ≦ x ≦ 0.30
0) from 90.000 to 99.998 mol%, the second component Nb 2 O 3 , Ta 2 O 5 , WO 3 ,
Dy 2 O 3, Y 2 O 3, La 2 O 3, CeO 2, Sm 2 O 3, Pr 6 O 11, 0.001~5.000mol% of at least one or more of Nd 2 O 3, the third component Al
2 O 3 , Sb 2 O 3 , BaO, BeO, PbO, B 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , CdO, K 2 O, Ca
O, Co 2 O 3 , CuO, Cu 2 O, Li 2 O, LiF, MgO, MnO 2 , MoO 3 , Na 2 O, NaF, N
iO, Rh 2 O 3 , SeO 2 , Ag 2 O, SiO 2 , SiC, SrO, Tl 2 O 3 , ThO 2 , TiO 2 , V 2
O 5 , Bi 2 O 3 , ZnO, ZrO 2 , SnO 2
To 100 parts by weight of one containing 0.001~5.000mol%, MgTiO 3 6
The fourth component obtained by calcining a mixture consisting of 0.000 to 32.500 mol% and 40.000 to 67.5 mol% of SiO 2 at 1200 ° C. or more is 0.001 to 10.
A varistor manufacturing method in which 000 parts by weight are mixed and fired at 1100 ° C. or higher.
【請求項2】第1成分Sr1-xMgxTiO3(0.001≦x≦0.30
0)を90.000〜99.998mol%、第2成分Nb2O3,Ta2O5,WO3,
Dy2O3,Y2O3,La2O3,CeO2,Sm2O3,Pr6O11,Nd2O3のうち少な
くとも1種類以上を0.001〜5.000mol%、第3成分Al
2O3,Sb2O3,BaO,BeO,PbO,B2O3,Cr2O3,Fe2O3,CdO,K2O,Ca
O,Co2O3,CuO,Cu2O,Li2O,LiF,MgO,MnO2,MoO3,Na2O,NaF,N
iO,Rh2O3,SeO2,Ag2O,SiO2,SiC,SrO,Tl2O3,ThO2,TiO2,V2
O5,Bi2O3,ZnO,ZrO2,SnO2のうち少なくとも1種類以上を
0.001〜5.000mol%含有したもの100重量部に、MgTiO36
0.000〜32.500mol%,SiO240.000〜67.5mol%からなる混
合物を1200℃以上で焼成して得た第4成分を0.001〜10.
000重量部混合して1100℃以上で焼成し、次に還元雰囲
気中、1200℃以上で焼成し、その後酸化性雰囲気中、90
0〜1300℃で焼成するバリスタの製造方法。
2. The first component Sr 1-x Mg x TiO 3 (0.001 ≦ x ≦ 0.30
0) from 90.000 to 99.998 mol%, the second component Nb 2 O 3 , Ta 2 O 5 , WO 3 ,
Dy 2 O 3, Y 2 O 3, La 2 O 3, CeO 2, Sm 2 O 3, Pr 6 O 11, 0.001~5.000mol% of at least one or more of Nd 2 O 3, the third component Al
2 O 3 , Sb 2 O 3 , BaO, BeO, PbO, B 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , CdO, K 2 O, Ca
O, Co 2 O 3 , CuO, Cu 2 O, Li 2 O, LiF, MgO, MnO 2 , MoO 3 , Na 2 O, NaF, N
iO, Rh 2 O 3 , SeO 2 , Ag 2 O, SiO 2 , SiC, SrO, Tl 2 O 3 , ThO 2 , TiO 2 , V 2
O 5 , Bi 2 O 3 , ZnO, ZrO 2 , SnO 2
To 100 parts by weight of one containing 0.001~5.000mol%, MgTiO 3 6
The fourth component obtained by calcining a mixture consisting of 0.000 to 32.500 mol% and 40.000 to 67.5 mol% of SiO 2 at 1200 ° C. or more is 0.001 to 10.
000 parts by weight mixed and fired at 1100 ° C or higher, then fired at 1200 ° C or higher in a reducing atmosphere, and then 90 ° C in an oxidizing atmosphere.
A method for manufacturing a varistor that is fired at 0 to 1300 ° C.
JP2151976A 1990-06-11 1990-06-11 Varistor manufacturing method Expired - Fee Related JP2822612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151976A JP2822612B2 (en) 1990-06-11 1990-06-11 Varistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151976A JP2822612B2 (en) 1990-06-11 1990-06-11 Varistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH0443603A JPH0443603A (en) 1992-02-13
JP2822612B2 true JP2822612B2 (en) 1998-11-11

Family

ID=15530343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151976A Expired - Fee Related JP2822612B2 (en) 1990-06-11 1990-06-11 Varistor manufacturing method

Country Status (1)

Country Link
JP (1) JP2822612B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571347Y2 (en) * 1991-09-03 1998-05-18 東陶機器株式会社 Ceiling connection structure of prefabricated building unit
CN106631002A (en) * 2017-01-11 2017-05-10 电子科技大学 Dielectric material for Mg-Zn-Ti-based radio-frequency MLCC (multi-layer ceramic capacitor) and preparation method of dielectric material

Also Published As

Publication number Publication date
JPH0443603A (en) 1992-02-13

Similar Documents

Publication Publication Date Title
JP2789714B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2822612B2 (en) Varistor manufacturing method
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2800268B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808775B2 (en) Varistor manufacturing method
JP2808777B2 (en) Varistor manufacturing method
JP2789675B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808778B2 (en) Varistor manufacturing method
JP2789674B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2789676B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH038766A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2548278B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPH038767A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2548277B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JP2548279B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPH0443602A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH03237058A (en) Porcerain composition for voltage dependent nonlinear resistor and production of varistor
JPH0682562B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPH0443601A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH01226120A (en) Voltage-dependent non-linear resistor ceramic composition
JPH0443605A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPS63215001A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63296310A (en) Voltage dependency nonlinear resistor porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees